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Abstract

The majority of COVID-19 vaccines currently available are typically administered in two doses, with

a prescribed number of weeks separating the two doses. Because of uncertainty in vaccine supply, many

vaccination managers have saved doses in inventory to ensure on-time second doses. However, saving

doses slows the administration of first doses and potentially delays completing the vaccination of the

target population. In this paper, we use a mathematical model to explore the performance of policies to

manage the administration of two-dose vaccines given supply uncertainty. The mathematical structure

of the model suggests simple “set-aside” policies that prioritize second doses and set aside some vaccine

for second doses that are due in the coming weeks; any remaining vaccine is given as first doses. We can

determine good set-aside policies using a simple simulation model. In our numerical experiments, the

performance of the recommended set-aside policy is close to a bound generated by the optimal allocation

given perfect information about vaccine supply; thus the set-aside policies are nearly optimal given

uncertainty in supply. We also find that a “lockbox” policy that ensures no second doses will be delayed

appears to be overly conservative. We also show that set-aside policies perform well when vaccination

supply is increasing and when two two-dose vaccines are available.
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1. Introduction

The majority of COVID-19 vaccines administered worldwide require two doses, with a prescribed number of

weeks between doses (CDC, 2021a). In the U.S., the CDC recommends that two doses of the Pfizer-BioNTech

vaccine be administered three weeks apart (CDC, 2021b) and the Moderna vaccine doses be administered

four weeks apart (CDC, 2021c). Uncertainty in vaccine supplies, however, can lead to temporary shortages

and the risk of delays to second doses. Early in the U.S. vaccine rollout, public health officials had significant

concerns about missed second doses (Choi and Renault, 2021; AP, 2021). On-time administration of second

doses continues to be a problem as vaccines are being rolled out throughout the world, e.g., in Europe

(Appuzzo et al., 2021), Brazil (Ionova, 2021), Chile (Reuters, 2021) and Nepal (Callamard, 2021).

Our interest in this problem was motivated by the experience of the fourth author (Gilbert), who is

the Chief Medical Officer for the Catholic Medical Center (CMC) in Manchester, New Hampshire. The

CMC was responsible for vaccinating approximately 3,000 people during Phase 1a of the vaccine rollout,

when doses were administered to health workers and older adults in residential care settings. The CMC

was given an initial supply of 365 doses of the Pfizer vaccine in December and 840 doses of the Moderna

vaccine in January and was uncertain about future vaccine supply. Given that the vaccine supply is uncertain

and on-time administration of the second dose is recommended, the CMC thought it may be good to hold

some vaccine in inventory for second doses. However, holding back large amounts of vaccine slows the

administration of first doses and may increase the time required to vaccinate the target population.

To get a sense of the magnitude of the variation in vaccine supplies, Figure 1(a) shows the deliveries

to the CMC during Phase 1a of the vaccination process. Figure 1(b) shows vaccine deliveries to the state

of Massachusetts during the early phases of the vaccination process (Mass Department of Public Health,

2021). Uncertainty in supply stems from many sources including issues in the manufacturing processes (Deo

and Corbett, 2009), national and state policies changing over time, weather conditions (Harper, 2021), the

availability of “low dead space” syringes to extract extra doses from vials of vaccine (O’Donnell, 2021),

among many other things.

To study the tradeoff between ensuring on-time second doses and getting “shots in arms,” we developed

a model of a two-dose vaccination process which is managed by, for example, a hospital, a state, or a federal

government. Each week an uncertain supply of vaccine is delivered and the vaccine manager must decide

how many doses to allocate to first or second doses and how many to save for later use. The goal is to

vaccinate the target population as quickly as possible while also minimizing delays in second doses. The

model has a nice structure (specifically, L\-convexity) and the optimal policies have a “set aside” form that

hold inventory for second doses that are due in coming weeks. Simplified versions of these policies are easy

to implement and can be tuned given different process parameters; the policies perform well in our numerical

experiments.

In the U.S., the decision-making responsibility for allocating vaccines to first or second doses varied over

time and across states. In the early stages, managers at medical centers (such as the CMC) and at the state
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(a) Deliveries to the Catholic Medical Center (b) Deliveries to Massachusetts

Figure 1: Vaccine deliveries during the early part of the COVID-19 vaccination process

level were concerned about missing second doses and frequently held inventory to ensure adequate future

supply. In late January 2021, for example, the state of Maryland was holding 208,000 doses (Frost, 2021;

Miller and Cohn, 2021). Meanwhile, the federal government was also storing inventory at the national level

(Thomas, 2020; Edwards, 2021). According to Tuite et al. (2021), the initial U.S. policy was to hold one

dose in inventory for every first dose given to be distributed later as a second dose; we will call this the

lockbox policy. In early February 2021, the Biden administration assured states that second doses would

always be available when needed and asked them not to hold inventory (Klein, 2021). Thus, though the

locus of responsibility varied during the COVID-19 vaccine rollout, the question of whether to set aside some

vaccine for second doses remained as long as the vaccination process was constrained by supply.

In §2, we review the related literature and, in §3, we describe the model and our proposed allocation

policies. In §4, we describe numerical experiments that explore how these policies perform given various

levels of supply uncertainty; we also test the model over a wide range of alternative scenarios. In §5, we offer

a brief conclusion. To make the paper as accessible as possible to practitioners, the formal description and

analysis of the model are presented in the appendix.

Though our discussion focuses on COVID-19 vaccinces, the challenge of managing multi-dose vaccines

arises elsewhere. For example, unanticipated shortages of the shingles vaccine Shingrix led to concerns about

second-dose delays when it was first introduced (Cimons, 2018). Of course, there may be other situations –

e.g., vaccines for other viruses – where we will face the same issues in the future.

2. Literature Review

In our model, the goals are to minimize the average time to complete the two-dose vaccine regimen and

to deliver second doses close to the recommended time; we show that this leads to an allocation policy

that prioritizes second doses over first doses. While this is consistent with current practices in the U.S.,
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there is an ongoing debate over this policy. Barnabas and Wald (2021), Bieniasz (2021), and Kadire et al.

(2021) consider the public health trade-off between prioritizing inoculation of a greater proportion of the

population with a single dose vs. fully vaccinating fewer individuals with the recommended two doses by

intentionally extending the time between the first and second doses, as has been official policy in the UK.

Paltiel et al. (2021) and Moghadas et al. (2021) formulate COVID-19 transmission and vaccination models

to study whether first or second doses should be prioritized. The answer to this prioritization question

depends on the degree and duration of partial protection against both severe disease and viral transmission

that is afforded by the first dose and is complicated by the circulation of novel viral variants that may be

suboptimally blocked by available vaccines. We do not model disease dynamics and focus on developing an

inventory policy to optimize the completion of a recommended two-dose regimen. We also do not consider

how to prioritize people within or among target populations; this is an important area of ongoing research

that touches on ethics, epidemiology, and optimization (Enayati and Özaltın, 2020; Chen et al., 2020; Persad

et al., 2020; Chen et al., 2021, Foy et al., 2021). Dai and Song (2021) describe how management science

techniques may be applied to study a number of issues related to efficiency and equity of the vaccine rollout.

Similarly, we do not consider the “demand” for the vaccine and issues related to vaccine hesitancy. In essence,

given an ordered queue of people who are willing to be vaccinated, our problem is to work through the queue

as fast as possible while minimizing delays in second doses given uncertainty in the vaccine supply.

Mak et al. (2021) and Tuite et al. (2021) combine deterministic models of vaccine supply with

epidemiological models to explore the benefits and costs of holding inventory for second doses. These

papers compare the lockbox policy with specific alternatives: Mak et al. (2021) examine the implications of

not holding inventory at all and of stretching the time period between doses, while Tuite et al. (2021) varies

the percentage of doses held in inventory according to a fixed schedule. In our analysis, we describe optimal

inventory policies given uncertain (rather than deterministic) supply and suggest easy-to-implement

near-optimal policies that are typically somewhere between holding no inventory and the lockbox policy.

Within the operations management literature, our vaccine inventory problem has some similarity to

inventory problems with multiple demand classes and rationing (e.g., Deshpande et al., 2003; Koçağa and Şen,

2007): people requiring first and second doses can be seen as two customer classes. In the vaccine problem,

however, the inventory model is complicated by the fact that individual second doses are linked to individual

first doses. Our vaccine inventory problem is also similar in some ways to problems in patient scheduling

(e.g., Green and Savin, 2008; Liu et al., 2010). However, our objective – rapid and effective vaccination of

a population – is fundamentally different from the objectives of traditional patient scheduling models. Our

model also bears some similarity to inventory models with lead times and/or perishable inventory and we

analyze the model using L\-convexity techniques as in this literature (see, e.g., Zipkin, 2008 and Chen et al.,

2014). However, the structure of the vaccine model is different from those in the lost-sales or perishable

goods literatures. We believe that our model represents a novel contribution to the operations management

literature with interesting theoretical properties as well as immediate practical applications.
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3. The Model and Proposed Policies

Our model considers vaccine supply and distribution on a weekly basis. Each week a random number of doses

arrive and these doses, as well as any doses currently in inventory, may be allocated to second doses, allocated

to first doses, or saved in inventory for later use. We assume that everyone who receives a first dose will

return to receive a second dose and that nobody joins or leaves the target population during the vaccination

process. For specificity, our discussion will focus on the Moderna vaccine whose doses are prescribed to

be four weeks apart. Our simulations will initially assume that the weekly supplies are independent and

identically distributed, but the model and framework can be used with a variety of supply forecast models.

In §4.4.1, for example, we consider a case when the mean of the supply disitribution is increasing over time.

We formally describe the model in the Appendix, both as difference equations in Appendix §A and a

stochastic dynamic program (DP) in Appendix §B. The former is useful for simulation studies and the latter

is used to characterize optimal policies.

3.1 Objectives

We consider two performance metrics: (i) the average time until people receive their second dose (average

time to completion) and (ii) the average delay in administering second doses beyond their due date, i.e.,

four weeks after the first dose (average delay in second dose). We combine these two metrics into a single

objective function (penalized average time to completion) where each week of second-dose delay is multiplied

by a penalty parameter c ≥ 0:

(penalized average time to completion) = (1)

(average time to completion) + c× (average delay in second dose)

If c = 0, there is no penalty for delaying the second dose. The manager’s objective is to minimize the

expected value of this combined objective.

Another way to formulate the objective is to consider the “penalized average vaccination efficacy” in

the target population over time. Suppose that an individual receives a benefit (i.e., in preventing infection

and/or severe disease) of β1 after one dose and an additional benefit of β2 upon completing the second dose,

with a penalty κ associated with each week of delay in the second dose. The population efficacy in a given

period is then

(population efficacy) = β1 × (number of people with first doses)

+ β2 × (number of people with second doses) (2)

− κ× (number of people with delayed second doses)
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These population efficacies for each period are then averaged over the course of the vaccination process. This

objective turns out to be equivalent to that of (1) if we normalize the coefficients in (2) so that β1 + β2 = 1

and take c = (κ− β1) (see §A.3). This alternative objective provides a way to interpret c as the net cost of

delaying a second dose given as the difference between the cost of delay κ (reflecting psychological concerns

or long-term loss in efficacy) less the benefit β1 associated with partial vaccination.

Although the DP model is well defined whenever c > −1, in our analysis and experiments, we will focus

on the case where c ≥ 0 and show that it is optimal to prioritize second doses in this case. This priority is

consistent with the policy for the Moderna and Pfizer vaccines in the U.S., though other countries (notably

the U.K. and Canada) have prioritized first doses. Note, however, that a value c < 0 does not necessarily

imply it is optimal to prioritize first doses; for such c, the optimal priority may depend on the details of the

state of the system. For example, we have identified some examples where c = −0.5 still leads to prioritizing

second doses and others where c just below zero leads to prioritizing first doses.

In practice, the appropriate penalty c may be difficult to choose with confidence or precision. In our

analysis, we will consider a range of values for c and a variety of amounts to set aside. Given results for a

range of policies, a decision-maker might consider the potential delays experienced with particular policies

(e.g., by considering the results in Figure 4 below) and ask if they are comfortable with these tradeoffs: e.g.,

would it be acceptable if, say, people have 40% (or 10%) chance of experiencing a delay of one or two weeks

in getting their second dose if it means vaccinating people one week earlier on average? Such concerns might

guide their choice of amounts to set-aside (x in Figure 4) rather than optimizing for a given penalty c.

3.2 The Structure of Optimal Policies

Unfortunately, the DP model for this problem is difficult to solve to optimality because the state space is

quite large. The cost-to-go function and optimal policy will depend on: the number of doses of vaccine

supplied in the given week plus the number of vaccines in inventory; the number of people currently due (or

overdue) for their second dose; the number of people who received first doses in each of the previous three

weeks (who will be due for their second dose in the weeks ahead); and the number of people in the target

population who have not yet received their first dose.

Though the DP is difficult to solve to optimality, the optimal policies have a nice structure that we can

use to guide the choice of simple policies that are easy to evaluate and implement. In particular, we show in

the appendix that when the penalty c ≥ 0, an optimal policy will:

(i) First, administer vaccines to those who are due or overdue for their second dose, up to the available

inventory (after receiving the week’s supply).

(ii) Then, administer some or all of the remaining inventory as first doses to those who need it. The number

of first doses given is decreasing in the number of doses due in the coming weeks and decreasingly so:

that is, if we increase the number of second doses due in week j (0 ≤ j ≤ 3) by, say, 100, it is optimal
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to decrease the number of first doses administered by some number n, where n is less than 100 and n

is decreasing in j.

These policies can be interpreted as prioritizing second doses and setting aside some of the remaining

inventory (if any) for future second doses. The optimal setaside varies with the number of doses due and

the setasides are greater for doses due sooner. Moreover, the optimal setasides and number of first doses

given are both (weakly) increasing in the amount of inventory on hand.

Given the complexity of finding truly optimal policies, we focus on simplified versions of these policies that

we describe next. In §4, we evaluate these policies in numerical experiments and compare the performance

of these policies with a theoretical performance bound provided by a policy that allocates vaccines optimally

given perfect information about vaccine supply; we describe this perfect information policy in §3.4.

3.3 Set-aside Policies

The simplified set-aside policies we study mimic the features of an optimal policy for the DP just discussed.

In these policies, we first administer second doses to people who are currently due or overdue, prioritizing

those who are most overdue. If doses remain after administering second doses, we calculate the number of

first doses administered after setting aside doses for future use. The amounts set aside are determined from

set-aside fractions w1, w2, w3, w4 where wi indicates the fraction of second doses coming due in i weeks that

are reserved for future use. For example, if 60, 40, and 50 doses are coming due in the next three weeks and

(w1, w2, w3, w4) = (1, 1, 0.5, 0), then we reserve 1 × 60 + 1 × 40 + 0.5 × 50 = 125 doses if they are available

and use the remainder, if any, as first doses.

The number of doses reserved when w4 > 0 is somewhat more involved because the number of doses due

in four weeks depends on the number of first doses given in the current week, which itself depends on w4. If

w4 = 1, then half of all leftover doses (after accounting for set-asides for earlier weeks) are administered as

first doses and the rest are reserved. More generally, if Dt is the number of doses available after administering

second doses, then under the set-aside policy the number of first doses administered in period t is,

1

1 + w4
(Dt − w1v1 − w2v2 − w3v3)

+
(3)

where vi denotes the number of second doses due in i weeks and (x)
+

= max (x, 0).1 If there are fewer than

this many people who need their first dose, we give first doses to all those who have not yet received their

first dose. Any vaccines remaining after these first and second doses are administered are held in inventory

for future use. Following the structure of the optimal policy, we assume the set-aside fractions are between

0% and 100% and decreasing, w1 ≥ w2 ≥ w3 ≥ w4, as it is more important to set aside vaccine for second

doses that are due sooner.

1If f is the fraction of the doses available to be administered as first doses, we want (1 − f) = w4f (i.e., doses remaining =
w4×doses given) which leads to f = 1/(1 + w4).
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When (w1, w2, w3, w4) = (1, 1, 1, 1), a second dose is held in inventory for every first dose given and no

second doses will be delayed. This is equivalent to dividing every vaccine delivery in half, with one half

administered as first doses and the other half “locked away” for second doses. As mentioned earlier, we call

this special case of the set-aside policy the lockbox policy.

Note that the optimal policies need not correspond to constant set-aside fractions. For example, if 10

second doses are due next week, it may be optimal to set aside nothing (0%) but, if 100 are due next week,

it may be optimal to set aside 80 doses (80%) for future use. Moreover, the amounts set aside (0 and 80 in

this example) in an optimal policy may vary depending on how many doses are due in two or three weeks.

The optimal policies may thus be quite complex, not only to calculate but also to implement.

To further simplify our discussion and analysis, we will focus on policies that correspond to a given

number of weeks (x) of doses to set aside: x = 0 corresponds to set-aside fractions (0, 0, 0, 0), x = 1 to

(1, 0, 0, 0), x = 2 to (1, 1, 0, 0), and so on up to x = 4 which is the lockbox policy (1, 1, 1, 1). We will

also consider fractional policies where x = 0.5 corresponds to (0.5, 0, 0, 0), x = 1.5 to (1, 0.5, 0, 0), and so

on. When choosing set-aside policies, we will restrict our search to the one-dimensional class of policies

of this form. Specifically, we will consider half-step increments in the number of weeks set-aside, taking

x = 0, 0.5, 1, . . . , 4.2

3.4 Perfect Information Policies

To establish a lower bound on the performance of an optimal policy, we will consider a model that

optimizes the allocation of vaccines given perfect information about the supply of vaccines, i.e., an

“information relaxation” performance bound (Brown et al., 2010). To determine this performance bound,

for each simulated scenario of week-by-week vaccine supplies, we choose optimal dose allocations for all

periods under the assumption that all supplies are known with certainty. Given the information about the

future doses, this inner optimization problem is deterministic and can be formulated as a linear program

that is described in Appendix A.2. These perfect information policies cannot be implemented in practice

(because the vaccine supply is actually uncertain) but their performance provides a bound on the

performance of any feasible policy given uncertainty about the vaccine supply: the allocations chosen by

the inner optimization problem could match that of an optimal policy given uncertain supplies or could

deviate to improve performance. This perfect information bound also provides a bound on the performance

that would be obtainable with better information about future supplies. These performance bounds likely

could be improved by incorporating a penalty as discussed in Brown et al. (2010), but we will consider only

the simple perfect information bound.

2In our experiments, we also considered several other policies including a “hold up to” policy that is based on the “order up to”
policies that are common in inventory settings. In the hold-up-to policy, we first administer second doses to people who are
overdue or due within the current week. Then, after administering second doses, we reserve up to a fixed number of remaining
doses q̄ for future use. Any remaining doses (i.e., above q̄) are used for first doses. The target inventory level q̄ was optimized
in our experiments. These hold-up-to policies (and others we considered) did not perform as well as the set-aside policies and
will not be discussed here.
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Figure 2: Supply distributions for numerical experiments

4. Numerical Experiments

In our numerical experiments, we will focus on a standardized population of 1,000 people to be vaccinated

with the Moderna vaccine with four weeks recommended between doses. We will initially assume that

vaccine supplies are independent from week to week and consider three different distributions for the

supply, all rectified normal distributions meaning any negative observations are moved to zero (rectified).

The distributions all have mean equal to 100 (after rectification) and standard deviations of 25, 50, and 75

(again after rectification), representing low, medium, and high uncertainty cases; see Figure 2. These

distributions have a probabilities of zero supply equal to 0.00003, 0.0259, and 0.1313, respectively. As a

point of comparison, the Pfizer and Moderna deliveries to the CMC shown in Figure 1(a) had coefficients

of variation (CVs) of 0.99 and 0.93 (respectively) and the deliveries to Massachusetts in Figure 1(b) had

CVs of 0.49 and 0.33. We evaluate the proposed policies using Monte Carlo simulations with 100,000 trials.

In this section, we first study the key tradeoff between reducing the average completion time and the

average delay in second doses using set-aside policies. We then consider optimal set-aside policies for a range

of penalties for delayed second doses and compare the performance of these policies to the perfect information

bound. Next, we consider the uncertainty in these performance measures, reflecting the uncertainty in the

vaccine supply. Finally, we study how the results change with alternative assumptions.

4.1 The Key Tradeoff

Figure 3 shows how the expected average time to completion changes as more vaccine doses are held back

under the set-aside policy. Here we see that the lockbox policy (with setaside x=4) is quite conservative,

delaying the average completion time by more than a week compared to the set-aside policies that reserve

two or fewer weeks for future use. In Section 4.2 we will discuss the perhaps surprising fact that the expected

average completion time, given high uncertainty, is longer when we hold no inventory (x = 0) than when we

hold some inventory (x = 0.5). We also see the value of reducing the standard deviation of vaccine supplies:
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Figure 3: Average time to completion under set-aside policies

in the low uncertainty scenario, the average completion time is substantially less when no inventory is set

aside. Note that the values shown in Figure 3 are the estimated expected average completion times based

on the Monte Carlo simulation; we will discuss the uncertainty in these average completion times in §4.3

below. (The mean standard errors associated with these estimates due to simulation error are all less than

0.0065 weeks.)

Figure 4 shows the cost of holding little inventory: potential delays for second doses. While the lockbox

policies have no second-dose delays, if we set aside no inventory for future doses (i.e., take x = 0) second

doses are expected to be delayed by approximately 0.9 weeks on average in the high uncertainty case and

approximately 0.2 weeks in the low uncertainty case; see Figure 4a. Focusing on the high uncertainty case,

in Figure 4b we see that when no doses are set aside (x = 0) approximately 45% of people experience some

delay in getting their second dose: 23% experience a delay of one week; 12% experience a delay of two weeks;

6% experience a delay of 3 weeks; and 5% experience a delay of 4 weeks or more. Recall that the probability

of receiving zero doses in a given week is 13% in the high uncertainty case. When holding zero inventory,

weeks with zero supply will result in the delay of second doses if second doses are due that week. Following a

week with zero supply, the vaccination process can get further behind if later vaccine supplies are insufficient

to cover those who are overdue for their second dose, let alone those who are currently due. Increasing the

amount of vaccine set-aside (x) reduces the frequency and severity of these delays.

4.2 Minimizing the Penalized Average Time to Completion

We now consider the set-aside policies that minimize the penalized average completion time (1). Figure 5

shows the penalized average completion time as the set-aside parameter x varies, with penalty c = 1. Here we

see that in the high uncertainty case, the penalized average time to completion is minimized with 1.5 weeks

set aside; in the middle and low uncertainty cases, 0.5 weeks set aside is optimal. Figure 6 shows how the
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(a) Average delay in second doses (b) Duration of delays in high uncertainty case

Figure 4: Delays in second dose for set-aside policies

Figure 5: Average penalized completion time for
varying set-aside quantities with c = 1

penalized time to completion changes as c varies from 0 to 3 for the three uncertainty cases; the corresponding

optimal set-asides are shown in the figure. As c increases and we place more weight on delaying second doses,

it is optimal to set-aside more vaccine. We also see that the lockbox policies are too conservative, even with

penalties as high as c = 3. Moreover, the recommended set-asides appear to be robust: for example, in the

high uncertainty case, set-aside policies of 1.5 to 2 weeks are optimal or near-optimal over a wide range of

penalties c.

The fact that it is optimal to set aside some doses when c = 0 in the high uncertainty case is perhaps

surprising. In the c = 0 case, the combined objective reduces to the average completion time shown in

Figure 3. One might expect that if there is no penalty for delaying second doses, it would be best to hold

no inventory and administer first doses as fast as possible. The fact that it is optimal to set aside some

doses in this scenario is due to a smoothing effect of the set-aside policy: if all available doses are used for
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Figure 6: Penalized average completion times for optimized set-aside policies

first vaccinations and there is a week or more with zero or small supplies (a “supply gap”), second doses are

delayed during the gap. Having some doses in inventory before such a gap reduces the average completion

time because these doses can be used to administer second doses on time. Using these stored doses for first

doses instead would not reduce the average completion time because their corresponding second doses would

be delayed anyway. Such supply gaps are much rarer in the medium and low uncertainty cases and it is not

optimal to set aside any inventory if the penalty for delayed second doses is small (c = 0 or 0.5).

Figure 6 also shows the perfect information lower bounds which, as discussed in §3.4, maintain supply

variability but eliminate supply uncertainty. Here we see that eliminating uncertainty can be valuable though

the set-aside policy is close to the lower bound when c is small: with c = 0, the optimal set-aside policy is

within 0.3%, 0.8%, and 1.4% of the perfect information lower bound in the low, medium and high uncertainty

cases (respectively). With c = 1, the optimal set-aside policy is within 1.1%, 2.4%, and 3.9% in these same

cases. These bounds show the extent to which using a truly optimal policy (rather than a set-aside policy of

the form considered here) and/or improving supply forecasts can help improve performance. These results

suggest that there is relatively little to be gained by considering more sophisticated allocation policies when

there is little uncertainty or relatively small penalties for delaying second doses.

The structure of the optimal policy with perfect information is also interesting: if there is a positive cost

of second-dose delay (c > 0), the optimal allocations given perfect information about supplies ensure that

second doses are never delayed and the perfect information bound is insensitive to c. To see why, suppose

there is somebody whose second dose is delayed in period t, for the first time. We can delay this person’s

first dose (four periods earlier) by one period. Note that this is feasible: delaying this person’s dose increases

the end-of-period inventory in period t−4 by one, thereby creating an additional unit of inventory to provide
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(a) High uncertainty case doses (b) Low uncertainty case

Figure 7: Percentiles for average completion times

for that person’s first dose one period later. This shift of timing does not affect the inventory or supply of

doses in any later periods and thus reduces the penalty for the delayed second dose without changing the

average time to completion. Such a shift of first-dose timing can be repeated for everybody with a delayed

second dose and leads to a solution with the same average time to completion and no delayed second doses.

This argument implies that it is not the variation in the vaccine supply that leads to delayed second doses,

it is the uncertainty about the supply. Incorporating a “penalty” in the information relaxation bound could

“punish the decision maker” for using information in this way and lead to tighter bounds (see, e.g., Brown

et al., 2010).

4.3 Uncertainty in Average Completion Times

It is important to note that the results in Figures 3-6 focus on expected average completion times and

expected delays, averaging across possible supply scenarios. Figure 7 describes the uncertainty in the average

completion times by showing the 10th, 50th, and 90th percentiles of the completion time distributions for

varying numbers of weeks set aside; the average completion times are shown with solid lines and the penalized

average completion times (with c = 1) are shown with dashed lines.

In Figure 7, we see that uncertainty in the supply creates considerable uncertainty in the average

completion time. In the high uncertainty case, the 10th and 90th percentiles range from 10 to 16 weeks,

depending on the policies and objective. The ranges for the low uncertainty case are naturally much

narrower. The supply uncertainty affects the average completion times for different set-asides similarly as

the widths of the 10-90 ranges are approximately equal for all set-asides. However, the penalized average

completion times are somewhat more uncertain, particularly for lower set-asides in the high uncertainty

case. The wider uncertainty ranges reflect the additional uncertainty in delays in second doses due to the

supply uncertainty.
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4.4 Alternative Assumptions

In the numerical experiments above, the population size is 1,000 people and the supply distributions have

a rectified normal distributions with means 100 and standard deviations of 25, 50 and 75. The results and

recommendations of our analysis will be unchanged if we scale the size of the target population and the

mean and standard deviation of the supply in proportion. In practice, the vaccine allocations tend to be

scaled with the size of the target population, so our results have relevance over a broad range of population

sizes. Moreover, the recommendations appear to be not very sensitive to changes in the population size. For

example, if we double the population size to 2,000 without changing the supply distributions, the average

completion times roughly double (as one might expect) but the recommended number of weeks to set aside

shown in Figure 6 are unchanged.

4.4.1 Supply Growth

We also ran simulations that assume the vaccine supply is increasing over time. Specifically, we considered

the medium uncertainty scenario with mean 100 doses per week and standard deviation 50 and two growth

scenarios, with the (before rectification) mean growing at a rate of 5 or 10 doses per week. The results are

summarized in Figure 8. Here we see that the penalized average completion times decrease with increasing

supply, as one would expect. The optimal setasides (shown in text in the figure) are decreasing with growth

in supply because one can use growth in supply to help ensure the availability of future doses. Although we

could experiment with setasides that are changing over time in response to changes in the supply distribution,

the simple set-aside policies with growth are very close to the perfect information bounds indicating that

there is little to be gained by considering more sophisticated policies.

Figure 8: Penalized average completion times for optimized set-aside policies with growing supplies
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4.4.2 Two Vaccines

We next consider a scenario where there are two two-dose vaccines available, one with 4 weeks between

doses – like the Moderna vaccine – and the other with 3 weeks between doses – like the Pfizer vaccine –

both with uncertain supplies. We assume, as per CDC guidance, that the second dose must be the same

vaccine as the first dose. Though we will not describe or analyze a formal model for this case, we would

expect the optimal policies to have a similar structure as in the single vaccine case. Assuming a penalty

c ≥ 0, for each vaccine, we would prioritize second doses that are due, set aside some for future vaccinations

that are due, and use any remaining vaccine for first doses; those receiving first doses are drawn from a

common pool of unvaccinated people. Intuitively, the motivation for setting aside doses for second doses due

in the future is related to flows for a single vaccine. For most of the vaccination process, we would expect

the optimal setasides for one vaccine to be relatively insensitive to the number of doses due for the other

vaccine. Only when nearly the entire population has been vaccinated might the vaccine manager prefer to

administer the vaccine with the shorter time between doses or more doses in inventory in order to complete

the vaccination process sooner. Therefore, we would expect reasonably good performance from using fixed

set-aside quantities for each vaccine.

To test these policies, we ran a simulation where the Moderna and Pfizer vaccine supplies are allocated

according to set-aside policies, but to a shared target population. We consider high, medium and low

uncertainty supply distributions as described above, assuming both vaccines have the same distribution

and the draws are independent. We double the population to 2000 people to make the two-vaccine results

comparable to the earlier one-vaccine results, e.g., those in Figure 6. The results are summarized in Figure 9.

Here, for each supply distribution scenario, we found the optimal number of weeks to set aside for each vaccine

by jointly optimizing in the simulation; these optimal setasides (Pfizer/Moderna) are shown in the figure.

(There is little lost if we optimize independently.) Also shown are perfect information performance bounds

for the two-vaccine scenarios.

Qualitatively the results for the two-vaccine case in Figure 9 are quite similar to those for the one-vaccine

case in Figure 6, though the (penalized) average completion times are somewhat shorter in the two-vaccine

case because the time between doses for the Pfizer vaccine is less than that for the Moderna vaccine that

was considered in the one-vaccine case. As in the one-vaccine results, we see that when applying set-aside

policies with two vaccines, the optimal policies appear to be robust and nearly optimal (particularly with

small c or low uncertainty) whereas lockbox policies are clearly suboptimal.

4.4.3 Incorporating Second Dose “No Shows”

Finally, we also considered a simulation model that incorporated “no shows” for second doses; according to

news reports approximately 10% of people in the U.S. who receive a first Covid-19 vaccine dose fail to show

up for a second dose (McPhillips, 2021). In these simulations, we found that the set-aside policies perform

well in this setting and the qualitative conclusions remain unchanged. We also found that it is effective to
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Figure 9: Penalized average completion times for optimized set-aside policies with two vaccines

simply scale the set-aside quantities to take no-shows into account. For example, if 90% of those receiving a

first dose return for their second dose, it is reasonable to set aside 90% of the quantity one would if we were

to assume that 100% returned.

5. Conclusion

Our model of the two-dose vaccine rollout demonstrates how the optimal number of doses to hold in inventory

depends on the cost of delayed second doses and the uncertainty in vaccine supplies, as well as the forecasts

for future supplies. The formal analysis of the model shows that the optimal number of doses to set aside

increases with the number of second doses due in the coming weeks, with second doses due sooner having a

larger impacts on the optimal setaside than doses due later. We also prove that both the optimal setasides and

number of first doses to deliver within a period increase with the quantity of inventory available. We use these

insights to construct simple set-aside policies that can be calibrated using a simulation model. These heuristic

set-aside policies are very simple, requiring the manager to set aside vaccine for second doses due in the coming

weeks, without considering complex supply forecasts. Numerical experiments demonstrate that these simple

policies are near-optimal for a wide range of supply uncertainties, delay costs, and supply forecasts. A

lockbox policy that ensures no second doses will be delayed - a policy that was widely implemented for the

U.S. vaccine rollout - appears to be overly conservative.

While in the U.S. the primary limitation on COVID-19 vaccination rollout is now the lack of demand

for vaccines (due in part to vaccine hesitancy), vaccine supplies remain constrained and uncertain in many

other countries. The two-dose vaccine model developed here thus continues to be relevant for the current
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pandemic and may be relevant again in the future as we face other novel viruses or other diseases with new

multi-dose treatments and limited, unreliable supplies.

A. Appendix: Model Details

A.1 Model and Policy Definitions

Variable Definitions: To formally describe the model, we define the following variables:

P = number of people in the target population to be vaccinated

L = recommended number of weeks between first and second doses

T = model horizon (weeks)

t = week index (0 ≤ t ≤ T )

ãt = random number of vaccine doses arriving in week t

It = inventory of available doses available in week t, after vaccine arrival

Uit = number of people who have not received dose i, i = 1, 2 at start of week t

dt = number of second doses due at start of week t. This includes those who received first

doses L periods before, as well as overdue second doses.

vit = number of doses of dose i (i = 1, 2) administered at time t

All variables are nonnegative and we can take them to be either real numbers or restricted to integers; we will

assume they are real valued in our analysis and our numerical examples. We can assume any nonnegative

probability distribution for the weekly supplies ãt and these distribution can vary from week to week and be

dependent.

Difference Equations: To describe the dynamics of the model for use in simulation (and elsewhere), we define

difference equations for t ≥ 1. First define I0 = v2,0 = 0, U1,0 = U2,0 = P , and v1,t = 0 for t ≤ 0. For

1 ≤ t ≤ T :

It = It−1 + ãt − v1,t−1 − v2,t−1

U1t = U1,t−1 − v1,t−1

U2t = U2,t−1 − v2,t−1

dt =

 0 for t = 0, . . . , L− 1

dt−1 + v1,t−L − v2,t−1 otherwise

Objective: The objective is to minimize a weighted sum of two quantities, (i) the number of weeks spent by
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people without both doses (the time to completion), and (ii) the number of weeks of delayed second doses.

The second-dose delay is weighted by penalty c > −1:

T∑
t=1

U2t + c

T∑
t=1

(dt − v2t) .

In the body of the paper (e.g., in the numerical experiments), we normalize this objective by dividing by the

target population size P .

Set-aside Policy: Given set-aside fractions (w1, . . . , wL), the second and first doses are given by:

v2t = min (dt, It)

v1t = min

(
U1t,

1

1 + wL

(
It − v2t −

∑L−1

j=1
wjv1,t−(L−j)

)+
)
.

A.2 Optimization with Perfect Information

Given perfect information about vaccine supplies, the vaccine allocation problem can be formulated as a

linear program (LP) with decision variables v1t, v2t (0 ≤ t ≤ T ) representing the number of first and second

doses in each week. The objective is to minimize the penalized time to completion given as

min
{

(time to completion) + c× (delay in second dose)
}

= min

{
T−1∑
t=0

tv2t + c

T−1∑
t=0

dt

}
(A.1)

where dt is the number of delayed dosed in period t. We can write the objective directly in terms of the

doses given. First, note that the delayed doses in period t are equal to the cumulative number of first doses

given up to L periods previously, less the cumulative number of second doses given

dt =

t−L∑
τ=0

v1,t −
t∑

τ=0

v2t . (A.2)

Then the objective (A.1) can be rewritten as

min

{
T−1∑
t=0

tv2t + c

T−1∑
t=0

(
t−L∑
τ=0

v1,t −
t∑

τ=0

v2t

)}
(A.3)
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Let Ãt =
∑t−1
τ=0 ãτ denote the cumulative supply up to period t. The constraints for the LP can then be

written

t∑
τ=0

v1τ +

t∑
τ=0

v2τ ≤ Ãt for t = 0, . . . , T − 1

t∑
τ=0

v2t −
t−L∑
τ=0

v1,t ≤ 0 for t = 0, . . . , T − 1

T−1∑
t=0

v2,t = P

v1t, v2t ≥ 0 .

The first constraint requires cumulative doses administered to be less than or equal to cumulative supply.

The second requires cumulative second doses given to be less than or equal to the cumulative number of

first doses given up to L periods earlier or, equivalently using (A.2), dt ≥ 0. The third constraint requires

everyone to receive a second dose.

A.3 Equivalence of Objectives

Here we show that the original objective (A.1) is equivalent to the alternative objective discussed in §3.1.

This alternative objective is to maximize the average population efficacy over the course of the vaccination

period. Let Vit =
∑t
τ=0 viτ (i = 1, 2) denote the cumulative number of first and second doses given by period

t. Working with the total over time rather than the average, this alternative objective can be written as

max
{ T−1∑
t=0

(
β1 × (number of people with first doses in period t)

+ β2 × (number of people with second doses in period t)

− κ× (number of people with delayed second doses in period t)
)}

= max

{
β1

T−1∑
t=0

V1t + β2

T−1∑
t=0

V2t−κ
T−1∑
t=0

dt

}

= β1PL+ max

{
β1

T−1∑
t=0

V1,t−L + β2

T−1∑
t=0

V2t − κ
T−1∑
t=0

dt

}

= β1PL+ max

{
(β1 + β2)

T−1∑
t=0

V2t + β1

T−1∑
t=0

(V1,t−L − V2t)− κ
T−1∑
t=0

dt

}

= β1PL+ PT −min

{
(β1 + β2)

T−1∑
t=0

tv2t + (κ− β1)

T−1∑
t=0

dt

}
. (A.4)

The second equality follows from noting that V1t = 0 for t < 0 (by definition) and V1t = P for t > T − L

since everyone is fully vaccinated by T and therefore everyone must have received the first dose by T − L.
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The third and fourth equalities follow from rearranging and using the identity (A.2) (which can be written

in terms of cumulative doses as dt = V1,t−L − V2t) and observing

T−1∑
t=0

V2t = PT −
T−1∑
t=0

tv2t ,

which applies “summation by parts,” using the fact that everyone has been vaccinated by period T -1.

Comparing (A.4) to (A.1), we see that the alternative objective (A.4) differs by a constant from the original

objective (A.1) if we take β1 + β2 = 1 and c = κ − β1. Thus the alternative objective is equivalent to the

original objective (i.e., the two objectives paired with the same constraints yield the same optimal solutions)

if we normalize β1 and β2 and define c this way.

B. Stochastic Dynamic Programming Formulation

Because the stochastic dynamic program (DP) is not dependent on time, we use somewhat different notation

here than in the previous section:

` : weeks between doses less one (i.e., L− 1 which is 3 for the Moderna vaccine)

d0 : second doses currently due or overdue (beginning of week)

di : second doses due in i weeks, i = 1, .. ., ` (beginning of week)

U1 : number who have not yet received any doses of vaccine (beginning of week)

I : inventory of vaccine on hand (beginning of week)

ã : uncertain doses arriving at the end of week

v1 : first doses given in current week

v2 : second doses given in current week

The cost-to-go function f̂ can be written recursively as

f̂(d0, .. ., d`, U1, I) = min
(v1,v2)∈V

{(d0 + ... + d` + U1 − v2) + c(d0 − v2) (B.1)

+ E
[
f̂(d0 − v2 + d1, .. ., d`, v1, U1 − v1, I − v1 − v2 + ã)

]}
where

V = {(v1, v2) : v1, v2 ≥ 0, v2 ≤ d0, v1 ≤ U1, v1 + v2 ≤ I} .

The terminal case is when there is nobody left to vaccinate f̂(0, .. ., 0, 0, I) = 0. As long as there is a positive

probability of receiving vaccine doses in every period, we will eventually reach the terminal state where there

20



is nobody left to vaccinate and the DP recursion is well defined. (More formally, we can take the infinite

horizon limit of models with finite horizons, as in the proof of Theorem B.1 below.)

We can interpret (B.1) as follows. The period cost function is the total number of people unvaccinated

(d0 + ... + d` + U1 − v2) at the end of the week plus the penalty c times the number of people who are

overdue for their second dose (d0 − v2) at the end of the week. In the state transitions, people with doses

due in i weeks (di) become due in i − 1 weeks; those receiving their first dose (v1) become due in ` weeks;

the second doses (v2) reduce the pool of those due for their second dose (d0); the first doses (v1) reduce the

pool of those who have not yet received a first dose (U1); both doses deplete the inventory of vaccines (I)

and the random supply (ã) replenishes inventory. The feasible set V requires second doses administered (v2)

to be less than the number who are due for their second dose (d0), the number of first doses (v1) to be less

than the number of people who have not yet received a first dose (U1), and the sum of first and second doses

(v1 + v2) to be less than or equal to the vaccine available (I).

Our formulation of the DP (B.1) assumes the arriving supplies ã are independent and identically

distributed over time. This is for ease of notation. We could consider distributions that vary over time and

are dependent on previous arrivals: this would require considering value functions f̂t that depend on time

(to capture time dependence) and include past observations of supplies ãτ (τ < t) (or a summary statistic

based on these observations) as an additional state variable to capture dependence on past supplies.

Including time- and/or past-supply dependence would not change any of the results or proofs below.

However, including time- and/or past-supply dependence would introduce the opportunities for additional

comparative statics analysis: e.g., how do the amounts set aside or the number of first doses given vary

with changes in the supply forecasts? We hope to address these kinds of questions in future work.

B.1 L\-Convex Functions and Sets

We will use properties of L\-convex functions and sets to derive structural properties for this stochastic DP.

The concept of L\-convexity was introduced in Murota (1998) and, as mentioned in the introduction, related

results have been used in the study of inventory models with lead times and/or perishable inventory models

(e.g., Zipkin, 2008, Chen et al., 2014). There are several equivalent definitions of L\-convexity; we will use

the following, adapted from Chen et al. (2018).

Definition B.1 A function f : Rn → R̄ is L\-convex if and only if, for all x′, x′′ ∈ Rn and ω ≥ 0,

f(x′) + f(x′′) ≥ f((x′ + ωe)∧x′′) + f(x′∨(x′′− ωe)) (B.2)

where e is an n-vector of all ones. A set is L\-convex if its indicator function is L\-convex.

Here ∧ and ∨ denote componentwise minimization and maximization and R̄ = R ∪ {+∞}. L\-convexity

implies ordinary convexity (see, e.g., Murota, 1998) and submodularity which requires (B.2) to hold when

ω = 0. More generally, L\-convexity is an example of a C5 (closed convex cone containing constants)
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property, a class of properties of functions that are often well-behaved in stochastic DP models; see Smith

and McCardle (2002).

The following proposition is adapted from Proposition 1 in Chen et al. (2018) and summarizes many

useful properties of L\-convex functions and sets.

Proposition B.1 (Properties of L\-Convexity)

(a) Any nonnegative linear combination of L\-convex functions is L\-convex.

(b) If fk is L\-convex for k = 1, 2, ... and limk→∞ fk = f , then f is L\-convex.

(c) Assume f(·, ·) is defined on Rn × Rm and f(·, ε) is L\-convex for any ε ∈ Rm. Then for a random

vector ε̃ defined on Rm, the expectation E [f(x, ε̃)] is L\-convex, provided it is well defined.

(d) If f : Rn → R̄ is L\-convex, then g : Rn × R→ R̄ defined as g(x, λ) = f(x− λe) is also L\-convex.

(e) Assume that A is a L\-convex subset of Rn × Rm and f(·, ·) : Rn × Rm → R̄ is a L\-convex function.

Let e and ê denote n- and m-vectors of ones. Then

(i) g(x) = inf{y:(x,y)∈A} f(x, y) is L\-convex on Rn if g(x) 6= −∞ for any x ∈ Rn.

(ii) arg min{y:(x,y)∈A} f(x, y) is increasing in x.

(iii) For ω ≥ 0,

arg min
{y:(x,y)∈A}

f(x+ ωe, y) ≤ ωê + arg min
{y:(x,y)∈A}

f(x, y) .

In (ii) and (iii) increasing and ≤ are defined in terms of the set ordering where Y ′ ≤ Y ′′ if y′ ∈ Y ′

and y′′ ∈ Y ′′ implies y′∧y′′ ∈ Y ′ and y′∨y′′ ∈ Y ′′.

(f) Let xi denote a component of x ∈ Rn. Any set of the form {x ∈ Rn : l ≤ x ≤ u, xi − xj ≤ vij ,∀i 6= j}

is L\-convex in Rn, where l, u ∈ Rn and vij ∈ R.

B.2 Structural Properties of the DP

To study properties of the DP (B.1), it is useful to transform some of the state variables into cumulative

form as follows:

s0 = d0 (second doses currently due or overdue)

si = si−1 + di , for i = 1, .. ., ` (second doses due in next i weeks)

U2 = U1 + s` (people who have not yet received their second dose)

Nonnegativity of the original variables implies that these transformed variables satisfy s0 ≤ .. . ≤ s` ≤ U2.
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With these transformed variables, the cost-to-go function may be decomposed into nested optimization

problems and rewritten as

f(s0, .. ., s`, U2, I) = min
{v1 : 0≤v1≤I,v1≤U2−s`}

φ(s0, .. ., s`, s` + v1, U2, I − v1) (B.3)

where

φ(s0, .. ., s`, s`+1, U2, I) = min
{v2 : 0≤v2≤I,v2≤s0}

{(U2 − v2) + c(s0 − v2) + (B.4)

+ E [f(s1 − v2, .. ., s` − v2, s`+1 − v2, U2 − v2, I − v2 + ã)]} .

Here we choose the allocation to first doses v1 in the first problem and use this choice in the nested subproblem

where the number of second doses v2 is selected; note that the nested objective function φ has one more

argument (s`+1) than f which represents the number of second doses due in the next ` + 1 weeks and is

given by s` + v1. The terminal case is f(0, .. ., 0, 0, I) = 0, as before.

Let v∗1(s0, .. ., s`, U2, I) and v∗2(s0, .. ., s`+1, U2, I) denote optimal first and second doses for (B.3) and

(B.4): if there are multiple optimal solutions, we take the smallest optimal number of first doses and largest

optimal number of second doses. We define R∗(s0, .. ., s`, U2, I) = I − v∗1(s0, .. ., s`, U2, I) to represent the

optimal amount of vaccine reserved for second doses in the current period or set aside for future periods.

Our main result is the following.

Theorem B.1 (Structural Properties)

(a) f(s0, ..., s`, U2, I) and φ(s0, ..., s`, s`+1, U2, I) are decreasing in I and L\-convex.

(b) If c ≥ 0, for ω ≥ 0,

f(s0 + ω, ..., s` + ω,U2 + ω, I + ω) = f(s0, . . . , s`, U2, I) (B.5)

(c) (i) If c ≥ 0, v∗2(s0, ..., , s`, U2, I) = s0∧I

(ii) R∗(s0, ..., s`, U2, I) is increasing in its arguments and, for any ω ≥ 0,

R∗(s0 + ω, ..., s` + ω,U2 + ω, I + ω) ≤ ω +R∗(s0, ..., s`, U2, I) . (B.6)

Parts (a) and (b) of the theorem are of interest here primarily because we use these properties to characterize

the optimal policies in part (c). In particular, part (b) implies that, if the penalty c ≥ 0, it is better to give

second doses (thereby removing people from the pipeline of those awaiting vaccination) than to give first

doses and move people forward in the pipeline. A proof of the theorem is provided in the online appendix;

the proof relies on properties of L\-convex functions, as described in Proposition B.1.
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We can translate the policy results of part (c) of Theorem B.1 back to the original model and interpret

the optimal policy as a set-aside policy of the form considered in §3. Let v̂∗1(d0, .. ., d`, U1, I) and

v̂∗2(d0, .. ., d`, U1, I) denote the optimal first and second doses for the original DP (B.1) and let

S∗(d0, .. ., d`, U1, I) = I − v̂∗2(d0, .. ., d`, U1, I)− v̂∗1(d0, .. ., d`, U1, I)

denote the optimal quantity to set aside in a given week after administering first and second doses.

Corollary B.2 (Set-aside Policies) If c ≥ 0, then

(a) v̂∗2(d0, ..., d`, U1, I) = d0∧I.

(b) For any ω ≥ 0 and weeks until due i, 1 ≤ i ≤ `, the optimal amount set aside S∗(d0, ..., d`, U1, I)

satisfies

(i) 0 ≤ S∗(d0, ..., di + ω, ..., d`, U1, I)− S∗(d0, ..., di, ..., d`, U1, I) ≤ ω,

(ii) S∗(d0, ..., di + ω, ..., d`, U1, I)− S∗(d0, ..., di, ..., d`, U1, I) is decreasing in i, and

(iii) 0 ≤ S∗(d0, ..., d`, U1, I + ω)− S∗(d0, ..., d`, U1, I) ≤ ω − (ω∧(d0 − I))+.

The interpretation of this result is as discussed in §3. (a) If the penalty c ≥ 0, it is optimal to prioritize second

doses. (b) The optimal amount to set aside (after administering first and second doses) is increasing in the

number of second doses due in the coming weeks (di) with the increase in setaside bounded by the increase

in the amount due (ω) and decreasing in the time until due (i). The optimal setaside is also boundedly

increasing in the inventory level, with the bound in part (iii) taking into account the increase (if any) in the

second doses enabled by the increase in inventory. The fact that the optimal amount to set aside is boundedly

increasing in the inventory level implies that the number of first doses given is also (weakly) increasing in

the inventory level. This corollary provides the justification for focusing on heuristic policies that have a

similar set-aside structure as discussed in §3.3.
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C. Proofs for Structural Properties (Online Supplement)

Proof of Theorem B.1. (a) The proof is by backward induction with a given finite time horizon T .
To accommodate these arguments, we make the cost-to-go functions in (B.3)-(B.4) depend on the period,
written as ft and φt, with the terminal value fT (·) = 0; these functions are implicitly dependent on the
horizon T as well. We will show that ft and φt are decreasing in I and L\-convex for all t with a fixed
horizon T . We can then appeal to Proposition B.1(b) to conclude that the limit as T → ∞ of ft and φt
approach stationary cost-to-go-functions f and φ which are also decreasing in I and L\-convex. Convergence
of the value functions as T → ∞ follows if there is a positive probability of receiving vaccine doses (in an
amount bounded away from zero) in each period: ft and φt are monotonically increasing in the horizon
(because the rewards in each period are nonnegative, since c ≥ −1 and U2 ≥ s0) and bounded above and
hence convergent.3

Fix the horizon T . The terminal case, fT (·) = 0, is trivially decreasing in I and L\-convex. Now assume
φt+1 and ft+1 are decreasing in I and L\-convex; we will prove φt and ft are decreasing in I and L\-convex.

Given the induction hypothesis, it is easy to see that φt and ft are decreasing in I: I enters positively in
the expressions for φt+1 and ft+1 in (B.3) and (B.4) (thus larger Is lead to lower continuation values) and
increasing I increases the size of the feasible sets in (B.3) and (B.4) (thus larger Is lead to smaller minimum
values).

We now show that φt(s0, .. ., s`+1, U2, I) is L\-convex. The reward function for φt is linear in the state
variables and hence L\-convex. The expected continuation value for φt,

E [ft+1(s1 − v2, .. ., s`+1 − v2, U2 − v2, I − v2 + ã)] ,

is L\-convex in (s0, .. ., s`+1, U2, I, v2) by the induction hypothesis and Proposition B.1(c) and (d). By
Proposition B.1(a), the sum of the reward and expected continuation values is L\-convex in
(s0, .. ., s`+1, U2, I, v2). Note that the feasible set for the minimization problem in (B.4) is L\-convex by
Proposition B.1(g). L\-convexity of φt(s0, .. ., s`+1, U2, I) then follows from Proposition B.1(e)(i).

We now show that ft(s0, .. ., s`+1, U2, I) is L\-convex. Let

(s′0, .. ., s
′
`, U

′
2, I
′) and (s′′0, .. ., s

′′
` , U

′′
2 , I
′′) (C.1)

denote two sets of state variables and let

v′1 = v∗1(s′0, .. ., s
′
`, U

′
2, I
′) and v′′1 = v∗1(s′′0, .. ., s

′′
` , U

′′
2 , I
′′) (C.2)

denote optimal first doses given these state variables. Fix ω and denote the minimum (∧) and maximum
(∨) values of these pairs of state variables (as appearing in the definition of L\-convexity) as follows

s∧i = (s′i + ω)∧s′′i s∨i = s′i∨(s′′i − ω)
U∧ = (U ′ + ω)∧U ′′ U∨ = U ′∨(U ′′− ω)

(C.3)

and the corresponding first doses and inventory levels as

v∧1 = (s′` + v′1 + ω)∧(s′′` + v′′1)− s∧` v∨1 = (s′` + v′1)∨(s′′` + v′′1 − ω)− s∨`
I∧ = (I ′ − v′1 + ω)∧(I ′′− v′′1) + v∧1 I∨ = (I ′ − v′1)∨(I ′′− v′′1 − ω) + v∨1 .

(C.4)

Note that v∧1 (v∨1 ) and I∧ (I∨) need not be the min (max) value of {v′1, v′′1} and {I ′, I ′′}, but are chosen to
ensure that (s∧` + v∧1 ) = (s′` + v′1 + ω)∧(s′′` + v′′1), (I∧ − v∧1 ) = (I ′ − v′1 + ω)∧(I ′′ − v′′1) and analogously for

3For an upper bound, we can take the value of a (nonoptimal) policy that administers no vaccines until inventory reaches
s` +2(U2−s`), the number of doses required to complete vaccination, and then administers (U2−s`) first doses and U2 second
doses ` + 1 periods later.
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the joins (∨) as required to apply the L\-convexity assumption below. Then we have

ft(s
′
0, .. ., s

′
`, U

′
2, I
′) + ft(s

′′
0, .. ., s

′′
` , U

′
2, I
′)

= φt(s
′
0, .. ., s

′
`, s
′
` + v′1, U

′
2, I
′ − v′1) + φt(s

′′
0, .. ., s

′′
` , s
′′
` + v′′1 , U

′′
2 , I
′′− v′′1)

≥ φt(s
∧
0 , .. ., s

∧
` , s
∧
` + v∧1 , U

∧
2 , I

∧ − v∧1 ) + φt(s
∨
0 , .. ., s

∨
` , s
∨
` + v∨1 , U

∨
2 , I

∨ − v∨1 )

≥ ft(s
∧
0 , .. ., s

∧
` , U

∧
2 , I

∧) + ft(s
∨
0 , .. ., s

∨
` , U

∨
2 , I

∨) .

The first equality follows from the definition of v′1 and v′′2 as optimal values in (B.3) for the given states. The
next inequality follows from the L\-convexity of φt. The final inequality follows from the observation that
the first dose choices v∧1 and v∨1 are feasible but not necessarily optimal for the minimal and maximal levels
of the state variables appearing in the third line above. Thus ft is L\-convex, thereby completing the proof
of part (a).

(b) We use an inductive proof as for the result of part (a). The terminal case is trivial. We assume the result
of the proposition holds for period t+1 and will show that the result for period t as well.

Before proceeding to the result of part (b), we first observe that for ω ≤ I,

ft(s0, .. ., s` + ω,U2, I − ω)− ft(s0, .. ., s`, U2, I) ≥ −ω (C.5)

Intuitively, administering ω first doses (moving them forward to being due in ` weeks and reducing inventory)
may improve or hurt the objective, but the improvement can never be more than reducing the time to
completion by ω weeks and incurring no additional penalties.

To establish the result of part (b), we first show

ft(s0, .. ., , s`, U2, I) ≥ ft(s0 + ω, .. ., s` + ω,U2 + ω, I + ω)

and then establish the reverse inequality. Let v′1 and v′2 be optimal solutions for (B.3) and (B.4) with state
(s0, .. ., s`, U2, I) and let v′′2 = v′2 + ω. Then

ft(s0, .. ., s`, U2, I)

= (U2 − v′2) + c(s0 − v′2) +

E [ft+1(s1 − v′2, .. ., s` − v′2, s` + v′1 − v′2, U2 − v′2, I − v′1 − v′2 + ã)]

= (U2 + ω − v′′2) + c(s0 + ω − v′′2) +

E [ft+1(s1 + ω − v′′2 , .. ., s` + ω + v′′1 − v′2, U2 + ω − v′′2 , I + ω − v′1 − v′′2 + ã)]

≥ ft(s0 + ω, .. ., s` + ω,U2 + ω, I + ω)

The first equality follows from the definition of v′1 and v′2 as optimal solutions. The second equality follows
from substituting v′2 = v′′2 − ω. The inequality follows from the fact that (v′1, v

′′
2) is feasible given (s0 +

ω, .. ., s` + ω,U2 + ω, I + ω) but not necessarily optimal.
The reverse inequality by considering two cases. Let v′′1 and v′′2 be optimal given (s0 + ω, .. ., s` + ω,U2 +

ω, I + ω). First consider the case where v′′2 ≥ ω and let v′2 = (v′′2 − ω). Then

ft(s0 + ω, .. ., s` + ω,U2 + ω, I + ω)

= (U2 + ω − v′′2) + c(s0 + ω − v′′2) +

E [ft+1(s1 + ω − v′′2 , .. ., s` + ω + v′′1 − v′′2 , U2 + ω − v′′2 , I − v′1 − v′′2 + ω + ã)]

= (U2 − v′2) + c(s0 − v′2) +

E [ft+1(s1 − v′2, .. ., s` + v′′1 − v′2, U2 − v′2, I − v′′1 − v′2 + ã)]

≥ ft(s0, .. ., s`, U2, I)

The first equality follows from (v′′1 , v
′′
2) being an optimal solution. The second equality follows from

substituting v′2 = v′′2 − ω. The inequality follows from the fact that (v′′1 , v
′
2) is feasible given (s0, .. ., s`, U2, I)

(since ω ≤ v′′2 ≤ s0 + ω, we have 0 ≤ v′2 ≤ s0) but not necessarily optimal.
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Now consider the case where v′′2 ≤ ω. Let ∆ = ω − v′′2 ≥ 0, v′1 = (v′′1 −∆)+, and ∆′ = v′′1 − v′1. Note that
0 ≤ ∆′ ≤ ∆. Then

ft(s0 + ω, .. ., s` + ω,U2 + ω, I + ω)

= (U2 + ω − v′′2) + c(s0 + ω − v′′2) +

E [ft+1(s1 + ω − v′′2 , .. ., s` + ω + v′′1 − v′′2 , U2 + ω − v′′2 , I − v′′1 − v′′2 + ω + ã)]

= (1 + c)∆ + U2 + cs0 + E [ft+1(s1 + ∆, .. ., s` + ∆ + v′1 + ∆′, U2 + ∆, I + ∆− v′1 −∆′ + ã)]

= (1 + c)∆ + U2 + cs0 + E [ft+1(s1, .. ., s` + v′1 + ∆′, U2, I − v′1 −∆′ + ã)]

≥ (1 + c)∆−∆′ + U2 + cs0 + E [ft+1(s1, .. ., s` + v′1, U2, I − v′1 + ã)]

≥ (1 + c)∆−∆′ + ft(s0, .. ., s`, U2, I)

≥ ft(s0, .. ., s`, U2, I)

The first equality follows from the definition of (v′′1 , v′′2) as an optimal solution for the given state. The next
two equalities follow from the definition of ∆ and the induction hypothesis. The first inequality follows from
the observation (C.5) and the second from the fact that (v′1, 0) is feasible but not necessarily optimal given
(s0, .. ., s`, U2, I). The final inequality follows because (1 + c)∆−∆′ ≥ 0 when c ≥ 0. Thus we have

ft(s0 + ω, .. ., s` + ω,U2 + ω, I + ω) ≥ ft(s0, .. ., s`, U2, I)

thereby completing the proof of part (b).

(c)(i) follows from part (b). Given c ≥ 0, If s0 ≤ I, then (b) implies

f(s0, .. ., s`, U2, I) = f(0, s1 − s0, .. ., s` − s0, U2 − s0, I − s0)

that is, it is optimal to allocate s0 second doses (the latter expression is equivalent to the value when
committing to s0 second doses). If s0 ≥ I, then (b) implies

f(s0, .. ., s`, U2, I) = f(s0 − I, .. ., s` − I, U2 − I, 0)

that is, it is optimal to allocate all of the inventory I to second doses.

For (c)(ii) consider a variation of (B.3) where given (s0, .. ., s`, s`+1, U2, I) the decision maker selects the
number of doses R to reserve for second doses this period or later use:

r∗(s0, .. ., s`, s`+1, U2, I) = arg min
{R : 0≤R≤I}

φ(s0, .. ., s`, s`+1, U2, R) . (C.6)

Here the decision maker takes the number of second doses due in `+1 periods to be exogenously given rather
than depending on the number of first doses administered in the current period (i.e., in the original model
this would be s`+1 = s`+I−R). Note that this exogeneity assumption only affects the current period: in all
future periods, first doses are allocated optimally as captured in φ. (If there are multiple optimal solutions,
we take the largest optimal value.) Applying Proposition B.1(c), we have the following lemma.

Lemma 1 r∗(s0, ..., s`, s`+1, U2, I) is increasing in its arguments and, for all ω > 0,

r∗(s0 + ω, ..., s` + ω, s`+1 + ω,U2 + ω, I + ω) ≤ ω + r∗(s0, ..., s`, s`+1, U2, I) . (C.7)

Proof of Lemma 1. L\-convexity of φ was established in Theorem B.1(a) and the feasible set in (C.6) is
L\-convex by Proposition B.1(f). The result then follows from Proposition B.1(e)(i) and (ii).

Now consider ordered state variables

(s′0, .. ., s
′
`, s
′
`+1, U

′
2, I
′) ≤ (s′′0, .. ., s

′′
` , s
′′
`+1, U

′′
2 , I
′′)
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and define

r′(∆) = r∗(s′0, .. ., s
′
`, s
′
` + ∆, U ′2, I

′) and r′′(∆) = r∗(s′′0, .. ., s
′′
` , s
′′
` + ∆, U ′′2 , I

′′) .

From the “increasing” part of Lemma 1, we know that r′(∆) and r′′(∆) are increasing in ∆ and that
r′(∆) ≤ r′′(∆), as illustrated in Figure 10.

𝐼𝐼𝐼𝐼

𝐼𝐼𝐼

∆

𝑟𝑟′′(Δ)

𝑅𝑅𝐼𝐼

0

𝑟𝑟′(Δ)

𝑅𝑅𝐼

𝐼𝐼′′ − Δ

𝐼𝐼′ − Δ

Figure 10: Illustration for proof of Theorem A.1(c)

A feasible policy when taking s`+1 to be endogenously defined must choose a reserve level r(∆) = I −∆,
where ∆ is the number of first doses given. Thus, the true optimal reserve in the low scenario, R′ =
R∗(s′0, .. ., s

′
`, U

′
2, I
′), is the value where r′(∆) and I ′ −∆ cross, as shown in the figure: at this reserve level,

the exogenously specified s`+1 = s` + ∆ and chosen s`+1 = s` + I ′ − r′(∆) coincide and hence R′ is optimal
with endogenously chosen s`+1. R′′ is defined analogously as the crossing value of r′′(∆) and I ′′−∆.

We claim that R′′ ≥ R′ (as in Figure 10) which would establish the “increasing” part of Theorem (c)(ii).
Let ∆′ and ∆′′ be the values of ∆ corresponding to the points of intersection defining R′ and R′′. If ∆′ ≥ ∆′′

(as in the figure), then

R′′−R′ = (I ′′−∆′′)− (I ′ −∆′) = (I ′′− I ′) + (∆′ −∆′′) ≥ 0 .

If ∆′ ≤ ∆′′, then
R′′−R′ = r′′(∆′′)− r′(∆′) ≥ r′′(∆′′)− r′(∆′′) ≥ 0 ,

where the first inequality comes from the fact that r′(∆) is increasing and the second from r′(∆) ≤ r′′(∆).
This completes the proof of the “increasing” part of Theorem (c)(ii).4

Finally, to establish (B.6) of Theorem (c)(ii) define

r′(∆) = r∗(s0, .. ., s`, s` + ∆, U2, I) and r′′(∆) = r∗(s0 + ω, .. ., s` + ω, s` + ω + ∆, U2 + ω, I + ω)

and let I ′ = I and I ′′ = I + ω. By Lemma 1, r′(∆) and r′′(∆) are increasing and r′(∆) ≤ r′′(∆), again as
in Figure 10. The lemma also says that r′′(∆) ≤ r′(∆) + ω. The optimal values R′ = R∗(s0, .. ., s`, U2, I)
and R′′ = R∗(s0 + ω, .. ., s` + ω,U2 + ω, I + ω) are defined as the crossing values with I ′ −∆ and I ′′−∆, as
above.

We can complete the proof by showing that R′′−R′ ≤ ω. Let ∆′ and ∆′′ be the values of ∆ corresponding
to the points of intersection defining R′ and R′′. If ∆′ ≤ ∆′′, then

R′′−R′ = (I ′′−∆′′)− (I ′ −∆′) = ω + (∆′ −∆′′) ≤ ω .

4Note that this argument assumes that the constraint v1 ≤ U2 − s` (requiring the number of first doses given to be less than
or equal to the number of people who have not received a first dose) is not binding. However, the argument can easily be
adapted to handle the case where this constraint is binding.
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If ∆′ ≥ ∆′′, then

R′′−R′ = r′′(∆′′)− r′(∆′) ≤ r′(∆′′) + ω − r′(∆′) ≤ r′(∆′′) + ω − r′(∆′′) = ω ,

where the first inequality comes from the fact that r′′(∆) ≤ r′(∆) + ω (from the lemma) and the second
from the fact that r′(∆) is increasing (also from the lemma). Thus R′′ − R′ ≤ ω, completing our proof of
the theorem.

Proof of Corollary B.2. (a) follows immediately from Theorem B.1(c)(i) given that s0 = d0.

(b) follows from (B.6). For (i) and (ii), first note that the changes contemplated do not affect the number
of second doses given, so the properties of differences in S∗ reflect the difference in R∗. The result of (B.6)
says that increasing all arguments of R∗ by ω (as on the left side of (B.6)) increases R∗ by ω or less.
Since R∗ is increasing, this implies that an increase of any subset of arguments by ω also increases R∗ by
ω or less. For (i), note that increasing di to di + ω increases the transformed variables (si, .. ., s`, U2) to
(si + ω, .. ., s` + ω,U2 + ω), leaving the other variables unchanged. For (ii), note that a larger i increases
fewer arguments and results in (weakly) smaller increases.

For (iii), note that increasing the inventory level may increase the number of second doses given if it
was previously constrained by the inventory level (i.e., with v2 = I): in this case, increasing the inventory
level will result in up to ω∧(d0 − I) additional second doses being allocated, which reduces the potential
increase in S∗ accordingly. The bounded increase in S∗ follows from the same argument (increasing a single
parameter) as above.
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