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In this paper we develop a conceptual framework and model for valuing risks to an individual’s health and
life and to support decision making about investments in health, quality of life, and safety. Our treatment

of health risks in the model builds on the popular quality-adjusted-life-year (QALY) framework that balances
health quality and length of life issues. We extend this framework to consider financial concerns as well as
health quality and length of life. Our model considers uncertainty in income and health and incorporates the
decision maker’s ability to adjust consumption over time in response to changes in expectations about health and
income. We use this model to study the optimal tradeoffs between financial gains or losses and improvements
or reductions in health or longevity and apply it in two example medical decision problems.
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1. Introduction
Many activities, including taking a cholesterol-lower-
ing medication, having hip-replacement surgery, or
purchasing a safer car, can be viewed as making an
investment of time and/or money in future health,
quality of life, or safety. These decisions are thorny
because they involve difficult tradeoffs (e.g., how
much should I pay to reduce the probability of dying
in an accident?), because they involve many inter-
connected decisions and uncertainties, and because
the consequences often span a long time horizon. In
this paper, we develop a conceptual framework and
model for valuing risks to an individual’s health and
life and to support decision making about invest-
ments in health, quality of life, and safety. Our orien-
tation is prescriptive in that our goal is to develop a
model that can be used to help people make these dif-
ficult decisions; we do not aim to describe how people
typically make such choices.
Our treatment of health risks in the model builds on

the popular quality-adjusted-life-year (QALY) frame-
work that balances health quality and length of life
issues. In the QALY model, an individual’s lifespan is
divided into T periods, here assumed to be equal in
length, and the QALY score is given by

QALYs=
T∑
t=1
qt� (1)

where qt is the “health related quality of life” index in
period t. This index is scaled so that, in each period,

qt = 1 corresponds to perfect health and qt = 0 corre-
sponds to a health state that is equivalent to death,
meaning the individual would be indifferent toward
spending the rest of his or her life in such a state
or dying immediately. The QALY model is used to
help individuals make medical decisions (e.g., should
I have surgery?) and in cost-effectiveness analysis to
study the efficacy of health interventions or policies.
In individual applications, decisions are made to max-
imize expected QALYs. In cost effectiveness analy-
sis, researchers typically measure cost effectiveness in
terms of the cost per expected QALY gained where
the QALYs are calculated for an “average” individual
or reference case: interventions whose cost per QALY
saved is less than a threshold value (e.g., $50,000 per
QALY) are viewed as cost effective.
In this paper, we extend the QALY framework to

consider tradeoffs between financial objectives and
health states. The utilities in each period are the prod-
uct of a QALY-like health-state index and a utility
for consumption in that period and the overall utility
function is of the form

L-QALYs=
T∑
t=0
qtut�ct�� (2)

where ct denotes the consumption in period t and
ut�ct� denotes the utility associated with this level
of consumption. The idea behind this multiplicative
form for each period (qtut�ct�� is that good health
allows one to enjoy consumption and vice versa.
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We call these utilities life-QALYs or L-QALYs to distin-
guish them from health QALYs, which we will denote
H-QALYS, given by Equation (1).
One of the challenges of working with a utility

model of this form is accounting for the decision
maker’s (DM’s) ability to adjust consumption over
time in response to changes in health or income.
In this paper, we focus on the case where the con-
sumption utility functions �ut�ct�� have an exponen-
tial form. This simplifies the calculation of the optimal
consumption levels and allows us to calculate derived
utilities that represent the DM’s preferences for
income and health states, taking into account the abil-
ity to adjust consumption. We use this derived utility
for health and income to study the optimal tradeoffs
between financial gains or losses and improvements
or reductions in health or longevity. In particular, we
study the DM’s “willingness to pay” (WTP) to reduce
health or death risks as well as his or her “willing-
ness to accept” (WTA) such risks. Our model can thus
be used to calculate WTPs and WTAs for cost-benefit
analyses that require tradeoffs between financial and
health or safety considerations.1

Our interest in this problem is intrinsic: We want
to improve our own thinking about investments in
health and safety and were not satisfied with the
available models. Howard’s work (Howard 1980,
1984) is perhaps closest to ours in that he also has
a prescriptive orientation and considers an individ-
ual making tradeoffs between financial and health
objectives. The model in Howard (1980) assumes a
utility function that depends on the DM’s constant
annual consumption and length of life; Howard (1984)
added a QALY-like adjustment to the length of life.
Howard’s analyses assume that all financial receipts
or payments are converted into constant consumption
through the purchase of a (hypothetical) actuarially
fairly priced annuity. In contrast, rather than assum-
ing the existence of a fairly priced annuity, we assume
that the DM borrows and lends to optimize consump-
tion over time, adapting to changes in expectations
about future income or health. The optimal consump-
tion streams are generally not constant over time.
Shepard and Zeckhauser (1984) and Bleichrodt and

Quiggin (1999) also studied utility models similar
to (2). Shepard and Zeckhauser (1984) developed a
continuous-time model in which income and death
risk vary over time and the DM can save (but not
borrow) to optimize consumption over time; they
also considered a case with actuarially fair annuities.

1 See, e.g., Sox et al. (1988) for examples of the use of QALYs for
individual decisions and Gold et al. (1996) for discussion of QALY-
based cost effectiveness analysis. See Hammitt (2002), Dranove
(2003), or Krupnick (2004) for recent comparisons of WTP-based
cost-benefit analysis and QALY-based cost-effectiveness analysis.

The goal of their paper was to provide an indirect
method for estimating WTPs for reductions in death
risks at various ages and their model is determinis-
tic except for the possibility of death at various ages.
To simplify their analysis, Shepard and Zeckhauser
assumed that the utilities for consumption are identi-
cal in each period and are discounted at the market
interest rate. Bleichrodt and Quiggin (1999) studied a
discrete-time “lifecycle model” like (2) that considered
consumption and health states over time and also
required consumption utilities to be constant over
time. Their primary goal was to identify assump-
tions that make cost-effectiveness analysis (e.g., QALY
modeling) consistent with cost-benefit analysis based
on this lifecycle model. The conditions they identify—
both consumption utilities and consumption must be
constant over time—are, in their words, “quite strin-
gent” (Bleichrodt and Quiggin 2002, p. 167).
In the next section, we describe our model and an

illustrative example that we will use throughout the
paper. In §3, we describe the solution of this con-
sumption problem. In §4, we discuss the valuation
of health and death risks and determine WTPs and
WTAs for such risks. In §5, we illustrate the applica-
tion of the model to two personal medical decisions.
In §6, we conclude and discuss directions for addi-
tional research.

2. The Model and an Illustrative
Example

In this section, we first describe the general form of
the model and the exponential utility assumption that
simplifies our analysis. We then present a numeri-
cal example that we will use to illustrate the model
throughout the rest of the paper.

2.1. General Model
We assume that the DM’s possible lifespan is divided
into T periods, which for ease of exposition, are taken
to be equal in length. The DM’s lifetime utility is rep-
resented by

U�c
q�≡
T∑
t=0
qtut�ct�� (3)

where ct is the DM’s monetary consumption in
period t and qt is a health-state index that cap-
tures the DM’s mental and physical ability to enjoy
consumption; c = �c0� � � � � cT � and q = �q0� � � � � qT � are
consumption and health-index streams.2 The con-
sumption utility functions ut are assumed to be

2 Although we will not pursue this in detail in this paper, this form
of utility function can be justified by appealing to more primi-
tive assumptions. First, we assume that the DM’s preferences are
additive independent over time, allowing us to write U�c
q� as the
sum of utilities for individual periods. Second, we assume that for
each period the DM’s preferences for health states �qt� are utility
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strictly increasing, concave, and continuously dif-
ferentiable: higher levels of consumption lead to
greater utility, but at a decreasing rate. Like the
“health-related quality of life” index in the H-QALY
model (1), the health-state index qt for period t is
scaled so that death corresponds to qt = 0 and perfect
health corresponds to qt = 1. The health and income
streams continue through period T with death at
time td represented by having qt = 0 for all t ≥ td. We
will assume that qt ≥ 0 because negative qts would
lead one to prefer less consumption to more. Note that
we do not require the utility functions qt to be iden-
tical in each period. One could incorporate discount-
ing of future utilities by including the discount factor
in ut . Our L-QALY model (3) reduces to the H-QALY
model (1) in the special case where the consumption
utilities ut�ct� are equal to 1.
Rather than assuming that the DM converts income

into constant consumption through the purchase of a
hypothetical fairly priced annuity (as Howard 1980,
1984 and others do), we will assume that the DM
optimizes consumption by borrowing or lending over
time with interest earned or paid at a constant rate r .
While we will not place any constraints on the DM’s
borrowing over time, we require the DM to have
a zero balance at the end of the planning horizon
(time T ) or, equivalently, we require the net present
value (NPV) of the consumption stream to match the
NPV of the income stream over the time horizon. The
DM may die with unspent savings or owing money.
As we will see with our example, the aversion to hav-
ing low or negative consumption levels provides a
strong incentive for savings and, if one earns money
early in life and retires later (as in our example), the
DM typically dies with unspent savings. Thus, if we
were to add a borrowing constraint, it would typically
not be binding in such cases.
The DM’s income stream �x = ��x0� � � � � �xT � and

health-index stream �q = �q̃0� � � � � q̃T � are both uncer-
tain. In period t, the DM learns his income xt and
health index qt and then chooses his consumption
level ct . Given an uncertain income stream �x and
health-index stream �q, the DM will choose a con-
sumption stream c̃= �c̃0� � � � � c̃T � to solve the following
maximization problem:

���x� �q�≡ max
�c̃0�����c̃T �

E
[ T∑
t=0
q̃tut�c̃t�

]
(4)

independent of consumption �ct� and that the DM is indifferent
about consumption �ct� when in a utility state equivalent to death
�qt = 0�. Following an argument similar to that of Miyamoto et al.
(1998), this second assumption allows us to write the period utili-
ties as a product qtut�ct�. Additive independence and utility inde-
pendence are defined and discussed in detail in Keeney and Raiffa
(1976); applications to QALY models are discussed in Bleichrodt
and Quiggin (1999) and Hazen (2004).

subject to

T∑
t=0

ct
�1+ r�t =

T∑
t=0

xt
�1+ r�t �

where the constraint captures the requirement (dis-
cussed in the previous paragraph) that the NPV of the
DM’s consumption stream must match the NPV of his
income stream over the planning horizon; c̃t and �xt
are random variables and the constraint requires these
NPVs to match in every state of the world. The
derived utility function ���x� �q� describes the expected
utility resulting from an uncertain income stream �x
and health-index stream �q and can be used to eval-
uate alternative health and income profiles. The DM
should choose between alternative health-income pro-
files ��x� �q� to maximize derived utility ���x� �q�.
Following the derivation in the appendix, we find

that the first-order conditions for the DM’s consump-
tion optimization problem (4) require that the optimal
consumption levels c∗t satisfy

�1+ r�tqtu′t�c∗t �= �1+ r��Et�q̃�u′� �c̃∗� �� (5)

for all � > t and for every possible period-t state.
Here Et[-] denotes expectations conditional on the
time t state of information, u′t denotes the deriva-
tive of the period-t consumption utility function ut ,
and c̃∗� denotes the currently uncertain optimal con-
sumption in period � . The optimal period-t consump-
tion level c∗t is chosen (knowing qt and xt� so the
marginal utility in period t (on the left of Equa-
tion (5)) matches the expected future marginal util-
ity (on the right of Equation (5)) in all periods with
each period’s marginal utilities adjusted for the time
value of money. Because ut was assumed to be contin-
uously differentiable and concave, the objective func-
tion in (4) is continuous and concave in �c̃0� � � � � c̃T �.
Thus, if we find a consumption stream satisfying the
first-order conditions (5) and the feasibility constraint
in (4), we have found an optimal solution.

2.2. The Additive-Exponential Utility Model
For general utility functions, this consumption opti-
mization problem (4) can be quite difficult to solve
as it requires solving a nonlinear programming prob-
lem with decision variables corresponding to the
amount consumed in each period, for each state of
the world. However, the calculations simplify greatly
if we assume that the DM has an exponential form
for the consumption utility,

ut�ct�= kt��t − exp�−ct/�t��� (6)

Here the period-t utility weight kt and period-t con-
sumption risk tolerance �t are both assumed to be
positive and represent the DM’s time and risk prefer-
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Figure 1 An Exponential Consumption Utility
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ences, respectively. The �t parameter is used to con-
trol the “zero-utility level” of consumption, meaning
the level of consumption that leads to a period-t util-
ity of 0, regardless of the health state. For example,
setting �t = 1 will imply that ut�0�= 0. In general, the
zero level of consumption is −�t ln��t� with the zero
level varying from 0 to � as �t goes from 1 toward 0.
A plot of a utility function represented by (6) is shown
in Figure 1.
With this form for ut�ct�, the overall utility func-

tion (3) may be rewritten as

U�c
q�=
T∑
t=0
kt�tqt −

T∑
t=0
ktqt exp�−ct/�t�� (7)

which we refer to as an additive-exponential utility func-
tion. The first term in (7) is independent of consump-
tion and can be interpreted as the utility that would
be obtained if one had no financial constraints. If we
take kt = 1/�t , then the first term in (7) will be the
H-QALY value. The second, subtracted term in (7)
can be interpreted as a “finite wealth penalty” repre-
senting the utility loss associated with having finite
wealth and, hence, limited consumption: it is non-
negative and approaches zero for large consumption
levels.

2.3. An Illustrative Example
We will illustrate the results of the paper by consid-
ering a hypothetical example of a 30-year-old pro-
fessor named Jack. To keep the example simple, we
will assume that Jack is in perfect health with a
health-state index qt = 1�0 until he dies and that his
annual death probabilities follow the standard mor-
tality probabilities for white males (Arias 2004). With
these assumptions, Jack’s expected remaining life and
his expected H-QALY score are both 44.15 years. We
will consider consumption decisions on an annual
basis and take the planning horizon T to be 70 years,
corresponding to when Jack is 100 years old.
Jack begins his career at age 30 by taking a tenure-

track position at a prestigious university that pays
$60,000 (inflation adjusted) per year. In 10 years

(at age 40), he goes up for tenure. If he gets tenure,
his pay increases by $10,000 per year. If he does not
get tenure, he must find a new job elsewhere and
his pay drops by $10,000 per year. His probability
of getting tenure is 0.50. Ten years after his initial
tenure decision, he has a 50% chance of being pro-
moted for which he will receive a raise of $10,000 per
year at the prestigious university or $5,000 per year
at the other university. In all scenarios, Jack retires at
age 65 and earns no additional income. These possible
income streams are shown in Figure 2. Jack’s savings
are assumed to earn interest at a real rate r = 2% per
year. We also assume that Jack does not update his
probabilities of getting tenure or promoted until the
uncertainty is resolved and his probabilities for death
do not depend on whether Jack receives tenure or is
promoted.
We will assume that Jack has an additive-expo-

nential utility function. The consumption risk tol-
erances �t are assumed to be $10,000 per year,
which implies that Jack is approximately indifferent
to accepting or refusing a gamble that would increase
his consumption by $10,000 �=�t� per year (for exam-
ple, from $40,000 per year to $50,000) or decrease it by
$5,000 �=�t/2� per year (e.g., from $40,000 to $35,000),
with equal probabilities. We set the constant terms �t
to be 0.3679 in each year which implies that Jack has
a zero-utility level of $10,000. In this example, we will
assume utility weights kt = 1/�t in each period, which
means that there is no discounting of future utilities
and the expectation of the first term in (7) is Jack’s
expected H-QALY score, 44.15. With the optimal con-
sumption stream (to be determined later), the expec-
tation of the second term in (7) is 1.97 which implies
that Jack’s limited wealth costs him approximately
two H-QALYs in terms of his overall utility.

Figure 2 Income Scenarios for the Example
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3. Solving the Optimal Consumption
Problem

We now consider the problem of determining the
optimal consumption stream given an additive-expo-
nential utility function. To see how this utility func-
tion simplifies the analysis, consider the first-order
conditions (5) for the DM’s optimization problem
with this utility function. If we change income or
health risks, we can write the new optimal consump-
tion stream as the sum of the old optimal consump-
tion stream and an adjustment as c̃new = c̃old+ c̃adj and
the first-order conditions (5) for determining the opti-
mal consumption stream become

�1+ r�tqtu′t�coldt �exp�−cadjt /�t�

= �1+ r��Et�q̃�u′� �c̃old� �exp�−c̃adj� /�t�� for all � > t�
(8)

Thus, with this form, the consumption adjust-
ment enters as a multiplier in the first-order condi-
tions. With many changes in health index or income
streams, we can determine the optimal consumption
adjustment cadjt that restores the balance in (8) quite
easily without reconsidering the optimization prob-
lem (4). Moreover, with independent changes to the
income and health streams, the expectation in (8) fac-
tors, and the consumption adjustments will be addi-
tive and can be determined separately.
We can use these properties of the additive-expo-

nential utility function to decompose the optimal con-
sumption problem (4) into three simpler subproblems
that can be solved separately. Specifically, we
(1) Determine the optimal consumption stream

given no income and perfect health over the length of
the planning horizon, �xt = 0 and q̃t = 1 for all t, mean-
ing that the DM lives in perfect health to T (age 100 in
the example) with no income. While this is not a real-
istic scenario in itself, this base consumption stream
can be seen as representing the DM’s time preferences
in the solution of the optimal consumption problem.
We discuss this subproblem in §3.1.
(2) Determine the adjustment to consumption asso-

ciated with the DM’s uncertain income stream �x. As
we will see in §3.2, this income adjustment is straight-
forward to calculate and is independent of the health-
index stream.
(3) Determine the adjustment to consumption asso-

ciated with the DM’s uncertain health-index stream �q.
As we will see in section §3.3, this adjustment is also
straightforward to calculate and is independent of the
income stream.
We can then add these two adjustments to the

base consumption level to determine the optimal con-
sumption stream with both income and health risks.
The three components of the consumption stream

Figure 3 Components of the Optimal Consumption Stream in the
Example
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in the example are shown in Figure 3 and will be
discussed in the next three subsections. The total
consumption is shown in Figure 4. The income adjust-
ment and total consumption both depend on the
income scenario (i.e., whether Jack gets tenure and/or
gets promoted) and the scenarios here reflect the sce-
narios indicated in Figure 1.
In addition to simplifying the solution of the con-

sumption problem, the additive-exponential utility
function leads to analytic forms for the derived util-
ity function ���x� �q� of Equation (4). This derived util-
ity function can be used to determine the DM’s WTP
and WTA values for changes in health or death risks
that reflect the optimal changes in consumption. This
decomposition also helps clarify how the different
factors—interest rates, income, health, and mortal-
ity risks—should affect the individual’s consumption
decisions.

3.1. Solving the Base Consumption Problem
In this section, we consider the problem of determin-
ing the optimal consumption stream given no income

Figure 4 Total Consumption in the Different Income Scenarios in the
Example
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and perfect health, �xt = 0 and q̃t = 1 for all t, given
a utility function with the additive exponential form.
As indicated earlier, this problem is not of direct inter-
est in itself but is part of the decomposed procedure
for determining the optimal consumption stream. In
this case, the first-order conditions (5) imply that the
base consumption stream c0t satisfies

�1+ r�tkt/�t exp�−c0t /�t�
= �1+ r��k�/�� exp�−c0�/��� for all � and t� (9)

Combining this with the budget constraint in (4) with
zero income, we find that the base consumption lev-
els are

c0t = �t ln
(
kt�1+ r�t
�t

)

− �t
R0

( T∑
�=0

1
�1+ r�� ln

(
k��1+ r��

��

))
� (10)

where

R0 ≡
T∑
t=0

�t
�1+ r�t � (11)

Examining (10), we find that, as one would expect,
the period-t base consumption level �c0t � is increasing
in the period-t utility weight �kt� and is decreasing
in other period’s utility weights (k� , for � �= t�. Note
that the optimal consumption levels are independent
of the �t parameters in the DM’s utility function (7);
this follows from the fact that these parameters do
not interact with the consumption terms in the utility
function.
Applying Equation (10) in our example, we find the

base consumption stream shown in Figure 3. In the
figure, we see that this base consumption stream is
increasing over the planning horizon. Assuming zero
income and no health/death risks, it is optimal to
consume negative amounts in the early years (which
means that the DM saves money and earns interest)
and consume larger positive amounts later. This base
consumption stream also reflects the assumption in
the example that utilities are not discounted. Examin-
ing Equation (10), we see that if we had discounted
utilities over time at the interest rate by taking kt ∝
�1+ r�−t while assuming a constant consumption risk
tolerance ��t� over time, we would have constant base
consumption �c0t �. The base consumption stream thus
depends on the time preference parameters kt in the
utility function. We will see below that this is the
only component of the optimal consumption stream
affected by these parameters.

3.2. Evaluating Income Streams
Next, we consider the effects of changing income on
the DM’s consumption and utility. Before consider-
ing the case of an uncertain income stream, let us

first consider the effects of a deterministic change in
income. Suppose that the DM initially has income
stream �xold and health-index stream �q and, given
this, follows optimal consumption strategy c̃old. Now
suppose that we add a deterministic stream xadj =
�x

adj
0 � � � � � x

adj
T � to the DM’s income and assume a new

consumption stream c̃new = c̃old + cadj, where

c
adj
t = �t

R0

( T∑
�=0

x
adj
�

�1+ r��
)

(12)

and R0 is as defined in Equation (11). One can verify
that this consumption adjustment is feasible (the net
present value of cadj is equal to the net present value
of xadj� and c̃new satisfies the first-order conditions
given by Equation (8). Thus, the optimal response
to a deterministic change in the income stream is
to share the net present value (NPV) of the addi-
tional income stream over time in proportion to the
period consumption risk tolerances. Note that the
optimal consumption adjustments c̃adjt are indepen-
dent of the DM’s initial income stream �xold, health-
index stream �q, and the kt and �t parameters of the
utility function.
Now suppose that the DM faces an income gam-

ble �xadj that is resolved immediately (before any con-
sumption decisions are made) and is independent of
the DM’s initial income stream �xold and health-index
stream �q. Once this gamble is resolved, the additional
income �xadj is deterministic and consumption should
be adjusted as given by Equation (12). The derived
utility ���x + xadj� �q� (defined in Equation (4)) associ-
ated with such a change in income can be determined
by substituting the adjusted consumption (12) into
the utility formula (7) and taking expectations. The
result is

���x+ xadj� �q�= aold − bold exp
(
− 1
R0

T∑
t=0

x
adj
t

�1+ r�t
)
�

(13)

where

aold ≡
( T∑
�=0
k���E0�q̃� �

)
� and (14)

bold ≡
( T∑
�=0
k�E0�q̃� exp�−c̃old� /����

)
� (15)

Thus, the derived utility for changes in income has
the form of an exponential utility function defined on
the NPV of the income change with an effective risk
tolerance R0 equal to the NPV of the period consump-
tion risk tolerances. The scaling constants aold and bold

are the expectations of the first and second terms
in Equation (7) with the initial consumption stream:
aold represents the utility of life without wealth con-
straints (i.e., the H-QALY score, if the utility parame-
ters are scaled appropriately) and bold represents the
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“finite wealth penalty” at the base income level. The
exponential term in the derived utility (13) reduces
this penalty as the NPV of the income adjustment
increases. While aold and bold depend on the DM’s
initial income stream �xold and health-index stream �q,
changes in aold and bold lead to an affine change to
the derived utility for income. Thus, the old income
stream �x and health index stream �q do not affect
the DM’s preferences for incremental, immediately
resolved gambles.
Let us apply these ideas in our example. With up

to 70 years of life remaining, the effective risk tol-
erance R0 for Jack’s derived utility function (13) is
equal to the present value of a 70-year stream of
�t = $10�000 in each year. At the assumed discount
rate of 2%, this is $384,986. Thus, Jack should be
roughly indifferent toward accepting a 50-50 gamble
in which he can win $384,986 �=R0� or lose $192,493
�=R0/2). Following Equation (12), any amount he
wins or loses would be spread over the remainder of
his life, increasing or decreasing his annual consump-
tion by 2.60% �=�t/R0� of the NPV of the change in
income.
With this additive-exponential utility function, we

can also easily evaluate risky income streams whose
uncertainties are not resolved immediately using the
valuation procedure developed in Smith (1998). While
that paper did not consider uncertainty about health
or death risks, if the additional income stream being
evaluated �xadj is independent of the health-index
stream �q and any prior income stream �xold, the same
procedure applies, as discussed in the appendix. The
valuation procedure is a slight modification of the
standard decision tree “roll back” procedure and pro-
ceeds as follows. First, place the nodes in order cor-
responding to the time at which the uncertainties
are resolved, with later decisions and uncertainties
appearing further to the right in the tree. Next, calcu-
late NPVs for each endpoint in the tree by discount-
ing all cash flows using the interest rate r ; label these
final endpoint values vT . We then “roll back” the tree,
working from right to left. Decision nodes are han-
dled in the usual way: Given a choice among differ-
ent income streams at some point in the tree, choose
the alternative that leads to the maximum successor
rollback value. Given a chance node representing an
uncertainty resolved in period t with successor val-
ues �vt , the rollback value, vt−1, is the certainty equiv-
alent given by using an exponential utility function
with effective risk tolerance Rt :

vt−1 =−Rt ln�Et�exp�−�vt/Rt���� (16)

where

Rt ≡
T∑
�=t

��
�1+ r�� � (17)

The value v0 given at the root of the tree is
the DM’s present certainty equivalent value (PCEV):
the DM should be indifferent between receiving the
risky income stream �xadj or an immediate lump-sum
value v0 because they give the same expected utility.
The effective risk tolerance Rt used to evaluate uncer-
tainties resolved in period t is the NPV of subsequent
consumption risk tolerances and reflects the DM’s
ability to share the anticipated increases or decreases
in income over subsequent time periods; the specifics
of this sharing rule will be discussed shortly.
We can illustrate this procedure by evaluating

Jack’s income prospects shown in Figure 2. The cal-
culations for the valuation procedure are shown in
Figure 5. First, we calculate NPVs for each possi-
ble income scenario; these are shown at the end-
points of the tree. Rolling the tree back from right
to left, the first uncertainty encountered is the node
corresponding to whether Jack will be promoted
in 20 years. This is evaluated using a risk toler-
ance R20 = $218�202 and yields certainty equivalents
of $1,759,058 or $1,420,306, respectively, in the cases
where Jack is granted tenure or not. We then evalu-
ate the tenure uncertainty using R10 = $293�364 and
find a PCEV of $1,543,283: Jack should be indifferent
to receiving his uncertain future income stream and
receiving $1,543,283 as a lump sum, immediately with
certainty.
This PCEV reflects both risk and delay premi-

ums. If Jack’s income gamble had been resolved
immediately, we would calculate the effective cer-
tainty equivalents using the current effective risk
tolerance R0 = $384�946 and find a certainty equiv-
alent of $1,554,430, instead of the $1,543,283 calcu-
lated using the time-varying effective risk tolerances.
The difference between these two amounts is $11,147
and can be interpreted as a delay premium, the loss
due to the delayed resolution of uncertainty. If the
gamble were resolved immediately, Jack would adjust

Figure 5 Valuing the Risky Income Streams in the Example
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his consumption immediately depending on how the
gamble turned out. With the delayed gamble, he does
not adjust consumption until after the uncertainties
are resolved and winds up with an allocation of
consumption that is ex post suboptimal. The differ-
ence between the expected NPV of his future income
($1,592,344) and the certainty equivalent calculated
using R0 everywhere ($1,554,430) is $37,914; this can
be interpreted as a risk premium in the usual way as
a loss due to uncertainty in future income. These risk
and delay premiums are discussed in more detail in
Smith (1998).
How does one adjust consumption in light of these

changes in income? To study this, let us define the
period-t windfall as �wt = �vt− �vt−1 for t > 0 and w0 = v0.
Intuitively, these windfalls describe the change in the
PCEV of the income stream over time. These changes
are measured in present value terms and, by construc-
tion, the sum of the windfalls along a path through a
decision tree is equal to the NPV associated with the
endpoint of the tree �vT . With the additive-exponential
utility, Smith (1998) shows that the optimal consump-
tion adjustments are analogous to the adjustment
specified in Equation (12) and are

c̃
adj
t = �t

t∑
�=0

�w�
R�
� (18)

The windfalls for the example are noted in Fig-
ure 5. If Jack receives tenure, his certainty equiv-
alent increases from $1,543,283 to $1,759,058 for a
windfall of $215,774. In this scenario, he should
increase his consumption by ��t/R10�$215�774 =
�$10�000/$293�364�×$215�774= $7�355 in each subse-
quent year. Being denied tenure leads to a decrease in
consumption of $4,192 in each year. These annual con-
sumption adjustments are shown in Figure 3, with the
tree structure in the consumption adjustments reflect-
ing the same scenarios as in Figure 2.

3.3. Consumption Adjustments for Health and
Death Risks

How do health and death risks affect the DM’s opti-
mal consumption and utility? First, suppose that we
reduce the expected health-state index in period t by a
factor of �t , so that the new period-t expected health-
state index becomes

E0�q̃
new
t �= �1−�t�E0�q̃

old
t � (19)

and all other period’s health-state indices are un-
changed. In this case, it is straightforward to deter-
mine the consumption adjustment due to this change
in health expectations. If we assume a new consump-
tion stream c̃new = c̃old + cadj where

cadj� =


−�� ln��1−�t���t/�1+r�t �/R0−1�� � = t�
−�� ln��1−�t���t/�1+r�t �/R0�� � �= t�

(20)

after some algebra, we can verify that this new c̃new

is feasible in that the adjustments cadj have NPV
zero and are optimal because they satisfy the first-
order conditions (8) with the revised expected health-
state indices (19). Examining (20), we see that a
decrease in the expected health index in period t
leads to a decrease in consumption in period t and an
increase in other periods. This consumption adjust-
ment depends only on the risk tolerance parameters
of the DM’s utility function. Moreover, the magnitude
of the period-t adjustment does not depend on the
base health index or income stream and adjustments
for changes in health indices in different periods can
be added together.
We can illustrate these consumption adjustments

by considering the standard mortality risks in our
example. From the mortality table, we find that
there is a 0.0788 chance that Jack will be dead
before he turns 50 and therefore his expected
health index for that period is 0.9212. Reducing
the expected health index from 1.0 (as previously
assumed) to 0.9212 using Equation (20), we find
that Jack should adjust consumption down in that
year by −�� ln�1 − 0�0788����20/R0�−1� = −$10k × ln�1 −
0�0788���$10k/$385k�−1� = $806�85 and adjust consump-
tion up in other years by −�� ln�1− 0�07884���20/R0� =
−$10k× ln�1− 0�0788��$10k/$385k� = $14�35. By accumu-
lating similar consumption adjustments for each year,
we arrive at the total consumption adjustment for the
standard mortality risks shown in Figure 3. Here we
see that these mortality risks lead Jack to increase con-
sumption early in life and decrease consumption later.
Adding the consumption adjustments for mortal-

ity and income to the base consumption level, we
arrive at the optimal consumption streams shown in
Figure 4. These optimal consumption streams reflect
the increasing trend of the base consumption level
(reflecting Jack’s time preferences and interest earned
on savings), an upward shift provided by Jack’s
uncertain income stream, and accelerating downward
adjustments due to Jack’s mortality. As indicated ear-
lier, with this optimal consumption stream, Jack’s
overall expected utility or expected L-QALY score
is 42.18, reflecting an expected H-QALY score of 44.15
less a “finite wealth penalty” of 1.97.

4. Valuing Health and Death Risks
Having discussed the effects of income and health
risks on consumption, we now turn to the problem
of valuing health and death risks. We begin by study-
ing the marginal value of an L-QALY (in §4.1) and
then turn to the valuation of changes in death risks
(in §4.2) and health states (in §4.3).

4.1. The Marginal Value of an L-QALY
Because utilities are measured in L-QALYs, the
derived utility function for income (13) captures the
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tradeoff between health and income by describing
the value of additional wealth in terms of L-QALYs.
Given a base income stream of �x and holding the
heath-state stream �q constant, the marginal effect of
a change w0 in period-0 income (effectively a change
in wealth) is given by the derivative of derived utility
function in (13):

����x+w0� �q�
�w0

= b
old

R0
exp�−w0/R0�� (21)

where bold and R0 are defined in Equations (15)
and (11). The reciprocal of this,

Q0 =
R0

bold
exp�w0/R0�� (22)

can be interpreted as the marginal value of an
L-QALY, describing the DM’s willingness to trade
money for L-QALYs.
Figures 6 and 7 show the derived utility and

marginal value of an L-QALY as wealth changes in
our example. The bold curves in each figure show the
utilities and marginal value given the base assump-
tions for the example; the lighter curves consider
alternative consumption risk tolerances. In Figure 6,
we see the exponential form for the derived util-
ity, which asymptotically approaches the expected
H-QALY score as wealth increases and the finite
wealth penalty decreases. In Figure 7, we see that
the exponential form of (22) leads the marginal value
of an L-QALY to increase rapidly with increases in
wealth. Intuitively, an increase in income moves Jack
up his utility curve (shown in Figure 6) and the util-
ity curve becomes flatter and the marginal utility for
income decreases. Thus, changes in wealth have less
impact on his L-QALY score and Jack will demand
more money to sacrifice L-QALYs and will be willing
to pay more to gain additional L-QALYs.
Comparing the marginal curves for different con-

sumption risk tolerances, we see that the marginal
values are quite sensitive to changes in these pref-
erence parameters. The bold curves show utilities

Figure 6 Derived Utility as a Function of Wealth
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Figure 7 The Marginal Value of an L-QALY as a Function of Wealth
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and marginal values assuming the base consumption
parameters, including a consumption risk tolerance
of $10,000 per year and a zero-utility level of con-
sumption of $10,000 per year. The light curves show
the utilities and marginal values with consumption
risk tolerances of $5,000 and $20,000 per year, hold-
ing the zero-level of consumption constant. With a
greater risk tolerance, the utility curves in Figure 6
become less flat and the marginal value of an L-QALY
decreases substantially. At the base wealth level,
the marginal values of an L-QALY are $1,641,291,
$195,878, and $89,718, respectively, for consumption
risk tolerances of $5,000, $10,000, and $20,000 per year.
While this is a broad range of risk tolerances, this
extreme sensitivity points to a need to assess these
preference parameters carefully.
Figure 8 shows how the marginal value of an

L-QALY changes over time in the example, with the
different paths corresponding to the different income
scenarios. Here we see that increases or decreases in
income expectations lead to significant changes in the
marginal value of an L-QALY: Jack’s marginal value
of an L-QALY at age 40 if he receives tenure ($498,216)
is more than three times the marginal value at the
same age if he does not receive tenure ($157,011).
This dramatic change reflects the exponential wealth

Figure 8 The Marginal Value of an L-QALY Over Time
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sensitivity shown in Equation (22) and illustrated in
Figure 7. Between these changes in marginal val-
ues due to changes in expected income, the marginal
value of an L-QALY increases at exactly the interest
rate r . As shown in the appendix, this follows from
the first-order condition for the consumption opti-
mization problem (4) and holds for nonexponential
consumption utilities, as well as exponential utilities.
The intuition is that the DM will choose a consump-
tion quantity at time t that equates the marginal gain
in utility associated with consuming more in that
period with the marginal expected loss in utility from
reduced savings and consequent reduction in con-
sumption in the future. In an optimal solution, this
leads to marginal utilities for wealth to be declin-
ing over time at interest rate r or, equivalently, the
expected marginal value of an L-QALY to be increas-
ing at rate r .

4.2. Valuing Death Risks
We now turn to the problem of determining how
much one should be willing to pay to avoid or be
paid to accept changes in death risks. Let pt denote
the probability of dying in period t conditional upon
living through period t − 1. The probability of being
alive in period t is given in terms of these conditional
probabilities as

t∏
�=0
�1− p��� (23)

Now suppose that we have a DM with income
stream �x, initial health-index stream �qold, and optimal
consumption stream c̃old. If we change the probability
of dying at the beginning of period t from poldt to pnewt ,
the expected values of the health-state indices q̃new�

after this risk then become

E0�q̃
new
� �= �1− p

new
t �

�1− poldt �
E0�q̃

old
� � for � ≥ t (24)

and the earlier expectations are unchanged: E0�q̃
new
� �=

E0�q̃
old
� � for � < t. From Equation (20), we find that

the consumption adjustment associated with this
change is

cadj� =




−�� ln
((
�1− pnewt �

�1− poldt �
)Rt/R0)

� � < t�

−�� ln
((
�1− pnewt �

�1− poldt �
)�Rt/R0�−1)

� � ≥ t�
(25)

Examining this formula, we see that, as one would
expect, an increase in the death risk in period t �pnewt >
poldt �, leads to an increase in consumption before the
risk and a decrease afterwards.
We can write an analytic expression for the derived

utility associated with changes in income and death
risks. Suppose that the DM starts with income and

health streams �xold and �qold and the death risk in
period t changes from poldt to pnewt (with the new
health-index stream being �qnew) and the DM’s initial
wealth (or period 0 income) increases by w0. If the DM
optimally adjusts consumption as specified by Equa-
tions (12) and (25), substituting these adjustments into
the utility function (7), we find a derived utility of

���xold +w0� �qnew�

= aold −
(
�pnewt − poldt �
�1− poldt �

)
a
part
t

−
(
�1− pnewt �

�1− poldt �
)Rt/R0

bold exp�−w0/R0�� (26)

where aold and bold are defined and interpreted as in
Equations (14) and (15) (with q̃old� in place of q̃t) and

a
part
t ≡

( T∑
�=t
k���E0�q̃

old
� �

)
� (27)

Thus, we see that the derived utility has the form
of an exponential utility function, a− b exp�−w0/R0�,
where the change in death risks changes the values
of a and b. The first two terms in (26) represent the
expected utility of life without wealth constraints (the
H-QALY score) with apartt being the H-QALYs put at
risk with this change in death risks. The multiplier
preceding bold in (26) is less than 1 for increases in
death risks; this reflects the fact that the expected
“finite wealth penalty” is diminished by the increased
probability of death and incorporates the DM’s abil-
ity to adjust consumption to minimize this penalty in
response to this change in death risks.
We can use this derived utility function to deter-

mine how much the DM should pay to reduce death
risks and/or how much he or she must be paid to
accept increased death risks. To illustrate, suppose
that the DM starts with income and health streams
�xold and �qold and the death risk in period t is changed
from poldt to pnewt with the new health-index stream
being �qnew. What change of current wealth w0 accom-
panying this change in death risk would leave the
DM exactly as well off as in the status quo? Equating
derived utilities, w0 is the solution of

���xold −w0� �qnew�=���xold� �qold�� (28)

Using Equation (26) for the derived utility, we can
solve explicitly for w0 and find

w0 = R0 ln
[(
�1− pnewt �

�1− poldt �
)−Rt/R0 1

bold

·
[
−
(
�pnewt − poldt �
�1− poldt �

)
a
part
t + bold

]]
� (29)
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If the change in risk is an improvement �poldt > pnewt �,
w0 is positive and can be interpreted as the maxi-
mum amount the DM should be willing to pay for
this reduction in risk; this is the WTP for this change
in risk. If the change in risk is not an improvement
(e.g., poldt < pnewt �, w0 is negative and −w0 can be inter-
preted as the minimum amount the DM must be paid
to be willing to accept this increase in risk; this is the
WTA for this change in risk.
Alternatively, we might consider the change in cur-

rent wealth w0 that would substitute for a change in
death risk. This w0 is the solution of

���xold +w0� �qold�=���xold� �qnew�� (30)

Using (26), we find

w0 =−R0 ln
[

1
bold

[(
�pnewt − poldt �
�1− poldt �

)
a
part
t

+
(
�1− pnewt �

�1− poldt �
)Rt/R0

bold
]]
� (31)

If the change in risk is an improvement (i.e., poldt >
pnewt �, w0 is positive and can be interpreted as the min-
imum amount the DM should be willing to accept
in lieu of this reduction in risk. If the change in risk
is not an improvement (e.g., poldt < pnewt ), w0 is neg-
ative and −w0 can be interpreted as the maximum
amount the DM is willing to pay to avoid or prevent
this increase in risk.3

While the values given by (29) and (31) are gen-
erally different, the two coincide in the limit as the
change in death risks becomes small. If we take a
Taylor series expansion of (29) or (31) in pnewt about
!pt = �pnewt −poldt �= 0 in the limit as !pt approaches 0,
the values given by (29) and (31) both approach !ptVt ,
where

Vt =Q0

[
1

�1− poldt �
(
a
part
t − Rt

R0
bold

)]
(32)

and Q0 is the marginal value of an L-QALY given
by Equation (22). We can interpret Vt as the “small-
risk value of life” (sometimes called the “value of a
statistical life”) because small changes in death risks
are valued as !ptVt , which is the expected value of
a !pt chance of losing or gaining Vt . Examining (32),
we see that Vt is the marginal value of an L-QALY
(Q0) times the per unit change in expected utility or
L-QALY score associated with small changes in death
risks (in square brackets).
Figure 9 shows Jack’s current WTP and WTA to pre-

vent or accept additional death risks in 10 years. For

3 In the economics literature, the values given by Equations (29)
and (31) are referred to as compensating and equivalent variations,
respectively.

Figure 9 WTP and WTA Amounts for Death Risks in 10 Years
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example, at the point marked with a vertical line in
the figure, Jack should be willing to pay up to $59,498
today to avoid a 1-in-100 chance of death in 10 years
and be willing to accept such a risk for a current pay-
ment of $71,001. Here we see that the WTP and WTA
values are close for small probabilities but diverge for
large probabilities. Jack’s small-risk value of life for
death risks in 10 years is $6.435 million. To empha-
size that this value applies only for small risks, like
Howard (1980), we prefer to think of this small-risk
value of life as $6.435 per one-in-one-million proba-
bility of death or “micromort.” This small-risk value
is the product of a marginal value of an L-QALY (Q0)
of $195,878 and 32.84 L-QALYs put at risk with the
change in death risk in year 10. The small-risk approx-
imation of WTPs and WTAs for death risks is fairly
accurate up to risks of about 1,000 micromorts: Jack
should be willing to take on an additional 1-in-1,000
risk in year 10 for $6,494 and pay $6,381 to avoid
such a risk, compared to a value of $6,435 given by
the small risk approximation. Beyond this amount,
the WTP and WTA amounts diverge. Jack’s WTP to
avoid death risks is bounded above by approximately
$1.1 million: Jack would not be willing to pay more
than this amount to eliminate a death risk in year 10,
regardless of how large, because a payment this large
would leave him without the ability to enjoy a con-
sumption stream that is preferred to certain death
in 10 years. In contrast, Jack’s WTA amount goes to
infinity for probabilities greater than 0.057: There is
no payment that would make Jack willing to accept
a death risk larger than this in year 10 because con-
sumption gains cannot offset the loss in expected util-
ity associated with such a risk.
The WTP and WTA values for risks in different

years have a similar form (they are linear for small
probabilities and diverge for larger probabilities) but
the values decrease with age. Figure 10 shows how
Jack’s small-risk value of life varies as a function of
Jack’s age at the time of the risk; Jack is currently
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Figure 10 Current Prices for Death Risks at Various Ages
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30 years old and the risk in 10 years considered in Fig-
ure 9 occurs when Jack is 40 and is noted with a cross
in Figure 7. Figure 7 also shows the per micromort
WTA and WTP amounts for a 1-in-100 risk of death.
As one would expect, these current WTAs and WTPs
decrease the later the risk occurs because one may
already be dead by that time and, if alive, less of life
is at stake. These WTAs and WTPs do not reflect the
time value of money, as the WTP and WTA amounts
are current payments for future death risks.
The amounts shown in Figures 9 and 10 are Jack’s

current WTP and WTA values for future risks. Fig-
ure 11 shows Jack’s future small-risk value of life for
an immediate death risk at different ages in differ-
ent income scenarios. For example, Jack’s small-risk
value of life is currently (at age 30) equal to $8.263
per micromort. If Jack gets tenure at age 40, this
small-risk value of life increases to $16.70 per micro-
mort; if he is denied tenure the amount decreases to
$5.02 per micromort. These dramatic changes reflect
the sensitivity in the marginal value of an L-QALY
to changes in wealth shown in Figure 8. The decreas-
ing trend in the small-risk value of life between these
changes in income expectations are the product of

Figure 11 Small-Risk Value of Life as a Function of Age for Different
Income Scenarios
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a marginal value of a QALY that is increasing at
rate r (as discussed in the previous subsection) and
a decreasing trend in the number of L-QALYs put
at risk with future death risks; because the expected
remaining L-QALY score is decreasing over time at
a rate of more than r = 2% per year, the product of
these two factors is a decreasing trend.
Despite this decreasing trend between changes in

income expectation, Jack’s expected small-risk value
of life is not decreasing over time. Because the tenure
and nontenure scenarios are equally likely, Jack’s
expected small-risk value of life at 40 is $10.85 per
micromort, 31% more than his current small-risk
value of life of $8.26 per micromort. Jack’s expected
small-risk value of life at age 57 ($8.43 per micro-
mort) is slightly more than his small-risk value at 30.
For those used to thinking in terms of H-QALYs,
this is perhaps surprising as Jack’s expected H-QALY
score at age 30 (44.1) is more than twice his expected
remaining H-QALYs at age 57 (21.4, if he lives that
long). It is striking that this relatively modest uncer-
tainty about future income can lead to such substan-
tial increases in Jack’s expected small-risk value of life
over time. This can be viewed as a result of the strong
convexity in the marginal value of an L-QALY as a
function of wealth, as shown in Figure 7.

4.3. Valuing Changes in Expected Health States
We can value changes in health states in much the
same way that we valued changes in death risks.
Recall in §3.3 that when we reduced the health-state
index in period t by a factor �t , we multiplied the
expected period-t health-state index by �1 − �t� in
Equation (19). We can substitute the optimal con-
sumption adjustments given by Equation (20) into the
utility function (7) to find a derived utility function
analogous to that for death risk (26) which we can
use to determine WTPs and WTAs for changes in
the health states. Using definitions analogous to those
leading to (29) and (31) for death risks, we find that
the DM should be willing to pay up to

w
pay
0 =R0 ln

(
1
bold

[
�tkt�tE0�q̃t�

+ ��1−�t���t/�1+r�t �/R0�bold
])

(33)

to avoid decreasing the expected period-t health
index by a factor of �t and should be willing to accept
such a decrease for

wacc
0 =−R0 ln

(
1
bold

[
�1−�t���t/�1+r�t �/R0

]

· [−�tkt�tE0�q̃t�+ bold
])
� (34)

As with death risks, taking a Taylor series approxi-
mation of these expressions about �t = 0, we find that
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for small �t , the WTP and WTA values both converge
to �tWt , where

Wt =Q0

[
kt�tE0�q̃t�−

(
�t/�1+ r�t

R0

)
bold

]
� (35)

where Q0 is the marginal value of an L-QALY from
Equation (22). Wt is thus the product of the marginal
value of an L-QALY times the per unit reduction in
L-QALYs (in the square brackets) caused by a small
proportional reduction in the health-state index. Com-
paring (35) and (32), we note that the small-risk value
of a life (Vt� for a death risk in period t can be writ-
ten in terms of the sum of the small-loss values for
reduction of health �Wt� for subsequent periods:

Vt =
1

�1− poldt �
T∑
�=t
W�� (36)

Intuitively, a small additional death risk in period t is
equivalent to reducing the expected health state in all
subsequent periods by the change in death risks.4

Figure 12 shows the WTP and WTA amounts
for various proportional reductions in health quality
occurring for one year, 10 years from now. For small
losses, Jack’s WTP and WTA are valued at a rate of
$1,832 per 1% reduction in the quality of life for that
year. For larger losses, the WTA and WTP diverge
as they did with death risks. For losses approaching
100% of the year, we see a curious decline in the WTA
and WTP values. In the limit as �t approaches 1, the
optimal consumption adjustment (20) calls for con-
suming a negative infinite amount in period t and a
positive infinite amount in other periods. In this limit,
the utility function does not care about consump-
tion in period t and, by consuming a large negative
amount in this period, we can increase consumption
for the rest of our life. Clearly, this extreme scenario
stretches the realism of the model.
Figure 13 shows how the current small-loss value

of reductions in health quality changes with the age
of the loss; it also shows the WTP and WTA rates for
a 25% reduction in health quality. The values initially
decline rather slowly from the current value of $1,859
for a 1% reduction in health quality. The decline in val-
ues primarily reflects the probability of dying before
the age is reached (i.e., the decline in the E0�q̃t� term
in Equation (35)) and does not reflect the time value
of money, as the WTP and WTA amounts are current
payments for future reductions in health quality.

5. Two Medical Decision Problems
To illustrate the use of the model in medical decision
making, we consider two simple examples involving

4 The 1/�1−poldt � term in (36) reflects the way changes in death risks
are defined: a change of !pt in the period-t death risk corresponds
to a proportional change of !pt/�1− poldt �; see Equation (23).

Figure 12 WTP and WTA Amounts for Reduced Health Quality
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Jack. The first illustrates a full L-QALY analysis of a
high-stakes medical decision problem and compares it
to an H-QALY analysis. The second illustrates use of
the small-risk approximations in a lower-stakes med-
ical decision problem.

5.1. Aneurysm Example
Suppose that Jack was denied tenure and at 41 is
diagnosed with a cerebral aneurysm; he must decide
whether to undergo a risky surgical procedure to clip
the aneurysm or to leave it untreated and risk hav-
ing it rupture later. A highly simplified model of this
problem is shown in the decision tree of Figure 14.
If Jack has surgery, there are three immediate possi-
ble outcomes: Successful surgery eliminates the risk
of future rupture. The surgery could lead to a seri-
ous disability which reduces Jack’s health-state index
from 1.0 to 0.5 for the remainder of his life; in this
scenario he must spend an additional $5,000 per year
on health maintenance for the rest of his life and
has no chance of promotion. The surgery could also
lead to immediate death. If Jack chooses not to have
surgery, the aneurysm may rupture and cause death
or a serious disability; we simplify by assuming that

Figure 13 The Current Value of Reductions in Health Quality at
Different Ages
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Figure 14 Decision Tree for the Aneurysm Example
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this risk occurs when Jack is 60. The probabilities for
these risks are shown in Figure 14, as are the H-QALY
and L-QALY scores for each scenario. (We assume
that the risks associated with the aneurysm are in
addition to standard mortality risks.) The probabili-
ties and health-index assumptions are loosely based
on Johnston et al. (1999).
Comparing the H-QALYs and L-QALYs in Fig-

ure 14 we see that in each scenario, the L-QALY score
is less than the corresponding H-QALY score with
percentage differences ranging from 4%–12%. These
differences are “finite wealth penalties” and depend
on Jack’s income as well as the health outcome. The
L-QALY scores depend on the time the uncertainties
are resolved as well as the realized income and health-
index streams. For example, in the top branch Jack is
promoted and experiences a health state of 1.0 until
death. The same is true on the top branch follow-
ing the No Surgery decision; yet the L-QALY score
is lower in the second case. This difference reflects
the difference in the timing of resolution of the uncer-
tainties. In the no surgery scenario, Jack lives with
the looming risk of the aneurysm rupturing at age 60
and, as shown in Figure 15, this leads him to increase
consumption before age 60. Subsequently, if he winds
up surviving past 60, he must consume less in the
remaining years. The lack of knowledge thus results
in an ex post suboptimal allocation of consumption
and a “delay premium” of the form discussed in §3.2.
Overall, the analysis shows that the expected

L-QALY scores are close for the two alternatives, with
the surgery score (29.76) being slightly higher than the
expected score without surgery (29.54). In monetary

terms, we find that Jack should be willing to pay up to
$35,141 for surgery, meaning the expected utility asso-
ciated with having surgery and paying an additional
$35,141 for the procedure yields the same expected
utility as the no surgery alternative. Jack should be
willing to pay up to $234,657 for a “magical” cure for
the aneurysm that eliminated the future risks with-
out imposing the risks of the surgical procedure; this
payment equates the derived utility with no aneurysm
risks with the utility given by the surgical procedure.

5.2. Knee Surgery Example
To illustrate the use of the small-risk approximation,
we consider another simple example involving Jack.
Suppose that Jack is 30 and has injured his knee and is

Figure 15 Consumption Streams in the Aneurysm Example
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considering surgery to repair it. Surgery is not neces-
sary, but, without it, Jack will occasionally experience
pain and will be unable to participate in certain activi-
ties (running, skiing, etc.) that he enjoys. He estimates
that this condition, if untreated, will reduce his future
health quality (qt� by 1.5% per year for the rest of his
life. If he has surgery, there is a 0.15 probability that
surgery will be unsuccessful and he will be slightly
worse off after the surgery than before and experience
a 2% per year reduction in health quality. There is also
a 0.0001 probability of immediate death from compli-
cations of surgery. Finally, there is a 0.8499 probability
that the procedure will be successful and will restore
him to full health. Surgery will cost Jack $15,000 (it is
not covered by his insurance) and will require him
to take a medical leave and forgo $5,000 in salary. In
addition, recovery from surgery will result in a 5%
reduction in health quality in the current year. Should
Jack have surgery?
The stakes are significant in this example, but small

enough to allow us to treat the problem using the
small-risk approximations. This approximate analysis
is conducted in monetary units and is displayed in
Table 1. The direct costs of surgery and forgone salary
total $20,000. The cost of recovery is a 5% reduction
of health quality for one year and may be approxi-
mated as 5% of the current small-loss value of health,
which as discussed in §4.3 is $1,859 per 1% reduc-
tion in health; the cost of recovery is thus approx-
imately $9,294. The long-term health effects will be
measured from a reference point of perfect health
(qt = 1) and appear as costs in Table 1. The current
small-risk value of death was given in §4.2 as $8.263
per micromort or $8,262,665 per unit of probability.
The long-term health effects are assumed to be per-
manent and can thus be approximated as percentages
of this small-risk value of life. The equivalent cost of
a 1.5% reduction in health quality without surgery
is 1.5% × $8,262,665 = $123,940. The total (expected)
equivalent cost with surgery is $54,786, so the net ben-
efit of surgery is $69,305.
We can conduct the same approximate analysis

in L-QALY terms and find that surgery’s expected

Table 1 Costs and Benefits of Jack’s Surgery Decision

Direct Long-term Total Contribution to
Probability Scenario costs ($) Recovery ($) health costs ($) cost ($) expected cost ($)

0.8499 Successful surgery 20�000 9�294 0 29�294 24�897
(no reduction in health)

0.1500 Not successful 20�000 9�294 165�253 194�547 29�182
(2% reduction in health)

0.0001 Surgical death 8�262�665 8�262�665 826
(100% reduction in health)

Expected total cost 54�905

No surgery 0 0 123�940 123�940
(1.5% reduction in health)

L-QALY score is 41.896 and no surgery is 41.544.
Given the marginal value of an L-QALY of $195,878
per L-QALY, the difference 0.352 in L-QALY scores
is equivalent to the difference in expected costs of
$69,305. The exact L-QALY scores differ from these
approximate ones by less than 0.001.

6. Conclusions and Discussion
The primary contribution of this paper is the develop-
ment and analysis of a tractable model that allows one
to study tradeoffs between income and health risks
under uncertainty. The model incorporates QALY-like
preferences for health states and takes into account
the DM’s ability to adjust consumption in response
to changes in expectations about future health status
and income. We can use the model to analyze major
life decisions (e.g., should I have surgery? should I
retire?) in much the same way that H-QALY mod-
els are currently used. The small-risk values of life
and small-loss value of health generated by the model
allow one to easily evaluate small stakes decisions
requiring tradeoffs between financial and health out-
comes, as illustrated in the example in §5.2. While
our focus has been on individual decision making,
the model can also be used for cost-effectiveness anal-
ysis and cost-benefit analysis. In a cost-effectiveness
analysis, instead of considering the ratios of H-QALYs
gained per dollar spent, one might consider L-QALYs
gained per dollar spent and better capture the finan-
cial implications of health interventions. In a cost-
benefit analysis, one might measure the total value of
some policy or intervention by considering the sum
of the WTPs given by this model for the affected
population.
The main difference between our model and the

standard H-QALY model is its ability to integrate
financial tradeoffs and consumption decisions into
the analysis. This leads to some qualitative differ-
ences in the evaluations. In the standard H-QALY
model of the form of Equation (1), all health-state
indices are weighted equally. Many have argued that
future health indices in H-QALY models should be
discounted at the same rate used to discount costs (see
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Gold et al. 1996 for discussion). In our model “dis-
counting” of health indices is endogenously deter-
mined by the optimal consumption levels as the
health indices are weighted by the consumption util-
ities ut�ct�. The resulting pattern of discounting does
not fit that given by any constant discount rate. For
example, examining the optimal consumption streams
of Figures 4 and 15, we see that the optimal consump-
tion strategies call for increasing consumption over
the early years, which leads to increasing weights on
the early health indices. However, health-state indices
in later years receive less weight because the opti-
mal consumption strategies call for lower consump-
tion levels in later years, recognizing that one may
not live that long. Howard’s model (Howard 1980,
1984) considers tradeoffs between financial and health
objectives, but, like the standard H-QALY model, it
weighs all health indices equally as it assumes that
the overall utility is a function of the DM’s constant
annual consumption and the H-QALY score.
There are many other topics that should be ex-

plored in future research. First, we need to address
assessment issues. We believe that the health-state
indices used in H-QALY studies can also be used
to specify health-state indices in our framework. For
example, Torrance and coauthors (Torrance et al. 1982,
Furlong et al. 2001) have developed a health util-
ities index that is used in many H-QALY studies.
However, we would need to verify the use of such
utilities as a multiplier on consumption utilities as
they are used in this framework. The other util-
ity parameters can be assessed using standard util-
ity assessment techniques (e.g., Keeney and Raiffa
1976). Alternatively, one might develop new tech-
niques specifically for this application. In either case,
given the sensitivity of the results to these parame-
ters, we recommend using consistency checks in the
assessment process. Furthermore, the application of
the model should include thorough sensitivity analy-
ses and careful scrutiny of the results.
The additive-exponential utility function that we

have used here is perhaps best viewed as approxima-
tion of more realistic utility functions. While this func-
tional form greatly simplifies computation, it would
be useful to the study other utility functions of the
form of (2) with a different or general consump-
tion utility function. Alternatively, one might study
forms that are additive across periods but do not
assume that consumption and health-state index are
multiplicative within each period. While we would
expect many of the same qualitative properties of the
additive-exponential model (e.g., WTAs and WTPs
are equal for small risks) to hold for more general
models, we do not expect the consumption opti-
mization problem to decompose as it does here. We
would also like to better understand the implications
of imposing borrowing and consumption constraints

and bequest utilities. Given the computational bene-
fits of the simple unconstrained additive-exponential
utility, we should also study how this form approxi-
mates results for more complex utility functions and
financial models.
Perhaps the best way to address the assessment and

approximation questions and understand the differ-
ence in results between L-QALY and H-QALY-based
analyses is to apply the model developed here to
problems that have already been studied carefully
using H-QALY models. For example, Weinstein and
coauthors used a Markov model of coronary heart
disease to study the value of exercise, cholesterol
treatments, and/or smoking cessation in a QALY
framework (see e.g., Weinstein et al. 1987, Prosser
et al. 2000). Alternatively, we might consider the full
dynamic model of aneurysm treatment decisions in
Johnston et al. (1999). Applying our model in these
problems, we could examine the full cost and benefits
and study the DM’s WTP for such interventions. We
might find, for example, that dietary changes to lower
cholesterol are worth, say, $500 or $50,000 to the DM.
In the former case, the DM may reach the conclusion
that such an intervention is not worthwhile (I won’t
give up eating hamburgers for $500!). In the latter
case, however, the DM might understand the value of
the intervention and have the conviction to maintain
the dietary regimen. Considering these kinds of exam-
ples should help us to better understand the compu-
tational and assessment burdens associated with the
model as well the potential benefits associated with
its use.
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Appendix 1. Deriving the First-Order Conditions
To derive the first-order conditions (5), we write the opti-
mization problem (4) in a recursive dynamic programming
form. Let �xt = ��xt� � � � � �xT � and health-index stream �qt =
�q̃t� � � � � q̃T � denote the income and health-index streams
beginning time t and let �xt +wt denote the income stream
��xt + wt� � � � � �xT � that adds an initial sum wt to the first
period; this wt will represent accumulated wealth or sav-
ings available at time t. We let �t��xt + wt� �qt� denote a
derived utility function that includes only period utilities
after period t. The DM’s consumption optimization problem
can then be written as

�t��xt +wt� �qt�
=max

ct
$qtut�ct�+Et ��t+1��xt+1 + �wt + xt − ct��1+ r�� �qt+1��%

for t < T and (A1)

�T ��xT +wT � �qT �= qT uT �xT +wT �� (A2)

Here the terminal condition (A2) captures the require-
ment that the DM must have zero savings at time T . The
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first-order conditions for the period-t maximization prob-
lem (A1) (differentiating with respect to ct and setting equal
to zero) imply that the optimal consumption choice c∗t
satisfies

qtu
′
t�c

∗
t �= �1+ r�Et ��′

t+1��xt+1 + �wt + xt − c∗t ��1+ r�� �qt+1���
(A3)

where u′t is the derivative of the consumption utility and
�′
t is the partial derivative of �t��xt + wt� �qt� with respect

to wt . Thus, the marginal utility associated period-t con-
sumption is selected to match the expected marginal utility
of period-t wealth. Now let us calculate �′

t directly, using
the chain rule:

�′
t��xt+wt� �qt�
= ��

�wt

={
qtu

′
t�c

∗
t �

−�1+r�Et ��′
t+1��xt+1+�wt+xt−c∗t ��1+r�� �qt+1��

} �c∗t
�wt

+�1+r�Et ��′
t+1��xt+1+�wt+xt−c∗t ��1+r�� �qt+1���

The bracketed ({ }) term here is zero by (A3); therefore, tak-
ing w∗

t+1 = �wt + xt − c∗t ��1+ r�, we have

�′
t��xt +wt� �qt�= �1+ r�Et ��′

t+1��xt+1 +w∗
t+1� �qt+1��� (A4)

This with (A3) implies

�′
t��xt +wt� �qt�= qtu′t�c∗t �� (A5)

Applying (A4) recursively, we have

�1+ r�t�′
t��xt +wt� �qt�= �1+ r��Et ��′

� ��x� +w∗
� � �q� �� (A6)

for all t and � > t. Substituting (A5) into (A6), we arrive
at (5). Equation (A6) also shows that, absent changes in
expectations about future income or health-index streams
��xt� �qt�, marginal utility �′

t decreases at the interest rate r ,
or, equivalently as discussed in §4.1, the marginal value of
an L-QALY given as 1/�′

t , increases at the interest rate r .

Appendix 2. Extending Smith’s (1998) Procedure for
Valuing Income Streams
In this appendix, we discuss the use of the results of Smith
(1998) to evaluate income streams. That paper did not con-
sider uncertainty about health states and considered utility
functions of the form

T∑
t=0
kt exp�−ct/�t� (A7)

rather than the form of Equation (7). However, if we assume
that the new income stream �xadj to be evaluated is inde-
pendent of the health-index stream �q and prior income
stream �xold, the more complex form (7) can be reduced to the
form of Equation (A7) for the purposes of evaluating �xadj.
Suppose that we write c̃new = c̃old + cadj and consider the
expected utility with the utility model (7):

E�U �c̃old + cadj� �q�� =
T∑
t=0
kt�tE�q̃t�

−
T∑
t=0
�ktE�q̃t exp�−c̃old/�t��� ·E�exp�−c̃adj/�t��� (A8)

Here, we have used the independence assumption to
factor the expectations in the second summation: indepen-
dence in the income streams �xold and �xadj lead to indepen-

dent consumption streams c̃old and cadj. When evaluating
the incremental income stream �xadj, the first term in (A8) is
simply a constant and can be dropped. If we take the kts
in (A7) to be the �ktE�q̃t exp�−c̃old/�t��� terms from (A8), we
see that the expected utility in (A8) can be reduced to the
consideration of the utility function (A7). Thus, we can use
the procedures and results of Smith (1998) to evaluate inde-
pendent, incremental income streams in the more complex
setting of this paper.
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