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Abstract

Though variability and uncertainty have always posed challenges for power systems,
the increasing use of renewable energy sources has exacerbated these issues. At a vertically
integrated utility, the system operator manages many generation units – renewable and otherwise
– and storage units to ensure that the total energy production matches contemporaneous
demand. Current industry practice at these utilities involves solving “unit commitment” and
“economic dispatch” optimization problems to choose production plans: these models, while
complex, do not explicitly incorporate uncertainty. In this paper, we develop a dynamic
framework to help system operators manage production under uncertainty. We formulate
the problem as a stochastic dynamic program and use Lagrangian methods to decompose
the system across units. The Lagrangian model relaxes the demand-matching constraint and
introduces stochastic Lagrange multipliers that can be interpreted as prices representing the
varying marginal value of energy production; each unit is then operated to maximize its own
expected “profit” given these uncertain prices. These unit-specific value functions are then used
to incorporate longer-term effects in dispatch decisions. The unit-specific value functions also
provide a way to value generation and storage units in an uncertain environment. We develop
relevant theory and demonstrate this dynamic framework using data from the Duke Energy
Carolinas and Progress systems. Our numerical experiments demonstrate that this dynamic
approach is computationally feasible at an industrial scale and can improve on current practice.
Specifically, our results suggest that this dynamic approach can reduce operational costs by
about 2% on average in the present Duke Energy system and, in a “future” system with
increased solar and storage capacity, can reduce operational costs by 4-5% on average. Perhaps
more strikingly, this dynamic approach, on average, performs within 0.2-0.3% of production
plans based on perfect foresight about future net demands.
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1. Introduction

Though variability and uncertainty have always posed challenges for power systems, the growing

use of renewable energy has exacerbated these issues. To illustrate, consider the “duck curve” of

Figure 1 showing a snapshot of net load on spring days in California, as the solar energy supply has

grown over the last few years. As shown there, the increased reliance on solar energy forces operators

to quickly ramp up production when the sun sets and solar production falls. In a setting where

unpredictable thunderstorms sometimes “pop up” as the sun sets (for example, in the Southeastern

United States), such storms can suddenly reduce the supply of solar energy and require the system

operator to ramp up production from other sources quickly. Some generation units – for example,

thermal units – may have significant startup costs and limited ability to ramp up production to

meet such unexpected increases in demand. Other generation units, such as gas turbines, may be

more expensive to operate but can ramp up or down quickly. Managing uncertainty cost-effectively

requires using an appropriate mix of such technologies.

Figure 1: California ISO’s “duck curve.”
Source: Energy Information Administration

In a vertically integrated energy system (where the system operator controls the operation

of all plants in the system), systems are typically managed by solving “unit commitment” (UC)

and “economic dispatch” (ED) problems (see, e.g., Conejo and Baringo 2018). Each morning,

the system operator solves a UC problem to determine the “commitment” of generating units to

minimize operating costs while meeting the expected demand over the course of the day or week.

Then, once the commitment of generating units is decided, each hour, the system operator solves

the ED problem to determine the actual power output of each generating unit to meet the realized

demands at minimum cost, subject to the commitments determined in the UC problem, as well

as other constraints of the system. In particular, in the ED problem, slow-starting units (such
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as thermal plants) are “committed” to be on or off according to the result of the UC problem,

though their production levels may be adjusted. The flows into and out of pumped-storage hydro

are similarly committed to the UC solution. If additional power is needed, the ED problem can

dispatch fast-starting units (e.g., gas turbines), subject to their physical constraints. These models,

while complex, typically do not explicitly consider uncertainty in supplies or demands.

In this paper, we describe a dynamic framework for managing an integrated energy system

under uncertainty based on methods from weakly coupled stochastic dynamic programming (e.g.,

Hawkins 2003; Adelman and Mersereau 2008). Specifically, we model demand and renewable supply

(and potentially other uncertainties) – the world state – as an exogenous discrete-time stochastic

process over a fixed horizon, say, a day or a week. Periods in the model correspond to hours, and

dispatch decisions are made in each period. The modeled power system includes many generation

units, each with different characteristics, as well as storage units. We describe the system model

at a high level in §2 and the generation and storage unit models in §4.

Although the system-level stochastic dynamic program (DP) is too complex to solve exactly, we

can decompose the problem using a Lagrangian relaxation. In particular, as discussed in §3, we relax

the constraints that demand and production must balance in each period and each scenario and

impose Lagrange multipliers that punish violations of these constraints. These Lagrange multipliers

are, in general, stochastic – depending on the history of world states – and can be interpreted as

“prices” that units are paid for the energy produced. The resulting relaxed model decouples across

units into a set of unit-specific DPs where each unit maximizes its own profit, keeping track of its

own state and the stochastic world state.

We can consider various functional forms for the stochastic price models in this Lagrangian

relaxation. For any price model, the relaxed model provides an upper bound on the system’s total

profit (or a lower bound on the total costs). We can find the best such bound for a particular price

model by solving the dual optimization problem. The optimal Lagrange multipliers (or prices)

ensure that the production in the relaxed model matches certain statistical features of the demand

process. For example, with a fully general stochastic price process, the optimality conditions

ensure that production in the Lagrangian model matches demand in every scenario, albeit with

mixed policies. If we consider period-specific deterministic prices, the optimality conditions ensure

production in the Lagrangian model matches demand “on average” in each period.

In §4, we describe specific models for the production and storage units and derive structural

properties of these unit-specific DPs. These structural properties greatly simplify the solution of
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the unit-specific DPs and help make the decomposed Lagrangian model tractable.

We see this decomposed Lagrangian DP as serving a role analogous to that of the deterministic

UC problems in current practice: the relaxed DP model provides a plan for operating the system

on a given day. Here, however, the plans are state-contingent, describing what each unit should

do in each world state. To ensure that these unit-specific state-contingent plans are consistent

and meet the realized actual demand, in each period, we solve a forward-looking version of the

ED problem that is described in §5. Specifically, in each period, we solve a mixed integer linear

program that maximizes the sum of unit-specific values (using unit-specific DP value functions from

the Lagrangian relaxation) subject to the constraint of matching demand exactly and respecting all

other system constraints. These unit-specific value functions thus embed long-term considerations

when making hourly dispatch decisions. In this forward-looking ED problem, we assume the system

operator has full flexibility to control any and all plants, as well as storage, i.e., it operates without

commitment. The ramping constraints of slow-starting units (as well as all other units) are fully

respected in this model, but in contrast to current practice, in this dynamic approach, we assume

that there are no exogenous constraints on the ED problem imposed by the solution of the UC

problem.

In §6, we evaluate the performance of this proposed dynamic approach using Monte Carlo

simulation: we consider various price models in this dynamic approach and compare performance

to current practice as well as performance bounds provided by a perfect information relaxation

(Brown et al. 2010). The simulations are set in the context of the Duke Energy Carolinas and

Duke Energy Progress system (serving North and South Carolina), and the results suggest that the

proposed dynamic approach is feasible for large-scale problems and performs quite well.

The work described in this paper was undertaken as part of the larger GRACE project (a Grid

that is Risk Aware for Clean Electricity, funded by the U.S. Department of Energy) that involves

researchers from several universities and Duke Energy as an industry partner (Patino-Echeverri

et al., 2023). Our numerical experiments use confidential data about Duke Energy’s system provided

as part of this project. In these experiments, we also use demand forecasting models that were

developed by other GRACE team members and based on confidential Duke Energy data.

Literature Review. Tahanan et al. (2015) provides a comprehensive review of work on unit

commitment under uncertainty. In practice, operators frequently tweak their deterministic UC

models in response to uncertainty. For example, a common approach for managing uncertainty

in supply/demand is for operators to augment their deterministic UC models to include reserve
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constraints that ensure capacity will be available if demand is higher than expected or if the system

were to experience a sudden loss of supply. Operators also sometimes rerun their deterministic UC

models if conditions deviate significantly from their forecasts or adjust dispatch plans in ad hoc

ways, particularly plans related to storage.1

Tahanan et al. (2015) distinguish three approaches to the UC problem that explicitly consider

uncertainty: stochastic optimization, robust optimization, and chance-constrained optimization.

We use a stochastic optimization approach and will concentrate our literature review on that area.

Most papers in this literature rely on scenario tree models of uncertainty. One can solve the resulting

formulations using mixed integer programming techniques, but the problem size explodes as the

number of scenarios grows. Tahanan et al. (2015) distinguish three decomposition approaches to

deal with this challenge: scenario decomposition, Benders decomposition, and unit decomposition.

Scenario decomposition involves relaxing the nonanticipativity constraints at each node of the

scenario tree and optimizing corresponding dual variables. Takriti et al. (1996) develop this

approach using progressive hedging techniques and note (p. 1503) “the execution time of the

algorithm grows rapidly as the number of scenarios included increases and their demands are more

diverse.” Takriti and Birge (2000) show that the duality gap for this approach is bounded from

above by a term that grows linearly with the number of branching points in the scenario tree.

Benders decomposition has also been applied widely, typically in two-stage models of demand

uncertainty. Cerisola et al. (2009) demonstrate Benders decomposition approaches in multi-stage

power production planning on numerical examples involving eight scenarios.

Our framework is a form of unit decomposition, which uses Lagrangian relaxation of the

constraints that couple the units across the system. Several researchers (e.g., Carpentier et al.

1996, Dentcheva and Römisch 1998, Nowak and Römisch 2000) develop unit decomposition

approaches with stochastic Lagrange multipliers in power planning problems with scenario trees.

Carpentier et al. (1996, p. 1068) note that “scenario trees have to be kept simple enough to avoid

combinatorial explosion of computation.” In this stream of the unit decomposition literature,

solving the unit-specific subproblems using dynamic programming is standard, with the size of

these subproblems growing exponentially with the number of scenarios (see, e.g., §3.2 of Nürnberg

and Römisch 2002). In our framework, we work with simpler forms of stochastic Lagrange

1One may wonder why storage is committed to the UC solution, given the inherent flexibility of storage resources.
These ED problems are typically formulated myopically, minimizing the cost for a given period. With such a myopic
approach, the ED solutions would frequently draw down storage rather than save stored energy for a later peak, as
may be prescribed in the UC solution. We will see in §6.4 that this current-practice approach with commitment
indeed performs significantly better than a fully myopic approach.
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multiplier (or price) models to avoid this combinatorial explosion.

Our work also falls within and contributes to the literature on approximate dynamic

programming techniques in energy planning applications. Papers in this stream model uncertainties

using general Markov processes rather than scenario trees. For example, Khazaei and Powell

(2018) develop a lookahead-based policy using parameter tuning for managing daily production

operations within a model that optimizes long-term investments in renewable energy sources.

Powell and Meisel (2015) provide a tutorial on using tuned parametric approximations of value

functions and lookahead techniques, focusing on energy storage applications. Barty et al. (2010)

develop a stochastic Lagrangian decomposition approach similar to ours in a weakly coupled

stochastic DP framework; they illustrate their approach with auto-regressive Lagrange multipliers

on a simple power planning problem involving two hydraulic plants and one thermal generation

unit. Barty et al. (2010) note that a key advantage of the approach is that it scales linearly in

the number of units but they leave a deeper study of stochastic Lagrange multipliers to future

research.

Finally, our paper contributes to the growing body of methodological research on weakly coupled

stochastic DPs (Hawkins 2003, Adelman and Mersereau 2008), which generalizes ideas from the

restless bandit literature (e.g., Whittle 1988). Researchers have successfully applied weakly coupled

DP methods to a variety of problems, including marketing (Bertsimas and Mersereau 2007),

assortment planning (Caro and Gallien 2007, Brown and Smith 2020), network revenue management

(Topaloglu 2009), and multi-location inventory management (Miao et al. 2022, Brown and Zhang

2022), among many others.

Contributions. We view our contributions to be both applied and methodological. On the applied

front, our framework represents a scalable and practically viable approach to managing production

in an integrated energy system facing uncertainty. Our numerical experiments based on the Duke

Energy system demonstrate that our framework performs well at an industrial scale, taking seconds

to minutes to solve the Lagrangian dual problems on a desktop computer, outperforming current

practice in realistic settings, and achieving within a fraction of a percent of performance given

perfect information on future demands. On the methodological front, we advance the analysis and

application of stochastic Lagrange multipliers in weakly coupled stochastic DPs and develop new

structural properties for the resulting unit-specific value functions that simplify their solution.
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2. The System Model

We consider a finite horizon with periods t = 1, . . . , T with power demands (d1, . . . , dT ) in each

period. In our numerical examples, we will consider periods of one hour in duration and a time

horizon T = 24 or 168 corresponding to a day or a week. The system operator or decision-maker

(DM) seeks to maximize the profit (or minimize costs) over this horizon.

For now, we consider a general model of demands and renewable supplies, assuming they are

generated by some Markov process with world-state ψt ∈ Ψ. We assume that the world state

includes the current demand dt and supplies for weather-dependent units and everything needed to

generate forecasts for future demands and supplies for weather-dependent units. This world-state ψt

could, in principle, be a large and complex state variable noting current temperatures and forecasts

of future temperatures (as well as other weather variables), plant outages, and fuel costs, as well as

the current demand and weather-related supplies. We assume that the world-state transitions are

exogenous (independent of the system state and DM’s actions) and that the period-t world-state

ψt is known to the DM when making decisions in period t. We let F = (F1, . . . ,FT ) denote the

filtration representing the DM’s knowledge of the world-state over time. To avoid measurability

and related technical issues, we will assume that the world-state space Ψ is finite.

There are S generation units of various types – generation and storage units – with details

to be described in §4. The state of unit s in any given period is summarized by a state variable

xs ∈ Xs. In each period, the DM selects an action as from a feasible set As(xs, ψt) ⊆ As, where

As denotes the action space. These actions produce ps(as) units of energy and cost cs(xs, as, ψt).

The unit’s state then evolves deterministically to χs(xs, as, ψt) in the next period. The constraint

sets may depend on the world-state ψt, reflecting the availability of wind or solar power or a unit

or system outage. Similarly, the costs may depend on ψt reflecting, for example, fuel costs for

generation units. The transitions may also depend on the world-state, reflecting, for example, a

reservoir filling because of rainfall.

We let x = (x1, . . . , xS) denote a vector of unit states (the system state), a = (a1, . . . , aS) a

vector of control decisions (a system action), A(x, ψ) = A1(x1, ψ)×. . .×AS(xS , ψ) the set of feasible

system actions, p(a) =
∑S

s=1 ps(as) the total power produced, c(x,a, ψ) =
∑S

s=1 cs(xs, as, ψ)

the total cost, and χ(x,a, ψ) = (χ1(x1, a1, ψ), . . . , χS(xS , aS , ψ)) the corresponding vector of

next-period unit states.

The DM chooses actions in each period with the goal of maximizing the expected total reward
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(or minimizing total costs) over the horizon, subject to the constraint of meeting demand in each

period and in each state. For ease of later interpretation, we maximize rewards rather than minimize

costs. We formulate this problem as a DP: taking the terminal value V ∗
T+1(x, ψT+1) = 0, we can

write the optimal value function for earlier periods as

V ∗
t (x, ψt) = max

a∈A(x,ψt)
− c(x,a, ψt) + E

[
V ∗
t+1

(
χt(x,a, ψt), ψ̃t+1

) ∣∣∣ψt ]
s.t. p(a) = dt(ψt)

(1)

Here dt(ψt) is the demand in period t given world-state ψt and E [− |ψt ] denotes the expectation

over the next-period world-state ψ̃t+1, conditioned on the current world-state ψt. We assume there

is a feasible solution to this DP; we can ensure this by assuming the existence of units that can

shed excess demand or supply at a cost. We also assume that the optimal value in any given state

will be attained by some vector of actions a.

3. A Lagrangian Relaxation

The total costs and power produced in the system model are sums of the costs and production of

individual units, but the optimization problem is complicated by the constraints that require total

production to equal demand in every period and every state. These constraints link decisions

and actions across units. In this section, we describe a Lagrangian model that relaxes these

linking constraints by introducing stochastic Lagrange multipliers or “prices” associated with these

constraints. In this section, we first develop the theory of this Lagrangian model and then discuss

some example price models.

3.1. The Lagrangian Model

In the Lagrangian relaxation, we “dualize” the linking constraints in (1) by introducing Lagrange

multipliers λ = (λ1, . . . , λT ) for these constraints. For now, we will allow the period-t Lagrange

multiplier λt to be any function that is measurable with respect to Ft, i.e., λt : Ψt → R1. The

Lagrange multiplier process λ is thus adapted to the filtration F and λ : Ψ1 × . . . × ΨT → RT .

We let ηt = (ψ0, . . . , ψt) denote the history of world-states up to period t, so the period-t Lagrange

multipliers can be viewed as a function λt(ηt) of this world-state history.

In our numerical work, we will restrict the Lagrange multipliers λ to be in a set Λ with a

simpler form, for example, constant functions or linear functions of demand. Although we assume

the world-state process is Markovian, the Lagrange multiplier processes need not be. For example,
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an optimal Lagrange multiplier (or price for power) in a world-state with medium demand may be

higher if the preceding demands were low than they would be if the preceding demand states were

high, reflecting the need to induce units to start or shut down to meet the current demand.

Taking the terminal value to be Lλ
T+1(x, ηT+1) = 0, the Lagrangian system DP can be written

Lλ
t (x, ηt) = max

a∈A(x,ψt)
λt(ηt) (p(a)− dt)− c(x,a, ψt)+

+ E
[
Lλ
t+1

(
χt(x,a, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ] . (2)

Here the dependence of the Lagrangian value functions on the world-state history ηt rather than

the current world-state ψt (as in (1)) reflects the most general form of Lagrange multipliers.

This Lagrangian has some nice properties and can be decomposed into unit-specific

value functions, as described in the following proposition. These results are standard in the

loosely-coupled DP literature (see, e.g., Hawkins (2003), Adelman and Mersereau (2008), Brown

and Smith (2020)) though in this earlier work, the Lagrange multipliers are assumed to be constant

in each period rather than arbitrary functions of the history of world-states. Similar results appear

in Brown and Zhang (2022).

Proposition 1 (Properties of the Lagrangian Value Function). For any λ, and η1 = (ψ1), and x,

(a) Decomposition:

Lλ
1 (x, η1) = −

T∑
t=1

E
[
λt(η̃t)dt(ψ̃t)

]
+

S∑
s=1

V λ
s,1(xs, η1) (3)

where the unit-specific value functions V λ
s,1(xs, η1) are given by the DP recursion

V λ
s,t(xs, ηt) = max

as∈As(xs,ψt)
λt(ηt)ps(as)− cs(xs, as, ψt)

+ E
[
V λ
s,t+1

(
χs(xs, as, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ] (4)

with terminal case V λ
s,T+1(xs, ηT+1) = 0.

(b) Upper Bound: V ∗
1 (x, ψ1) ≤ Lλ

1 (x, η1).

(c) Convexity: V λ
s,1(xs, η1) and L

λ
1 (x, η1) are piecewise linear and convex in λ.

The decomposition result in part (a) of Proposition 1 follows from rearranging terms in (2). The

fact that the Lagrangian DP decomposes in this way means the difficulty of evaluating the system
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Lagrangian (3) is determined by the complexity of the unit-specific DPs (4). Intuitively, in these

unit-specific DPs, the units are paid a price λt per unit of power produced in period t, and each

unit is managed to maximize its own expected reward. We will consider these unit-specific DPs in

more detail in §4 and discuss properties that simplify their solution.

Part (b) of Proposition 1 follows because in the Lagrangian DP (2) is a relaxation of the original

DP (1): in (2) the DM could choose actions that are feasible and optimal for (1) and earn the same

value as (1) but could also choose actions that do not match demand and possibly earn more.

The Lagrangian value function thus provides an upper bound on the primal DP (1). Naturally,

we would like to find the best such bound. Given a set of feasible Lagrange multipliers Λ and an

initial state (x, ψ), we consider a (constrained) Lagrangian dual problem:

min
λ∈Λ

Lλ
1 (x, η1) . (5)

If the set of allowed Lagrange multiplier functions Λ is convex, part (c) of the proposition says this

Lagrangian dual problem is a convex optimization problem.

To study the Lagrangian dual problem (5) in more detail, it is helpful to understand the gradient

structure of Lλ
1 (x, η1). Towards this end, we fix the initial state (x, η1) and let L(λ) = Lλ

1 (x, η1)

and Vs(λ) = V λ
s,1(xs, η1). Let αs denote an F-adapted policy for managing unit s that selects

actions in each period that are feasible (in As(xs, ψt)) for the resulting sequence of plant states

and the exogenous sequence of world-states; we let As denote the set of all such feasible policies

for unit s. Let cs,t(αs, ηt) and ps,t(αs, ηt) denote the period-t cost and energy production at unit s

given policy αs and world-state history ηt. With this notation, we can write the unit-specific DP

(4) as a maximization of the total reward over unit-specific policies αs:

Vs(λ, αs) =
T∑
t=1

E [λt(η̃t)ps,t(αs, η̃t)− ct,s(αs, η̃t) ] ,

Vs(λ) = max
αs∈As

Vs(λ, αs)

(6)

We can characterize the gradients of the unit-specific DPs and Lagrangian as follows. Suppose we

view the Lagrange multiplier process λ = (λ1(η1), . . . , λT (ηT )) as a vector

(
λ1(η1,1), . . . , λ1(η1,n1), . . . , λT (ηT,1), . . . , λT (ηT,nT

)
)

9



where ηt,1, . . . , ηt,nt denotes the possible world-state histories in period t and nt = |Ψ|t. The set of

feasible Lagrange multiplier processes Λ can then be viewed as a subset of RN where N =
∑T

t=1 nt.

If we view the evolution of world-states as a (non-recombining) scenario tree, N is the total number

of nodes in the tree. Let π(ηt,i) denote the probability of world-state history ηt,i occurring and let

dπ =
(
π(η1,1)d1(η1,1), . . . , π(η1,n1)d1(η1,n1), . . . , π(ηT,1)dT (ηT,1), . . . , π(ηT,nT

)dT (ηT,nT
)
)

denote the probability-weighted demand realizations corresponding to these periods and world-state

histories.

Proposition 2 (Gradients of the Lagrangian). Let A∗
s(λ) denote the set of optimal policies for

unit s given Lagrange multiplier process λ.

(a) Subgradients for the unit-specific problems: For any αs ∈ A∗
s(λ),

∇s(αs) =
(
π(η1,1)ps,1(αs, η1,n1), . . . , π(η1,n1)ps,1(αs, η1,n1), . . . , (7)

π(ηT,1)ps,T (αs, ηT,1), . . . , π(ηT,nT
)ps,T (αs, ηT,nT

)
)

is a subgradient of Vs at λ; that is

Vs(λ
′) ≥ Vs(λ) +∇s(αs)

⊺(λ′ − λ) for all λ′

The subdifferential (the set of all subgradients) of Vs at λ is

∂Vs(λ) = conv {∇s(αs) : αs ∈ As(λ)}

where convA denotes the convex hull of the set A.

(b) Subgradients for the Lagrangian: The subdifferential of L at λ is

∂L(λ) = −dπ +
S∑
s=1

∂Vs(λ) (8)

= −dπ + conv

{
S∑
s=1

∇s(αs) : αs ∈ A∗
s(λ) ∀s

}
(9)

where the sums are setwise (i.e., Minkowski) sums.
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Part (a) of this result follows from Danskin’s Theorem and the representation of (7); part (b) then

follows from standard results in convex analysis. Again, these are standard results in the loosely

coupled DP literature, adapted here to the general form of F-adapted of Lagrange multipliers. For

completeness, we provide a proof in Appendix A.

The following theorem provides optimality conditions for the Lagrangian dual problem (5).

Theorem 1 (Optimality conditions). Suppose Λ is a convex set of feasible Lagrange multiplier

processes.

(a) Abstract form: λ∗ ∈ Λ is an optimal solution for the Lagrangian dual problem (5) if and

only if

0 ∈ ∂L(λ∗) +NΛ(λ
∗) (10)

where NΛ(λ
∗) is the normal cone of Λ at λ∗. Given the (assumed) convexity of Λ, NΛ(λ

∗) is

the set of all z ∈ RN such that z⊺(λ− λ∗) ≤ 0 for all λ ∈ Λ.

(b) Mixture form: Let A∗
s(λ) denote the set of optimal policies for unit s given Lagrange

multiplier process λ. Then λ∗ is an optimal solution for the Lagrangian dual problem (5)

if and only if, for each s there is a set of policies {αs,i}ms

i=1 with αs,i ∈ A∗
s(λ

∗) and mixing

weights {γs,i}ms

i=1 (γs,i > 0 and
∑ms

i=1 γs,i = 1) such that

dπ −
S∑
s=1

ms∑
i=1

γs,i∇s(αs,i) ∈ NΛ(λ
∗) (11)

where ∇s(αs,i) is the probability-weighted time-and-state contingent production vector for

policy αs,i, for unit s, given as the gradient (7).

(c) Linear price functions: Suppose Λ is contained in a K-dimensional linear subspace of RN

with

λt(ηt) = β1b1,t(ηt) + . . .+ βKbK,t(ηt). (12)

i.e, a linear combination of some set of “basis functions” bk,t(ηt). Then λ∗ is an optimal

solution for the Lagrangian dual problem if and only if, for each s, there is a set of optimal
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set of policies {αs,i}ms

i=1 with αs,i ∈ A∗
s(λ

∗) and mixing weights {γs,i}ms

i=1, such that, for all k,

S∑
s=1

ms∑
i=1

γs,i

T∑
t=1

E [ bk,t(η̃t)ps,i(αs, η̃t) ] =
T∑
t=1

E [ bk,t(η̃t)dt(η̃t) ] (13)

with
∑S

s=1ms ≤ S +K; thus, no more than K units will have mixed policies.

We provide a proof in Appendix A. The first result here is a standard result for convex optimization

(see, e.g., Bertsekas et al., 2003, Proposition 4.7.2). The mixture form in part (b) then follows from

(9) and (10) using Caratheodory’s representation of the convex set in (9). Noting that ∇s(αs,i)

is the probability-weighted production vector given policy αs,i (optimal for λ∗), the left side of

(11) can be interpreted as the (probability-weighted) residual of optimally “fitting” the Lagrangian

production model to the observed demands dπ: the optimality condition (11) requires this residual

to lie in the normal cone NΛ(λ
∗) of the constraint set Λ. The refinement of part (c) of the Theorem

follows from part (b) and standard results about the form of basic feasible solutions for linear

systems of equations. With price models of the form (12), we can work in the K-dimensional

subspace of Λ. The objective in (5) is piecewise linear and convex in (β1, . . . , βK) and we can

calculate gradients of the unit-specific value function with respect to these coefficients. Given this

piecewise-linear convex structure, it is natural to use cutting-plane methods to solve (5); see Brown

and Smith (2020) for discussion on the use of cutting-plane techniques for these kinds of problems.

We can better understand the results of Theorem 1 by considering specific examples of constraint

sets Λ for the Lagrange multiplier or price process.

3.2. No Constraints on the Price Model

First, suppose we have no constraints on the form of the price process other than that it is F-adapted.

In this case, Λ = RN where, as noted above, N =
∑T

t=1 nt is the total number of world-state

histories over time. In this case, NΛ(λ
∗) includes only the zero vector and (11) means that the

optimal Lagrange multiplier process λ∗ leads to a mixture of policies that exactly matches the

realized demand in every possible world-state in every period. Because such a mixture of policies is

not feasible to implement, this optimal Lagrangian model is not a feasible solution for the original

DP (1) and L(λ∗) need not provide a tight bound on the optimal value with a feasible policy, i.e.,

there may be a duality gap.
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3.3. Period-Constant Prices

Next, suppose that Λ consists of Lagrange multipliers that are constant in each period, as is common

in the weakly coupled DP literature, e.g., Hawkins (2003), Adelman and Mersereau (2008), and

Brown and Smith (2020). This case can be represented in the form of (12) by considering T basis

functions bk,t(ηt) = 1 for k = t and all ηt, and zero otherwise. The optimality condition (13) then

become

S∑
s=1

ms∑
i=1

γs,iE [ ps,i(αs, η̃t) ] = E [ dt(η̃t) ] for all t , (14)

where the γs,i are mixing weights in Theorem 1(c). These conditions can be interpreted as saying

that the optimal Lagrange multipliers (prices) are such that total production in the Lagrangian

matches demand “on average” in each period, where the averaging includes the mixing of policies as

well as uncertainty about demand. Note that these prices are deterministic and reflect time-of-day

effects but are not sensitive to changing demand or world-states. In §6, we will see that this

deterministic price model does not perform very well in our numerical experiments.

3.4. Period-Linear Prices

Now suppose that Λ consists of Lagrange multipliers that are linear functions of demand in each

period. This model can be represented in the form of (12) using 2T basis functions. The first T

basis functions are constants bk,t(ηt) = 1 for k = t for all ηt and 0 otherwise, as above. The next T

basis functions are the period-t demands, bk,t(ηt) = dt(ηt) for k = T + t, and zero otherwise. The

optimality conditions (13) then require that production in the Lagrangian matches demand “on

average” in each period, as in (14) above, and

S∑
s=1

ms∑
i=1

γs,iE [ ps,i(αs, η̃t)dt(η̃t) ] = E
[
dt(η̃t)

2
]

for all t . (15)

Conditions (14) and (15) imply that, with optimal weights (bt in (12)), the simple linear regression

of total production in period t in the Lagrangian model regressed on demand in period t would have

unit slope and zero intercept, in each period. This price model is stochastic, captures time-of-day

effects, and has time-of-day-specific demand effects. In §6, we will see that this price model performs

very well in our numerical experiments.
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3.5. Other Price Models

Of course, many other forms of price models are possible. One could always add other basis

functions to the Lagrange multiplier model. For example, we could consider a model that includes

lagged demand as well as the current demand in the Lagrangian model to reflect the need to induce

units that were previously off to start or units that were on to shut down to meet the current

demand (as discussed in §3.1). However, we want to choose a functional form for the price model

with computational considerations in mind so the Lagrangian dual problem (5) can be solved within

a reasonable time. Specifically, we want to have (i) relatively few parameters to be optimized, (ii)

gradients that are “easy” to calculate, and (iii) small world states and limited dependence on the

history of world-states, so the state spaces in the unit-specific DPs are not too large. With many

periods and significant uncertainty, the number of parameters (N) in the unconstrained case will

likely be prohibitively large.

In practice, we recommend proceeding incrementally, starting with a simple model and then

complicating as necessary. In our numerical experiments, we have found good results with price

models that are quite simple. For example, there is no a priori reason that we need to have

period-specific constant or linear terms in the price model, as assumed in §3.3 and §3.4. One could,

for example, assume prices in any period are a linear function of demand in that period, with the

same slope and intercept in every period; this would correspond to a price model with just two

parameters. In §6, we report results for a simple price model with seven parameters; we discuss

the choice of these basis functions in §6.2. Choosing the form of the price model (i.e., choosing

basis functions) is something of an art and, at a high level, similar to choosing basis functions for

a regression model or other approximate DP methods.

4. Unit Models and Properties

We now describe the units we will consider as part of our example power system. For each unit,

we describe its state space Xs, the possible actions As(xs, ψt), costs cs(xs, as, ψt), and production

ps(as) levels, where these functions may depend on the current unit state xs, action as, and world

state ψt. We focus on the kinds of units that are included in our example system. In that data set,

there are 127 generation units (§4.1) and two pumped-storage hydro units (§4.2).
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4.1. Generation Units

The broad category of generation units includes nuclear plants, thermal generation plants, peaking

plants, etc., with parameters and constraints varying by unit. For example, nuclear plants have

large startup and shutdown costs and low variable costs. Peaking plants (e.g., natural gas turbines)

have low startup and shutdown costs but typically have relatively high operating costs. Thermal

plants are between these two cases, having significant startup costs and ramping constraints but

potentially having lower operating costs. We consider these various kinds of units as parametric

variations within the class of generation units.

A generation unit may be “off” – a state we denote by the number 0 – or “on” and producing

at some production level p between lower bound ps > 0 and upper bound ps; thus the state space

Xs is {0} ∪ [ps, ps].The action space As represents the next-period state (off or producing); thus

As = Xs and χs(xs, as, ψt) = as. Production may ramp up or down in a given period by at most rs,u

and rs,d (respectively); the maximum production achievable at startup is ps,u; and the maximum

production rate where shutdown is possible is ps,d. Thus, the set of feasible actions for a generation

unit s is

As(xs, ψt) =


{0} ∪ [ps, ps,u] if xs = 0,

{0} ∪
(
[ps, ps] ∩ [xs − rs,d, xs + rs,u]

)
if xs ̸= 0 and xs ≤ ps,d,

[ps, ps] ∩ [xs − rs,d, xs + rs,u] otherwise.

The production for generation unit s is ps(as) = as.
2

The production costs include fixed costs cs,n (sometimes called “no-load costs”), as well as

startup costs cs,u and shutdown costs cs,d. We can write the cost function as

cs(xs, as, ψt) =



0 if xs = 0 and as = 0,

cs,u + cs,n + cs,fas if xs = 0 and as ̸= 0,

cs,d if xs ̸= 0 and as = 0,

cs,n + cs,fas otherwise.

2If there are minimum downtime constraints requiring a unit to be off for at least ℓ periods when shut down, we
could augment the unit state space to indicate how long a unit has been off. Alternatively, we can replace the t+1
time index in the continuation value when shutting down in (4) with t+ ℓ so the unit is not available to be started
up again until period t+ ℓ. Minimum uptime constraints can be handled similarly; see Takriti et al. (1996).
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In principle, we could have world-state dependent variable costs cs,f (or other costs) representing

uncertainty in fuel costs. However, in our numerical examples, we will assume constant fuel costs.

Though the state and action spaces here include a continuum of possible production levels, in

the context of the unit-specific DPs for the Lagrangian, we can restrict our focus to a finite set

of production levels that are potentially optimal. The intuition behind this result generalizes the

idea of a “bang-bang” solution: if we had no ramping constraints or startup or shutdown limits or

costs, it would be optimal for a plant to be producing at either its upper limit or at zero, according

to whether the operating profit, ps(λt(ηt) − cs,f ) − cs,n, is positive or negative for a given world

state. With ramping constraints or startup and shutdown constraints and costs, the DM needs to

consider the effects of current actions on future feasible sets of actions.

This logic suggests that there is a discrete set of production levels that an optimal policy would

visit. These “grid” values are

Gs =
{
x̂+ irs,u − jrs,d : i, j ∈ Z+, x̂ ∈ {ps,1, ps, ps, ps,u, ps,d}

}
∩ [ps, ps] . (16)

In words, these are the feasible values (between ps and ps) that can be reached by ramping up

or down as much as possible (rs,u and rs,d) repeatedly over time, starting from the unit’s initial

production level (ps,1 if not off initially), the minimum or maximum levels ps and ps, the maximum

startup level ps,u, or the maximum shutdown level ps,d. For instance, one of the generation units in

our numerical examples has ps = 310, ps = 844, ps,u = ps,d = 310, and ramp limits rs,u = rs,d = 180.

If the unit starts in the off state, the grid values are {310, 490, 670, 844, 664, 484}. The following

result says that rather than considering a continuum of possible states in the unit-specific DP, we

can focus on a state space consisting of these six production levels plus the off-state.

Proposition 3 (Properties of generation units). Consider any λ ∈ Λ, and let Gs denote the set of

grid points defined in (16) for generation unit s. For every t and ηt, the following hold:

(a) Without shutdown decisions (i.e., if cs,d = ∞), V λ
s,t(x, ηt) is piecewise linear and concave on

x ∈ [ps, ps] with breakpoints in Gs. If x is in Gs, then there exist optimal production levels in

Gs in period t and thereafter.

(b) With shutdown decisions,

(i) V λ
s,t(x, ηt) is convex in x between grid points: that is, suppose g1 and g2 are adjacent

points in Gs, µ ∈ [0, 1], and x1, x2, and xµ are such that xµ = µx1 + (1 − µ)x2 and
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g1 ≤ x1 ≤ xµ ≤ x2 ≤ g2. Then V λ
s,t(xµ, ηt) ≤ µV λ

s,t(x1, ηt) + (1− µ)V λ
s,t(x2, ηt).

(ii) If x is in Gs and it is optimal to produce, then there exist optimal production levels in

Gs in period t and thereafter.

The result of part (a) generalizes the bang-bang logic to incorporate ramping limits and can be

proven by backward induction: a DM facing a piecewise linear convex continuation value with

rewards that are linear in the production level will either want to ramp up or down as much as

possible (which, if starting at a grid point, would be a grid point) or else operate at a breakpoint

of the continuation value (which, by the induction hypothesis, is also a grid point). Though it is

not surprising that including shutdown decisions would destroy the concavity of value function, it

is perhaps surprising that local convexity emerges. This local convexity is enough to ensure the

desired result: with rewards that are linear in the production level, producing at any point between

grid points is dominated by producing at one of the bracketing grid points. In practice, these sets

of grid points may be quite small. For instance, with the 129 generation units in the Duke Energy

system modeled in §6, the number of grid points ranges from 1 (when ps = ps) to 10, with an

average of 2.60.3

Figure 2(a) illustrates Proposition 3(b), showing a value function for a generation unit with

shutdown decisions. For this unit, ps = 0.1, ps = 1.0, and rs,u = rs,d = 0.1, ps,u = 0.2 and

ps,d = 0.3; the grid points (shown as dots in the figure) thus lie at increments of 0.1. The convexity

of the value function between grid points is evident in several places. In this example, a low price

is expected in two periods: the sharp drop in the value function at 0.5 GW reflects the fact that,

for production states above this level, it is not possible to ramp down enough (to ps,d = 0.3 or less)

to shut the unit down before the low price period.

As mentioned in §2, to ensure the primal problem (1) is feasible, we will assume that there exist

two artificial units for shedding demand or supply. The units have (large) positive fuel costs cs,f

for shedding demand and negative costs for shedding supply, denoted cd-shed and cs-shed. There are

no startup or shutdown costs or ramping limits associated with these shedding units. The optimal

policy for the supply shedding unit calls for “producing” ps (a large negative value) whenever

λt(ηt) ≤ −cs-shed and zero (= ps) otherwise. Similarly, the demand shedding unit produces ps (a

large positive value) when λt(ηt) ≥ cd-shed and zero (= ps) otherwise.

3Our model assumes that the costs (when producing) are linear in the production level. In practice, it is sometimes
assumed that these costs are piecewise linear in production. The result of Proposition 3 also holds with piecewise
linear convex costs provided we augment the set of grid points by including the breakpoints of the piecewise linear
cost function in the set of possible values x̂ in (16) the generate the grid.
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Figure 2: Illustrative unit-specific value functions

4.2. Storage Units

The state xs for a storage unit represents the energy storage level. Storage must be between

minimum and maximum levels xs and xs and thus Xs = [xs, xs]. Actions as correspond to the

amount of power generated (if positive) or consumed (if negative), so p(as) = as, where the action

space As = [ps, ps] corresponds to the storage unit limits on power consumption and generation.

Here, power consumption corresponds to increasing the energy storage level for potential later

generation. The state transition function is

χs(xs, as, ψt) = xs − γ−s a
−
s − γ+s a

+
s ,

where a+s and a−s correspond to the positive and negative parts of as. The constants γ−s and γ+s

describe the efficiency of the storage unit: every unit of power consumed by the unit increases the

energy stored by γ− units, and every unit of power generated requires γ+ units of stored energy.

Thus the action sets for storage unit s are

As(xs, ψt) = [ps, ps] ∩ [(xs − xs)/γ
−, (xs − xs)/γ

+] .

There are no costs associated with storage and in the unit-specific DP the rewards are λt(ηt)as

reflecting the value of the power produced or consumed.

As with the generation units without shutdown decisions, the value functions for the storage
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units can be shown to be piecewise linear concave with breakpoints and optimal production levels

restricted to a finite grid that may be determined in advance. Like the generation unit case, these

grid points are defined by ramping storage up and down by integer multiples of γ−s p
−
s and γ+s p

+
s ,

respectively, starting from the initial storage level x1 and the maximum and minimum storage levels

xs and xs. In the Duke energy system modeled in §6, there are 83 and 95 grid points for the two

storage units. Figure 2(b) shows an example of a value function for a storage unit, with the dots

representing possible grid points.

This storage model could be extended to include (random or deterministic) inflows or outflows

representing, for example, rainfall or evaporation at a pumped-storage hydro unit or leakage at a

battery unit. The piecewise linear convex structure of the model would remain, but one may have

to consider a more refined grid to incorporate possible inflows or outflows.

5. Forward-Looking Economic Dispatch

The decomposed policies from solving the unit-specific DPs (4) in the Lagrangian decomposition

need to be coordinated to find a production plan that meets the realized actual demand in a given

period. We envision these dispatch problems being solved in each hour, just as the ED problem

is solved in each hour in current practice. Here, however, we use the unit-specific value functions

to incorporate the longer-term effects of these dispatch decisions in the ED model. Specifically,

we aim to choose actions (production levels) to solve a version of the original DP (1) where the

next-period value function V ∗
t+1 is replaced by the Lagrangian Lλ

t+1:

max
a∈A(x)

− c(x,a, ψt) + E
[
Lλ
t+1

(
χt(x,a, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ]
s.t. p(a) = dt(ψt)

(17)

We can use any price process λ in the Lλ
t (x) in this approach, but will focus on optimal price

processes (i.e., solve the Lagrangian dual problem (5)) for a given form of price model.

The optimization problem (17) can be formulated as a mixed integer linear program (MILP)

in various ways. Here, we consider a “convex hull” formulation that is convenient for use

with the results provided by the unit-specific DPs. Specifically, we introduce decision variables

ws,i ∈ [0, 1] that are weights associated with the feasible actions as,i ∈ As(xs) considered in these

unit-specific DPs. These actions include the off-state (for generation units only) and the actions

as,i corresponding to production levels in Gs that are reachable from state xs. For initial states xs
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that are not in Gs, we augment this set to include actions xs + rs,u (the maximum ramp up) and

xs − rs,d (the maximum ramp down). We similarly augment the sets of possible next-period states

for storage units if the initial state is not in Gs. We let ns denote the number of such feasible

actions for unit s.

The MILP is then:

max
ws,i

S∑
s=1

ns∑
i=1

ws,i

(
− cs(xs, as,i, ψt) + E

[
V λ
s,t+1

(
χs(xs, as,i, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ] )
s.t.

S∑
s=1

ns∑
i=1

ws,ips(as,i) = dt(ψt)

ns∑
i=1

ws,i = 1 ∀s

ws,i ∈ [0, 1] ∀ s, i

ws,i ∈ {0, 1} ∀ s, i corresponding to “off” states

(18)

The expected continuation values appearing in the objective here are calculated when solving the

Lagrangian dual for all actions corresponding to production levels in Gs, but not for those actions

(corresponding to maximum ramp-up/down levels). We estimate the off-grid expected continuation

values using linear interpolation. This linear interpolation is exact for storage units because their

value functions are piecewise linear convex with breakpoints at these grid points (as discussed

in §4.2). However, this linear interpolation is an approximation for generator units because, as

discussed in §4.1 and illustrated in Figure 2(a), the continuation values for generation units may

be strictly convex between grid points; the linear interpolation of these value functions is thus an

overestimate of the actual unit-specific continuation values.

The solution to this ED problem calls for unit s to produce at the level given by
∑ns

i=1w
∗
s,ips(as,i)

for the optimal weights w∗
s,i given by (18). Thus, units may operate at any level between the

feasible production levels, and total production will match demand exactly. The binary constraints

associated with the “off” states in (18) ensure that the solution cannot mix between the off-state

(with zero production) and the other production levels. A simple constraint counting argument

implies that, for any given setting of the binary variables, there are S + 1 constraints and, hence,

at most S + 1 positive weights in any basic feasible solution. Thus, at most, one unit will be

mixing among the actions considered in (18). Note that, unlike the multi-period UC problem (see

Appendix B.2), this MILP is small: there is at most one binary variable for each generation unit
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and the number of continuous variables is less than the sum of the grid sizes for the units.4

A myopic version of the ED problem would take the expected continuation values in (18) to

be zero. We can incorporate commitment constraints by requiring the binary variables for the off

states for slow-start units to be either 0 or 1, according to the solution from the UC problem, and

similarly constraining the weights for the storage units. See Appendix B.2 for further discussion

and an alternative formulation of the ED problem.

6. Numerical Experiments

We evaluate the proposed dynamic approach by applying it in examples involving the Duke Energy

Carolinas and Duke Energy Progress systems. We focus on eight specific days and consider three

different scenarios representing (i) the “current” (2019) system, (ii) a “future” version of this system

with four times the current solar production and twice the storage capacity, roughly representing

Duke Energy’s future plans for the Carolinas system (Duke Energy, 2023), and (iii) this future

system with a carbon tax of $185 per metric ton of carbon dioxide emissions (Rennert et al., 2022).

For each day and each system scenario, we consider the performance of the proposed approach and

compare it to several benchmarks. In this section, we describe the Duke Energy System (§6.1),

policies considered in our experiments (§6.2), details of the simulations (§6.3), and results (§6.4-5).

6.1. The Duke Energy System

The modeled system has 127 generation units with a total capacity of about 40 GW. Specifically,

there are 11 nuclear generation units with a total capacity of 11.1 GW (these will always be on);

36 “slow-start” units – coal or natural gas thermal units – with a total capacity of 17.0 GW; and

80 “fast-start” units – e.g., natural gas turbines – with a total capacity of 9.6 GW. The no-load,

start-up, shut-down, and variable costs for these generation units vary depending on the technical

details of the unit (e.g., heat rates) and the fuel costs. In our experiments, we take fuel costs

to be $3.80/MMBtu for coal, $4.00/MMBtu for natural gas, and $13.50/MMBtu for oil, without

carbon taxes. In the system scenario with the carbon tax, these fuel costs are adjusted to reflect

the associated carbon dioxide emissions.

Figure 3 shows supply curves for these generation units, with and without carbon taxes. In

these supply curves, there are two “dashes” for each of the 127 generation units, with blue-green

4As written, this MILP allows the solution to interpolate between non-adjacent grid points. We could improve
this formulation by introducing additional binary variables and constraints that require at most two consecutive
weights to be non-zero; see, e.g., Bertsimas and Tsitsiklis (1997, p.455). However, this could be expensive from a
computational perspective as it requires introducing an additional set of binary variables for each generation unit.
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Figure 3: Supply curves with and without carbon tax.

dashes for slow-start units and pink-yellow dashes for fast-start units. The lower dash value for

each unit is the average cost of production when the unit is running at full power for one hour;

using the notation from §4.1, this is cs,n/ps + cs,f . The widths of these dashes are the maximum

generation capacity of the unit (ps). We form the “supply curve” by sorting units in increasing

order of their full-power average costs and accumulating their capacities. The small colored dots

above these dashes indicate the unit’s fuel source. The lowest cost units by this full-power average

cost metric are the nuclear units, which provide energy at no cost; the next lowest cost units are

the natural gas slow-start units. In Figures 3(a), the slow-start gas units are followed by slow-start

coal units, with the fast-start gas units having higher full-power costs. The vertical lines from each

of these lower dashes connect to an upper dash, showing the average cost of energy when switching

the unit from off to its maximum start-up power, (cs,n+cs,u)/ps,u+cs,f ; this represents the average

cost of power supplied for a single hour. The widths of these upper dashes are the unit’s maximum

start-up power (ps,u).

The supply curve of Figures 3(a) illustrates the challenge of managing operations under

uncertainty. Measured by full-power costs, the lowest cost units in the 12-25 GW range – where

much of the variation in system demand lies – are slow-start units: these slow-start units have

lower costs when operating at full power but typically have higher start-up costs than the fast-start

units. Thus, uncertainty in demands in this range creates a difficult trade-off: do we meet changing

demand with slow-start or fast-start units?

Comparing Figures 3(a) and 3(b), we see that, with the carbon tax, the overall costs are higher
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(note the figures have different y-axes) and the coal units (black dots) shift to the right of the

natural gas fast-start units in the supply curve. This shift reflects the fact that coal emits about

twice as much carbon as natural gas per unit of energy produced. The carbon tax makes these

coal-fired units very expensive to operate; the net effect on dispatch decisions in our simulations is

essentially equivalent to removing the coal units from the system.

In addition to the generation units, the modeled system includes 2.2 GW of production capacity

from two pumped-storage hydro units. Finally, as discussed in §2 to ensure feasibility, we augment

this system with two artificial units: one unit can shed demand at a cost of $3, 000/MWh (the

“value of lost load”), and the other unit can shed excess supply at $10/MWh.

6.2. Policies Considered

In our examples, we simulate seven policies: the proposed dynamic approach with three different

price models and four benchmark policies for comparison. The three price models are:

1. Period-Constant Prices (§3.3). This model has 24 parameters, one for each hour.

2. Period-Linear Prices (§3.4). This model has 48 parameters, slope and intercept terms for

each hour.

3. A “Simple” Price Model. This model has seven basis functions: a constant (1), the

period-t demand dt, period-t demand minus forecast period-t demand, dummy indicator

variables for the first two periods, and two “check” functions, (dt − 16)+ and (dt − 20)+,

where dt is measured in GW.

Simulating the system with these dynamic policies requires solving the Lagrangian dual problem

(5) for a given price model to determine the optimal parameters of the price model; as discussed

after Thoerem 1, we use a cutting-plane algorithm to solve these optimization problems. These

optimization problems must be solved once for each simulation. Within each simulation, in each

sample demand scenario, we use the resulting unit-specific value functions to dynamically dispatch

production, as discussed in §5.

The first two price models above are natural candidates to consider, with the period-constant

price model illustrating the importance of using a stochastic price model. We used a combination

of intuition and experimentation to choose the basis functions for the simple price model. First,

it seems natural to include constant and demand terms to capture a linear price-to-demand

relationship. The demand minus forecast term was added to capture the idea that higher (lower)
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than expected demands might lead to higher (or lower) prices. The two check functions were

added to capture potential nonlinearity (e.g., convexity) in the effective supply curve, noting

that higher demands may lead to starting more expensive units (e.g., peakers); the particular

thresholds of 16 and 20 GW were selected by inspecting the supply curve (Figure 3(a)) and some

experimentation. The dummy variables for the first two hours were also added as the result of

some experimentation. We used this same set of basis functions in all of our simulations. Tuning

the choice of basis functions for particular days or system scenarios could lead to somewhat better

results, though, as we will see, there is not much room for improvement.

We compare the performance of the dynamic policies above with:

4. Unit Commitment with Myopic Dispatch (Current Practice). Here, we first solve

the UC problem for a week with demands set to their expected values. Then, we “commit” the

slow-start units to be on or off (by setting the corresponding binary variables) and the storage

flows to their UC solutions and solve a myopic ED problem to determine the production levels

in each period. (See Appendix B.1 for details.)

5. Myopic Dispatch without Commitment. We solve the myopic ED problem in each

period without committing slow-start units or storage.

The first of these policies represents “current practice” at many integrated utilities, as discussed in

§1. We acknowledge that this policy is a simplification of what system operators actually do: as

discussed in §1, if the actual demands deviate significantly from the forecasts, the operator may, for

example, adjust the unit commitments and storage plans informally “on the fly” as the day unfolds.

The operator may also rerun the UC problem with revised forecasts to develop a new plan if it

becomes evident that the actual demand is significantly different from the original forecast. This

simplified depiction of current practice is a useful benchmark showing what the current-practice

approach would do without such ad hoc adjustments. The myopic dispatch without commitment

policy is a natural benchmark; we will see that the current-practice policy performs significantly

better than this fully myopic policy.

We evaluate these policies against two performance bounds:

6. Perfect Information (PI) Dispatch. In every sample demand scenario, we find the

minimum cost dispatch given the actual realized demands. This is equivalent to solving the

UC problem with the actual demands for the given scenario rather than forecast demands.
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7. Commitment with PI Dispatch. Here, we use the commitments from the UC problem

as in policy (4) above but then dispatch the uncommitted resources with perfect information

about the realized demands.

Both of these PI policies are, of course, impossible to implement as they rely on having perfect

information about demands. PI Dispatch provides a lower bound on the cost obtainable by any

implementable policy; in our results (see, e.g., Table 1 in §6.4), we will compare the performance of

all other policies against this PI benchmark. Considering the commitment-with-PI-dispatch policy

will help us disentangle the losses in the current practice approach (4) due to committing units to

the UC solution and losses from using myopic dispatch.

6.3. Simulation Details

We evaluate the seven policies described in §6.2 using Monte Carlo simulation, considering a total

of 24 examples: 8 days (one weekday and one weekend, drawn from each of the four seasons; see

Table 1 for specific dates) evaluated in each of the three system scenarios (current, future, and

future with carbon tax), as described above. Each of the 24 simulations uses 250 demand scenarios

generated from a stochastic demand model, with the simulations starting at 6am on the given day

and continuing for 24 hours.

Demand Model. As mentioned in §1, the net demand model that we use was developed by other

members of the GRACE project team based on forecast and actual demand data for 2019 provided

by Duke Energy. The model uses a baseline forecast for net demand in each period and models

errors from this baseline as evolving randomly according to an autoregressive (AR) process of high

order. The data provided includes forecasts and actual demand as well as solar supply; these are

netted out to generate forecasts and errors for net demand. The forecasts for the “future” system

scenario were generated using this same model but with the solar forecasts and actuals multiplied by

four. Figure 4 shows randomly generated net demand samples (light gray lines) for both the present

and future systems, for October 27. The solid black lines in the figure are the baseline forecasts.

Comparing the two figures, we see that increasing the solar supply leads to a pronounced dip in the

net demand forecasts in the afternoon hours when solar production is high (as in Figure 1). The

uncertainty in these afternoon hours is also amplified in the future system.

The state space associated with this high-order AR model is far too large to handle in the

unit-specific DPs in the Lagrangian relaxation. In our numerical experiments, we use simple linear

regression to fit an AR(1) model – with parameters varying by time of day and day – to simplify
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(b) Future system

Figure 4: Example October 27 demand scenarios

this high-order “real” demand model. We then apply our weakly coupled DP framework and

solve the resulting dual optimization problems (5) using a world-state process based on a discrete

approximation of this AR(1) model involving 41 discrete demand states. The state-spaces for the

unit-specific DPs are thus 41 times the number of states included in the grid Gs for the unit. As

noted in §4, these grid sizes range from 1-10 for generation units (with an average of 2.60) and are

83 and 95 for the two storage units. With state and action spaces of this size, the unit-specific DPs

may be quickly solved for any given price model.

In our simulations, we generate samples from the complex “real” demand model and, in the

forward-looking ED problems (§5), we estimate the unit-specific expected continuation values using

the value functions from this simplified demand model, with the values for specific demand levels

given by interpolating these value functions between the discrete demand levels in the AR(1)

approximation. Note that the Lagrangian performance bound of Proposition 1(b) applies in this

simplified AR(1) model but does not apply in this real model. Thus, in our numerical experiments,

we use the costs associated with PI dispatch to provide performance bounds for this real model.

Initial Unit States. For each example day, we assume the day starts at 6am with an efficient set

of units operating. Specifically, we sort the generation units by the full-power average costs (as in

Figure 3) and assume the 6am demand is met by units with the cheapest possible full-power costs;

all other units are assumed to be off. These assumed unit states are intended to represent realistic

initial conditions for the system, given that demands at this time tend to be low. We assume both

storage units are at 60% capacity, giving the system operator ample room to store or release energy,
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as desired, in the hours ahead.

Terminal Values. Though our simulations are for a 24-hour period, the system operates over a

very long time horizon, and we want our simulations to reflect costs over this longer horizon. For

example, a policy that leaves storage empty at the end of the 24-hour period may achieve lower

costs for these 24 hours than a policy that leaves storage full, but the costs of not storing energy

would be borne in the days ahead. Similarly, a policy that leaves slow-start units with high-start-up

costs off might save costs in the short run, but be costlier over a longer horizon. This is why, in

current practice, one solves the UC problem with a one-week horizon to determine a baseline plan

(and corresponding commitments) for the current day.

To reflect these longer-term considerations in the dynamic policies and simulations, for each

day we simulate, we solve a weakly coupled DP (i.e., solve the Lagrangian dual (5)) for a one-week

horizon to find unit-specific value functions for this longer horizon; we use the simple price model

for these long-horizon models. We then use period 25 of the 168-period value functions to serve

as terminal values for the 24-hour model and the simulations; we subtract a constant from these

value functions so these terminal value adjustments will have zero mean under the policies that are

optimal for these long-horizon DPs. These terminal values thus penalize policies that leave storage

empty, or are suboptimal in other ways for the longer horizon. We use the same penalties for all

policies, including the PI policies.

6.4. Results

Table 1 summarizes the results of our numerical experiments, showing results for each of the 8 days

in each of the 3 system scenarios (present, future, and future with tax) for the policies discussed in

§6.2. The values in the table are measures of the relative performance of each policy compared to

the unattainable performance bound of PI dispatch:

PI Gap =
(average cost for policy)− (average cost for PI dispatch)

(average cost for PI dispatch)

where the costs are averaged over the 250 simulated demand scenarios. Table EC-1 provides mean

standard errors for these PI gaps; they are small compared to the PI gaps shown in Table 1.

Table EC-2 provides the PI gaps in absolute terms rather than relative terms.

The average run times for the policies are also shown in the table; all computations were done on

a desktop computer, using Matlab with the Gurobi optimization toolbox. For the dynamic policies,

this run time is the time required to solve the Lagrangian dual problem (5) using a cutting plane
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algorithm. The variation in run times reflects the number of parameters in the price model; models

with more parameters tend to require more iterations in the cutting plane algorithm (i.e., more

cuts), with larger linear programs solved in each iteration and more work to compute gradients.

For the current-practice policy, the run time is the time required to solve the UC problem. The

ED problems solved in each period in each demand scenario usually take a fraction of a second; we

do not report these times.

An Example Day. Before discussing the results of Table 1, it is helpful to consider how the

different policies behave on a single day. We focus on October 27 in the future system with carbon

tax and consider one high- and one low-demand scenario. These extreme demand scenarios “stress

test” the policies and make their differences clear.

Figure 5 and Figure 6 show production decisions for these high- and low-demand scenarios.

These figures are stacked area charts, where the stacked areas represent production from a particular

unit; the units are stacked in the order of appearance in the supply curves of Figure 3. The colors

in the figures correspond to those in the supply curves: blue denotes slow-start units, and pink

denotes fast-start units. The thick black line represents the forecast demand, and, in panels (b)-(d)

of the figures, the thick blue line represents the realized (actual) demand in the given scenario.

The light gray areas represent production from discharging storage units, and the dark gray areas

represent charging the storage units.

We first consider the high-demand scenario in Figure 5. Panel (a) shows the UC plan designed

to meet the deterministic forecast for this day. Here the total production at 6am is slightly above

the forecast demand, with the excess being stored. The UC plan uses storage to meet the morning

and evening peaks (9am-11am and after 6pm) and stores energy through the afternoon. Given this

UC plan, panel (b) shows how the current-practice policy operates in a high-demand scenario; in

this scenario, the expected afternoon trough is replaced by a peak (imagine unexpected cloud cover

taking out anticipated solar supply). Here the midday peak and the commitment to store energy

are covered using fast-start generation units. The costs of this policy are 12.4% higher than the

costs of PI dispatch in this scenario. In contrast, the dynamic dispatch policy (with the simple

price model), shown in panel (c), meets these midday peaks through a combination of starting

additional slow-start units (around 11am) and increased use of stored energy. This plan is quite

similar to PI dispatch (see panel (d)), and the PI gap is only 0.3%. PI dispatch does slightly better

than the dynamic policy because, with perfect information about the afternoon peak, it starts the

additional slow-start units a bit earlier and optimizes the use of storage accordingly.
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Myopic
Period 

Constant

Period

Linear Simple

Myopic 

Dispatch

PI

Dispatch

Without 

Commitment

January 27 (Sun)

 Present 2.20% 0.14% 0.22% 1.45% 1.32% 3.30%

 Future 3.46% 0.17% 0.20% 3.17% 2.83% 12.07%

 Future + Carbon Tax 3.32% 0.06% 0.09% 1.36% 1.12% 12.97%

February 6 (Wed)

 Present 2.42% 0.12% 0.18% 2.79% 2.49% 5.36%

 Future 5.29% 0.45% 0.52% 6.89% 6.00% 25.75%

 Future + Carbon Tax 9.31% 0.74% 0.76% 6.42% 5.71% 39.51%

April 14 (Sun)

 Present 3.32% 0.35% 0.37% 3.97% 3.64% 15.24%

 Future 6.57% 0.50% 0.50% 12.99% 10.81% 32.27%

 Future + Carbon Tax 7.17% 0.49% 0.52% 9.98% 8.77% 44.46%

May 8 (Wed)

 Present 2.38% 0.30% 0.31% 2.35% 2.15% 12.38%

 Future 4.94% 0.76% 0.87% 5.34% 4.47% 29.80%

 Future + Carbon Tax 5.34% 0.73% 0.85% 3.88% 3.36% 38.64%

July 7 (Sun)

 Present 1.19% 0.09% 0.11% 0.98% 0.80% 12.91%

 Future 2.31% 0.14% 0.19% 2.50% 2.07% 28.72%

 Future + Carbon Tax 2.08% 0.02% 0.03% 1.49% 1.25% 19.28%

July 31 (Wed)

 Present 0.97% 0.12% 0.16% 1.19% 0.91% 10.22%

 Future 1.92% 0.11% 0.12% 2.55% 2.14% 25.30%

 Future + Carbon Tax 1.44% 0.01% 0.02% 0.99% 0.85% 18.42%

October 27 (Sun)

 Present 3.14% 0.24% 0.26% 2.82% 2.62% 12.28%

 Future 4.68% 0.28% 0.36% 8.44% 7.08% 28.85%

 Future + Carbon Tax 5.20% 0.31% 0.39% 6.53% 5.42% 39.51%

November 6 (Wed)

 Present 1.49% 0.09% 0.12% 1.64% 1.38% 12.33%

 Future 3.17% 0.14% 0.20% 3.06% 2.42% 21.41%

 Future + Carbon Tax 1.71% 0.11% 0.24% 1.16% 0.84% 20.81%

Average Gap 3.54% 0.27% 0.32% 3.91% 3.35% 21.74%

 Present 2.14% 0.18% 0.22% 2.15% 1.91% 10.50%

 Future 4.04% 0.32% 0.37% 5.62% 4.73% 25.52%

 Future + Carbon Tax 4.45% 0.31% 0.36% 3.98% 3.42% 29.20%

Average Run Time (s) 34.1 437.6 16.1 68.2

Dynamic Policies with Price Model  Commitment Policies

Table 1: PI Gaps gaps and run times
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Figure 6 shows similar plots for a low-demand scenario where. In this low-demand scenario,

the PI gap for the current-practice policy is 16.2%, compared to only 0.6% for dynamic dispatch.

As shown in panels (c) and (d), the dynamic and PI policies shut down some of the operating

slow-start units heading into the deeper-than-expected afternoon trough and store more through

this trough. Instead of shutting down the slow-start units, the current-practice policy is committed

to keeping these units on and curtails production at many of these slow-start units while continuing

to incur their fixed costs. Being committed to their storage plan, the current-practice policy sheds

a significant amount of supply – shown in red – from 3pm-6pm, despite the fact that this energy

could be stored; a real-life system operator would likely adjust the storage plan in this situation.

Figure 7 shows costs for the dynamic and current-practice policies for all 250 scenarios for

October 27, for the present system as well as the future system with carbon tax. Here, we see that

the dynamic policies outperform the current-practice policy in every demand scenario, not just the

extreme scenarios discussed earlier. As noted in Table 1, the average PI gaps are 0.26% and 2.82%

for the dynamic and current-practice policies, respectively, in the present system (corresponding

to an average improvement of ≈$107, 000) and 0.39% and 6.53% in the future system with carbon

taxes (an improvement of ≈$605, 000). In the future system without carbon taxes (not shown

in Figure 7), the PI gaps are 0.36% and 8.44% for the dynamic and current-practice policies,

respectively (an improvement of ≈$230, 000).

All Days and System Scenarios. The results for the other days considered are similar to

those for this example day. The best-performing policy is always the dynamic policy using the

period-linear price model, followed closely by the dynamic policy with the simple price model.

The period-constant price model performs significantly worse than the two stochastic price models,

highlighting the importance of capturing the uncertainty in demand. The current-practice policy

(commitment with myopic dispatch) performs worse than these two dynamic dispatch policies on

every day and in every system scenario.

It is natural to wonder whether the relatively poor performance of current practice is due to

its reliance on commitments or due to the use of myopic dispatch. The results for commitment

policy with PI dispatch suggest that the issue is commitment: even with perfect information in

dispatch, the performance does not improve much compared to commitment with myopic dispatch.

Nonetheless, the current-practice policy is much better than a truly myopic policy: when paired

with myopic dispatch, commitment serves as a way to force adherence to a longer-term plan.

Finally, we note that differences between the proposed dynamic and current-practice policies
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(b) Current-practice policy
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(c) Dynamic policy (simple price model)
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(d) PI dispatch

Figure 5: Production plans for October 27 in a high-demand scenario
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(b) Current-practice policy
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(c) Dynamic policy (simple price model)
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(d) PI dispatch

Figure 6: Production plans for October 27 in a low-demand scenario
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Figure 7: Costs for 250 demand scenarios for October 27
(Scenarios sorted by the cost of PI dispatch.)

are more pronounced in the future system scenarios. Averaging across the eight days considered,

the proposed dynamic price model reduces expected costs by ≈$101, 000 in the present system and

by ≈$188, 000 in the future system. With the additional solar (four times) and storage (two times),

the uncertainty in supply and the flexibility in storage both increase and the benefits of the dynamic

approach – handling uncertainty explicitly and better using the system’s flexibility – also increase.

In the future system, the addition of the carbon tax reduces the improvement from current-practice

to dynamic policies in percentage terms. As noted in the discussion of the system supply curves in

§6.1, the carbon tax effectively eliminates the slow-start, coal-fired generation units from the supply

mix. These slow-start units are better managed by the dynamic policies than the current-practice

policies; removing the coal-fired slow-start units somewhat neutralizes this advantage. However,

because the costs are so much higher with the carbon tax, in absolute terms (e.g., in dollars rather

than percentages), the improvement in going from current-practice to dynamic policies is greater

when carbon taxes are included in this future scenario, with an average improvement of ≈$413, 000.

6.5. Unit Values

In addition to providing the basis for dynamic dispatch, the unit-specific value functions (4) of

the Lagrangian model are interesting in their own right. Recall that these value functions can be

interpreted as the expected total profit generated by the unit over the 24-hour-period, taking into

account the terminal values for the ending state. Figure 8 shows the value-per-unit-capacity for

the generation units in the model system for October 27 (the day featured in §§6.3-6.4) and July
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31, both in the future system with carbon tax scenario. The values plotted are the value of the

unit given the unit’s initial state and the initial world-state, divided by the capacity of the unit.

The widths of the plotted lines for each unit are the unit’s capacity and the units are sorted and

accumulated as in the supply curves of Figure 3, using the same colors for slow-start and fast-start

units (blue to green and pink to yellow, respectively) and the same notation for fuel source. Sample

demand forecasts for July 31 are shown in Figure EC-1; this day has a significant evening peak

with the forecast mean at 9pm being ≈26 GW, but less uncertainty than October 27.

Comparing the unit values for these two days, we see that October 27 (with hatched lines)

has much lower values than July 31 (with flat lines); this is because prices are generally lower on

October 27. On both days, the nuclear units are the most valuable, as they provide free energy

with no carbon emissions; the natural gas slow-start units are the next most valuable. On October

27, none of the fast-start units have any value; this is because, even on the days with the highest

realized demand (see Figure 5(c)), the peaks can be covered with storage. In contrast, on July 31,

some of the natural gas fast-start units have positive values because these units may be deployed

(along with storage) to get through its peak. These values, based on a stochastic model, reflect

these possibilities. On both days, many of the fast-start units and all of the coal-fired units have

zero value because they are never deployed. The two storage units are worth more on October 27

than on July 31 (7% and 14% more), reflecting the greater uncertainty on October 27.
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Figure 8: Unit values for October 27 and July 31
(Future system with carbon tax)
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7. Conclusions

This paper develops a dynamic framework based on weakly coupled DP for managing production

under uncertainty in an integrated energy system. An essential component of this approach

is choosing stochastic prices that lead to unit-specific DPs that are simple to solve while

simultaneously providing good performance. We are encouraged by the fact that “simple” price

and world-state models are effective in our numerical examples despite the complexity of the

demand models and the size of these systems. The proposed framework scales gracefully with the

number of units, which suggests this approach is viable in even larger systems.

Several extensions may be relevant in practice. First, generation units occasionally fail due to

weather events or idiosyncratic reasons. We could augment the state spaces for the units to include

outage states or, more generally, “derating” states where units have reduced production. Second,

transmission constraints may restrict the distribution of production across the system network. In

this case, we could consider relaxing demand-matching constraints separately at different nodes in

the network, with prices varying across nodes. These variations may complicate the unit-specific

DPs and how we choose price “basis functions.” Alternatively, we could ignore these network

constraints in the Lagrangian DP but incorporate them in the ED problem to ensure the feasibility

of the proposed production plans. Finally, we have presented example models of generation and

storage units, one could develop other unit-specific models for assets with other features. We leave

a detailed study of these extensions for future research.

In future work, we would like to study the duality gaps – differences between Lagrangian bounds

and the value for the original DP as in Proposition 1(b) – in the setting with stochastic Lagrange

multipliers. We have preliminary results for the case with no constraints on the price model (as

in §3.2) but would like to better understand the duality gaps in the more practical setting with

constraints on the price model.
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A. Proofs

A.1. Proof of Proposition 2

This result essentially follows from Proposition 1 in Brown and Smith (2020); for completeness, we
adapt the proof to our setting.

Proof. (a) Consider the unit-specific value function given in equation (6). For a fixed policy αs,
the objective is linear in λ. For period t and world-state history ηt,i, the derivative of (6) with
respect to λt(ηt,i) equals π(ηt,i)ps,t(αs, ηt,i). The subdifferential result follows from Proposition
4.5.1 in Bertsekas et al. (2003) and implies that ∇s(αs) is a subgradient of Vs at λ for any αs ∈ A∗

s.

(b) The first inequality follows from using the decomposition (3) then using Proposition 4.2.4 in
Bertsekas et al. (2003), which shows that the subdifferential of a sum of convex functions is the
sum of subdifferentials for the summand functions. The second equality follows from part (a) and
the fact that the Minkowski sum of the convex hulls of a collection of sets equals the convex hull
of the Minkowski sum of the sets.

A.2. Proof of Theorem 1

Proof. (a) Equation (10) follows from standard first-order optimality conditions for convex
optimization, noting that Λ is convex by assumption and L is convex in λ by Proposition 1(c);
see, e.g., Proposition 4.7.2 in Bertsekas et al. (2003). The form of the normal cone for Λ follows
from the assumed convexity of Λ and Proposition 4.6.3 in Bertsekas et al. (2003).

(b) This result follows from Proposition 2(b) (see Equation (9)) and part (a).

(c) In this case, we have

Λ =
{
Aβ : β ∈ RK

}
,

where A is an N ×K matrix with

A⊺ =

 b1,1(η1,1) . . . b1,1(η1,n1) . . . b1,T (ηT,1) . . . b1,T (ηT,nT
)

...
...

...
...

bK,1(η1,1) . . . bK,1(η1,n1) . . . bK,T (ηT,1) . . . bK,T (ηT,nT
)

 .
The normal cone for Λ is the set of z ∈ RN such that A⊺z = 0. Using (11) in part (b), this is
equivalent to the K constraints:

A⊺

(
dπ −

S∑
s=1

ms∑
i=1

γs,i∇s(αs,i)

)
= 0 .

Constraint k from this set of K constraints is equivalent to:

T∑
t=1

nj∑
j=1

π(ηt,j)bk,t(ηt,j)

(
dt(ηt,j)−

S∑
s=1

ms∑
i=1

γs,ips,t(αs,i, ηt,j)

)
= 0 ,

where ps,t is defined in (7). This is equivalent to (13).
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For the number of policies, assume there are ds optimal policies for each unit s = 1, . . . , S.
Then finding an optimal mixture of policies satisfying the first-order optimality conditions (13) is
equivalent to finding γs,i satisfying the constraints

S∑
s=1

ds∑
i=1

γs,i

T∑
t=1

E [ bk,t(η̃t)ps,i(αs, η̃t) ] =
T∑
t=1

E [ bk,t(η̃t)dt(η̃t) ] , k = 1, . . . ,K,

ds∑
i=1

γs,i = 1, s = 1, . . . , S,

γs,i ≥ 0 .

The set of such mixing weights is a bounded, nonempty polyhedron, which implies there exists at
least one basic feasible solution to this set. Any basic feasible solution has at most S +K positive
values of γs,i. This implies that we can reduce the system to the ms ≤ ds optimal policies for each

s corresponding to γs,i > 0, with
∑S

s=1ms ≤ S +K or
∑S

s=1(ms − 1) ≤ K. The upper bound on
the number of units mixing follows from noting that each unit has at least one optimal policy, so∑S

s=1(ms − 1) is the maximum number of mixed policies.

A.3. Proof of Proposition 3

Proof. Because the results being proven are for a specific unit s, we simplify the notation by
omitting the s subscripts denoting the unit.

(a) We show the result using induction. The base case follows from the fact that V λ
T+1 = 0. Now

assume the result holds at t+1, and fix a current production level x ∈ [p, p] and world history state
ηt at time t. We denote the feasible set by R(x) = [p, p]∩ [x− rd, x+ ru]. Using this and the form
of the state transition function and costs for generating units discussed in §4.1, we have that

V λ
t (x, ηt) = cn + max

p∈R(x)
(λt(ηt)− cf ) p+ E

[
V λ
t+1

(
p, (ηt, ψ̃t+1)

) ∣∣∣ψt ] . (EC-1)

Note that the current production level x only affects V λ
t through the constraints on the next-period

production level. Let

J(p) = cn + (λt(ηt)− cf ) p+ E
[
V λ
t+1

(
p, (ηt, ψ̃t+1)

) ∣∣∣ψt ]
Since V λ

t+1 is piecewise linear and concave in the production level with breakpoints in G (by the
induction hypothesis), its expected value and J(p) are also.

Now let p∗ denote a maximizer of J(p, ηt) over p ∈ [p, p]; since J(p, ηt) is piecewise linear concave
in p, we can take p∗ to be a breakpoint of J(p, ηt) in G. If p∗ ≥ x − rd and p∗ ≤ x + ru, then p

∗

is feasible in (EC-1). Otherwise, if p∗ < x− rd, then the optimal next-period generation in (EC-1)
equals x− rd: this follows from the fact that the objective in (EC-1) is concave in p, as claimed in
the induction hypothesis. By similar logic, if p∗ > x + ru, we have that the optimal next-period
generation in (EC-1) equals x + ru. Thus, if x is in G, so are the possible optimal values (p∗,
p∗ ≥ x− rd and p∗ ≤ x+ ru) in (EC-1) for period t and, by induction, thereafter.
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Combining the cases above, we have

V λ
t (x, ηt) =


J(x+ ru) if x > p∗ − ru

J(p∗) if p∗ − ru ≤ x ≤ p∗ + rd

J(x− rd) if x > p∗ + rd .

V λ
t (x, ηt) thus has breakpoints at p

∗ − ru and p∗ + rd, which since p∗ is in G, these breakpoints are
also in G. For x < p∗ − ru, V

λ
t (x, ηt) is shifted left by ru version of J ; since the breakpoints of J

are in G, shifting left ru yields breakpoints that are also in G. For x > p∗ + rd, a similar argument
applies. Thus V λ

t (x, ηt) has breakpoints in G, as claimed.

(b) For part (i), we prove the result by induction. The base case follows from the fact that V λ
T+1 = 0.

Now assume the result holds at t+1. Consider adjacent grid points g1 ∈ G, g2 ∈ G and production
levels x1, x2, and xµ = µx1 + (1 − µ)x2 for some µ ∈ [0, 1], where g1 ≤ x1 ≤ xµ ≤ x2 ≤ g2. Let
R(x) denote the feasible set for (EC-1), as defined in the proof of part (a). Let p∗ ∈ R(xµ) denote
an optimal production level in (EC-1) given that x = xµ. As argued in the proof of part (a), there
are four cases to consider:

1. p∗ ∈ G, i.e., p∗ is a grid point.

2. p∗ = xµ + ru.

3. p∗ = xµ − rd.

4. p∗ = 0, i.e., it is optimal to shut the unit down.

For case 1, since p∗ is in G, and the definition of G implies that g2 − g1 ≤ min(rd, ru), it follows
that p∗ ∈ R(x1) and p

∗ ∈ R(x2). We thus have that

V λ
t (xµ, ηt) = cn + (λt(ηt)− cf ) p

∗ + E
[
V λ
t+1

(
p∗, (ηt, ψ̃t+1)

) ∣∣∣ψt ]
≤ µV λ

t (x1, ηt) + (1− µ)V λ
t (x2, ηt) ,

where the inequality follows from the fact that p∗ is a feasible next-period production level given
current production levels x1, or x2, but not necessarily an optimal one.

For case 2, we have that

V λ
t (xµ, ηt) = cn + (λt(ηt)− cf ) · (xµ + ru) + E

[
V λ
t+1

(
xµ + ru, (ηt, ψ̃t+1)

) ∣∣∣ψt ]
(i)

≤ cn + µ (λt(ηt)− cf ) · (x1 + ru) + µE
[
V λ
t+1

(
x1 + ru, (ηt, ψ̃t+1)

) ∣∣∣ψt ]
+ (1− µ) (λt(ηt)− cf ) · (x1 + ru) + (1− µ)E

[
V λ
t+1

(
x1 + ru, (ηt, ψ̃t+1)

) ∣∣∣ψt ]
(ii)

≤ µV λ
t (x1) + (1− µ)V λ

t (x2) ,

where (i) follows from the induction hypothesis, the fact that convexity is preserved through
expectations, and the definition of xµ and (ii) follows from the fact that x1+ ru is feasible (but not
necessarily optimal) given current generation x1, and similarly for x2. Case 3 follows by similar
logic as case 2.
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For case 4, if shutting the unit down is feasible at production level xµ, then shutting the unit
down is also feasible at production level x1 and x2, given that g1 ≤ x1 ≤ xµ ≤ x2 ≤ g2 and
g2 − g1 ≤ min(rd, ru). Using the definition of the unit-specific value function, by similar logic we
have that V λ

t (xµ, ηt) ≤ µV λ
t (x1, ηt) + (1− µ)V λ

t (x2, ηt).
For part (ii), consider a current production level x ∈ G. Note that max(p, x−rd) and min(p, x+

ru) are also both in G. If p = p, the result follows from the fact that G = {p} = {p}. Otherwise,
there exist at least two adjacent grid points g1 and g2 both in R(x). Assume that an optimal
next-period production level is in (g1, g2). A basic result from convex analysis (e.g., Bertsekas et al.
2003, Prop. 3.4.1) is that, when considering maximizing a convex function over a closed, convex
set, there exists an extreme point within that set that attains the maximum. From part (b-i) and
using the fact that taking expectations adding linear functions preserve convexity, we have that the
objective in (EC-1) is convex over [g1, g2] and that g1 and g2 are the only extreme points of the set
[g1, g2]. It follows that in this case, at least one of g1 or g2 performs at least as well as the optimal
production level. Since both g1 and g2 are feasible and in G, it follows that there exists an optimal
next-period production level in G, and the result follows.
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B. Unit Commitment and Economic Dispatch Formulations

We use the following notation in these formulations; this notation largely follows notation from §4
but is slightly adapted.

Symbol Meaning

Constants

T number of time periods
Sg ⊆ {1, . . . , S} indices corresponding to generation units
Se ⊆ {1, . . . , S} indices corresponding to storage units
dt net demand in period t
cd-shed cost (per MWh) for shedding demand
cs-shed cost (per MWh) for shedding supply

Generation units s ∈ Sg
cs,n no-load cost
cs,u start-up cost
cs,d shut-down cost
cs,f generation cost (per MWh)
rs,d ramp-down limit
rs,u ramp-up limit
ps,d minimum shut-down power
ps,u maximum start-up power
ps minimum power
ps maximum power

Storage units s ∈ Se
p+s maximum discharge power
p−s maximum charge power
γ+s discharge efficiency
γ−s charge efficiency
xs minimum storage limit
xs maximum storage limit

Variables

pt,shed power shed in period t
dt,shed demand shed in period t

Generation units s ∈ Sg
vs,t binary variable; whether unit is on or off in period t
ys,t binary variable; whether unit is started up in period t
zs,t binary variable; whether unit is shut down in period t
ps,t power generation for unit in period t

Storage units s ∈ Se
p+s,t power discharged (generated) in period t

p−s,t power charged (consumed) in period t

es,t storage level in period t
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B.1. Unit Commitment Formulation

Using the above notation, we write the unit commitment formulation given demands d1, . . . , dT as:

min
T∑
t=1

∑
s∈Sg

(cs,nvs,t + cs,uys,t + cs,dzs,t + cs,fps,t) + cd-sheddt,shed + cs-shedpt,shed (uc-0)

s.t. For all t ∈ {1, . . . , T} : (uc-1)

(Generation unit constraints). For all s ∈ Sg :
vs,t−1 − vs,t + ys,t − zs,t = 0, (uc-2)

ps,t − ps,t−1 ≤ rs,uvs,t−1 + ps,uys,t, (uc-3)

ps,t−1 − ps,t ≤ rs,dvs,t + ps,dzs,t, (uc-4)

psvs,t ≤ ps,t ≤ psvs,t, (uc-5)

vs,t, ys,t, zs,t ∈ {0, 1}; (uc-6)

(Storage unit constraints). For all s ∈ Se :
0 ≤ p+s,t ≤ ps, (uc-7)

0 ≤ p−s,t ≤ ps, (uc-8)

es,t − es,t−1 = γ−s p
−
s,t − γ+s p

+
s,t, (uc-9)

xs ≤ es,t ≤ xs; (uc-10)

(Shedding constraints).

0 ≤ dt,shed ≤ dt, (uc-11)

0 ≤ pt,shed ≤ ∞; (uc-12)

(Demand and supply matching).∑
s∈SG

ps,t +
∑
s∈SS

(
p−s,t − p+s,t

)
− pt,shed = dt − dt,shed . (uc-13)

In this formulation, we take the variables at t = 0 to be equal to their initial conditions. Constraints
(uc-2) describe the on/off logic for the generation units, with binary variables vs,t representing
whether unit s is on or off at time t, ys,t representing whether the unit is started up or not at time
t, and zs,t representing whether the unit is shut down or not at time t. Constraints (uc-4)-(uc-3)
represent the ramping constraints for generation units.
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B.2. Economic Dispatch Formulation

We write the economic dispatch formulation at time t as:

min
∑
s∈Sg

(cs,nvs,t + cs,uys,t + cs,dzs,t + cs,fps,t) + cd-sheddt,shed + cs-shedpt,shed

+
∑
s∈Sg

Ws,t(ps,t) +
∑
s∈Se

Ws,t(es,t) (ed-0)

s.t. (Generation unit constraints). For all s ∈ Sg :
vs,t−1 − vs,t + ys,t − zs,t = 0, (ed-1)

ps,t − ps,t−1 ≤ rs,uvs,t−1 + ps,uys,t, (ed-2)

ps,t−1 − ps,t ≤ rs,dvs,t + ps,dzs,t, (ed-3)

psvs,t ≤ ps,t ≤ psvs,t, (ed-4)

vs,t, ys,t, zs,t ∈ {0, 1}; (ed-5)

(Storage unit constraints). For all s ∈ Se :
0 ≤ p+s,t ≤ ps, (ed-6)

0 ≤ p−s,t ≤ ps, (ed-7)

es,t − es,t−1 = γ−s p
−
s,t − γ+s p

+
s,t, (ed-8)

xs ≤ es,t ≤ xs; (ed-9)

(Shedding constraints).

0 ≤ dt,shed ≤ dt, (ed-10)

0 ≤ pt,shed ≤ ∞; (ed-11)

(Demand and supply matching).∑
s∈SG

ps,t +
∑
s∈SS

(
p−s,t − p+s,t

)
− pt,shed = dt − dt,shed; (ed-12)

(Slow-start generation unit commitment constraints). For all s ∈ Sslow :

vs,t = v∗s,t, (ed-13)

(Storage unit commitment constraints). For all s ∈ Se :
p+s,t = p+,∗s,t , (ed-14)

p−s,t = p−,∗s,t . (ed-15)

In this formulation, we take the variables at t − 1 to be equal to the values corresponding to the
unit states at the start of time t. The set Sslow is the subset of Sg that represents the slow-start
generation units. The value v∗s,t is from the solution from the unit commitment problem. By
constraints (ed-1), fixing vs,t equal to v∗s,t together with the fact that vs,t−1 = v∗s,t−1 as well for

slow-start units, implies that ys,t = y∗s,t and zs,t = z∗s,t. Similarly, p+,∗s,t and p−,∗s,t equal their
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respective optimal values from the unit commitment formulation. By similar logic, the storage
level es,t will equal e

∗
s,t.

In the objective, we include the possibility of continuation values for the generation and storage
units. Depending on the situation, we use the following continuation values.

Myopic economic dispatch. We take Ws,t to be zero in all states for all units.

Forward-looking economic dispatch. We take

Ws,t(ps,t) = E
[
V λ
s,t+1

(
χs(ps,t−1, ps,t, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ] for all s ∈ Sg ,

Ws,t(es,t) = E
[
V λ
s,t+1

(
χs(es,t−1, es,t, ψt), (ηt, ψ̃t+1)

) ∣∣∣ψt ] for all s ∈ Se .

As discussed in §5, we use linear interpolation to estimate these expected continuation values from
the results provided from the unit-specific value functions.

Given piecewise linear expected continuation values, the MILP formulation of the ED problem
provided here is equivalent to that of the convex hull formation in §5 if we enforce the additional
constraints mentioned in Footnote 4 that require the interpolated points to be adjacent. No such
modification is required for equivalence to hold if the Ws,t are concave (which is true, for example,
in the myopic case).

C. Supplemental Assumptions and Results
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Figure EC-1: Example July 31 demand scenarios
(Future system)
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Myopic
Period 

Constant

Period

Linear Simple

Myopic 

Dispatch

PI

Dispatch

Without 

Commitment

January 27 (Sun)

 Present 0.06% 0.01% 0.02% 0.05% 0.05% 0.08%

 Future 0.09% 0.01% 0.02% 0.11% 0.11% 0.27%

 Future + Carbon Tax 0.14% 0.00% 0.01% 0.03% 0.03% 0.42%

February 6 (Wed)

 Present 0.06% 0.02% 0.03% 0.08% 0.07% 0.10%

 Future 0.18% 0.03% 0.03% 0.23% 0.22% 0.31%

 Future + Carbon Tax 0.25% 0.05% 0.05% 0.20% 0.21% 0.50%

April 14 (Sun)

 Present 0.09% 0.03% 0.03% 0.11% 0.10% 0.21%

 Future 0.30% 0.06% 0.07% 0.40% 0.37% 0.45%

 Future + Carbon Tax 0.38% 0.06% 0.07% 0.31% 0.30% 0.72%

May 8 (Wed)

 Present 0.05% 0.02% 0.02% 0.07% 0.06% 0.15%

 Future 0.09% 0.05% 0.06% 0.18% 0.16% 0.34%

 Future + Carbon Tax 0.09% 0.05% 0.06% 0.14% 0.14% 0.45%

July 7 (Sun)

 Present 0.03% 0.01% 0.01% 0.02% 0.02% 0.10%

 Future 0.05% 0.01% 0.01% 0.07% 0.06% 0.13%

 Future + Carbon Tax 0.06% 0.00% 0.00% 0.15% 0.15% 0.10%

July 31 (Wed)

 Present 0.03% 0.01% 0.01% 0.02% 0.02% 0.10%

 Future 0.05% 0.01% 0.01% 0.07% 0.06% 0.17%

 Future + Carbon Tax 0.05% 0.00% 0.00% 0.04% 0.04% 0.13%

October 27 (Sun)

 Present 0.07% 0.03% 0.03% 0.08% 0.06% 0.17%

 Future 0.17% 0.03% 0.03% 0.28% 0.25% 0.34%

 Future + Carbon Tax 0.21% 0.03% 0.03% 0.20% 0.21% 0.49%

November 6 (Wed)

 Present 0.03% 0.01% 0.01% 0.05% 0.04% 0.10%

 Future 0.09% 0.01% 0.01% 0.09% 0.08% 0.15%

 Future + Carbon Tax 0.08% 0.01% 0.01% 0.02% 0.02% 0.13%

Average MSE 0.11% 0.02% 0.03% 0.13% 0.12% 0.26%

 Present 0.05% 0.02% 0.02% 0.06% 0.05% 0.13%

 Future 0.13% 0.03% 0.03% 0.18% 0.17% 0.27%

 Future + Carbon Tax 0.16% 0.02% 0.03% 0.14% 0.14% 0.37%

Dynamic Policies with Price Model  Commitment Policies

Table EC-1: Mean Standard Errors for PI gaps of Table 1
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Average

Myopic Costs
Period 

Constant

Period

Linear Simple

Myopic 

Dispatch

PI

Dispatch

Without 

Commitment

for PI

Dispatch

January 27 (Sun)

 Present 148.68 9.71 14.60 97.95 89.63 223.26 6,772

 Future 203.01 9.72 11.54 186.20 166.36 709.13 5,875

 Future + Carbon Tax 715.57 12.44 19.12 293.60 241.49 2796.89 21,565

February 6 (Wed)

 Present 105.23 5.33 8.02 120.99 108.22 232.85 4,342

 Future 158.01 13.34 15.59 205.62 179.12 768.47 2,985

 Future + Carbon Tax 932.63 74.36 76.12 642.48 571.35 3956.04 10,014

April 14 (Sun)

 Present 115.29 12.07 12.85 138.07 126.47 529.85 3,477

 Future 125.00 9.47 9.46 247.24 205.72 614.15 1,903

 Future + Carbon Tax 470.43 32.22 34.18 655.26 575.60 2918.12 6,563

May 8 (Wed)

 Present 120.27 15.25 15.55 118.96 108.97 626.21 5,058

 Future 155.70 23.93 27.34 168.49 141.00 940.11 3,155

 Future + Carbon Tax 579.02 79.00 91.62 421.02 364.60 4187.92 10,839

July 7 (Sun)

 Present 108.37 7.96 10.04 88.87 72.50 1172.15 9,078

 Future 167.98 10.28 14.15 181.61 150.62 2088.97 7,274

 Future + Carbon Tax 594.79 5.43 7.47 426.20 359.33 5524.93 28,654

July 31 (Wed)

 Present 88.00 11.33 14.14 107.74 82.58 927.93 9,082

 Future 140.11 7.92 8.84 186.21 156.36 1847.90 7,304

 Future + Carbon Tax 405.13 3.83 5.80 277.03 240.35 5180.35 28,123

October 27 (Sun)

 Present 130.83 9.87 11.01 117.64 109.06 511.60 4,165

 Future 133.55 8.01 10.28 240.77 202.13 823.26 2,853

 Future + Carbon Tax 512.53 30.18 38.88 644.15 535.07 3898.11 9,865

November 6 (Wed)

 Present 101.14 6.34 8.51 111.96 94.16 839.57 6,810

 Future 207.52 8.84 13.00 200.43 158.39 1401.97 6,547

 Future + Carbon Tax 410.10 26.90 58.19 278.68 201.68 4995.59 24,003

Average Gap 284.54 18.07 22.35 256.55 218.36 1988.14 9,429

 Present 114.72 9.73 11.84 112.77 98.95 632.93 6,098

 Future 161.36 11.44 13.78 202.07 169.96 1149.25 4,737

 Future + Carbon Tax 577.53 33.05 41.42 454.80 386.18 4182.25 17,453

Dynamic Policies with Price Model  Commitment Policies

Gaps (average amount above PI dispatch)

Table EC-2: PI gaps of Table 1 in absolute terms
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