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1. Introduction
Discounted cash flow (DCF) methods are commonly
used for the valuation of projects and for decision
making regarding investments in real assets. One of
the most important limitations of DCF is that it fails to
account for the value of managerial flexibility inher-
ent in many types of projects. The options derived
from managerial flexibility are commonly called “real
options” to reflect their association with real assets
rather than with financial assets. Although appeal-
ing from a theoretical perspective, the practical use of
real-option valuation techniques in industry has been
limited by the mathematical complexity of these tech-
niques and the resulting lack of intuition associated
with the solution process, or the restrictive assump-
tions required to obtain analytical solutions.
In this article we outline how traditional decision

analysis tools can be used as an alternative to solve
real-option valuation problems based on the ideas
suggested by Copeland and Antikarov (2001) and fur-
ther illustrated in Copeland and Tufano (2004). We do
this by using a binomial decision tree to determine

the cash flows and probabilities that give the cor-
rect project values when discounted to each period
and to each uncertain state. Project flexibilities, or real
options, can then be modeled easily as decisions that
affect these cash flows. This specification of project
uncertainties, cash flows, and decisions allows the
problem to be modeled and solved using commer-
cially available decision tree software familiar to the
decision analysis community. Our discussion expands
on the ideas presented originally by Brandão and
Dyer (2005) and illustrates the approach with several
examples.
While many of these ideas are relatively straight-

forward and build on concepts suggested by Nau
and McCardle (1991) and Smith and Nau (1995), we
hope to make this material more accessible to deci-
sion analysts and to encourage additional work on the
relationship between decision analysis and finance.
Triantis and Borison (2001) provide an assessment of
the use of options-based project valuation methods
in practice and conclude that a modest evolution is
occurring within some companies to support their

69



Brandão et al.: Using Binomial Decision Trees to Solve Real-Option Valuation Problems
70 Decision Analysis 2(2), pp. 69–88, © 2005 INFORMS

adoption. In particular, Triantis and Borison antici-
pate increasing convergence among the various real-
option approaches, particularly the decision-analytic
and option-pricing approaches. In that spirit we also
review some basic option-pricing concepts that will
be familiar to many readers but that are nonethe-
less included as a useful reference in the context
of this discussion. We will also take care to discuss
the underlying assumptions and limitations of these
methods and to suggest when they might be a valu-
able addition to the decision-analysis tool kit when
used appropriately.
The remainder of the article is organized as follows.

Section 2 reviews the traditional approaches to project
valuation. Section 3 outlines a decision tree approach
to the real-option problem discussed by Copeland and
Tufano (2004). Section 4 provides an extension of this
approach to problems in which project cash flows
over time are explicitly modeled and used as the basis
for valuing real options. This approach is illustrated
in §5 with a numerical example. In §6 we conclude
with a discussion of the limitations of this approach
and identify some areas for further research.

2. Background on Project Valuation
With the DCF approach to valuation, the net present
value of a project is calculated by discounting the
future expected cash flows at a discount rate that
takes into account the risk of the project. In practice,
this discount rate is often the weighted average cost
of capital (WACC) for the firm, based on the assump-
tion that both the firm and the project share identical
market risks. While this assumption may be valid for
projects that mimic the risks associated with the firm
as a whole, it may not be appropriate for unusual
or innovative investment projects. In such cases, the
practitioner must exercise judgment in choosing an
appropriate discount rate for the project. For a discus-
sion of the issues associated with the selection of a
project discount rate and the calculation of the WACC,
see Grinblatt and Titman (1998, Chapters 10 and 12).
A major criticism of DCF is the implicit assump-

tion that the project’s outcome will be unaffected by
future decisions of the firm, thereby ignoring any
value that comes from managerial flexibility. Manage-
ment flexibility is the ability to make decisions dur-
ing the execution of a project so that expected returns

are maximized or expected losses are minimized.
Examples of project flexibilities include expanding
operations in response to positive market conditions,
abandoning a project that is underperforming, defer-
ring investment for a period of time, suspending
operations temporarily, switching inputs or outputs,
reducing the project scale, or resuming operations
after a temporary shutdown. The incremental value
of these options can only be determined using an
option-pricing or decision analysis approach.
Option-pricing methods were first developed to

value financial options. However, the potential appli-
cation of these methods to the valuation of options
on real assets was quickly identified, and hundreds of
scholarly papers have been written on this topic. Nev-
ertheless, applications of real-option valuation meth-
ods to practical problems have been limited by the
mathematical complexity of the approach, by the
restrictive theoretical assumptions required, and by
their lack of intuitive appeal.
The mathematical complexity associated with real-

option theory stems from the fact that the gen-
eral problem requires a probabilistic solution to a
firm’s optimal investment decision policy, not only
at present but also at all instances in time up to
the maturity of its options. To solve this problem of
dynamic optimization, the evolution of uncertainty in
the value of the real asset over time is first modeled
as a stochastic process. Then the value of the firm’s
optimal policy is a partial differential equation that
is obtained as the solution to a value function rep-
resented by Bellman’s principle of optimality, where
appropriate boundary conditions reflect the initial
conditions and terminal payoff characteristics. When
closed-form mathematical solutions are unavailable,
which is usually the case for more complex problems
where the project may be subject to several sources
of uncertainty and more than one type of option,
numerical methods and discrete dynamic program-
ming must be used to obtain a solution.
A discrete approximation to the underlying sto-

chastic process can be developed to provide a trans-
parent and computationally efficient model of the
valuation problem. The first example of this approach
is a binomial lattice model that converges weakly to
a lognormal diffusion of stock prices, developed by
Cox et al. (1979). A binomial lattice may be viewed as
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a probability tree with binary chance branches, with
the unique feature that the outcome resulting from
moving up �u� and then down �d� in value is the
same as the outcome from moving down and then up.
Thus, this probability tree is recombining, since there
are numerous paths to the same outcomes, which sig-
nificantly reduces the number of nodes in the lattice.
A binomial lattice and the corresponding binomial
tree are shown in Figure 1, where S is the current mar-
ket price of the asset and q is the probability of an
upward move to Su.
The binomial lattice model can be used to accu-

rately approximate solutions from the Black-Scholes-
Merton continuous-time valuation model for financial
options, with the added advantage of allowing a solu-
tion for the value of early-exercise American options,
whereas the Black-Scholes-Merton model can value
only European options.
Unfortunately, the process of working through lat-

tices can be cumbersome and nonintuitive, espe-
cially for more complex applications to real assets,
which can involve several simultaneous and com-
pound options. The typical approach to using a lat-
tice involves finding a replicating portfolio at each
node. This approach is based on traditional option-
pricing methods, which require that markets be com-
plete in the sense that there are enough traded assets
to allow the creation of a portfolio of securities whose
payoffs replicate the payoffs of the asset in all states

Figure 1 Recombining Binomial Lattice and Corresponding Binomial Tree
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of nature and in all future periods. The assump-
tion of the existence of a replicating portfolio under-
lies much of the initial work done in the field of
continuous-time, real-option valuation by Brennan
and Schwartz (1985), McDonald and Siegel (1986),
Dixit and Pindyck (1994), and Trigeorgis (1996).
The use of traditional option-pricing methods and

the replicating portfolio approach is complicated by
the fact that, for most projects involving real assets, no
such replicating portfolio of securities exists, so mar-
kets are incomplete. In this case, Dixit and Pindyck
(1994) propose the use of dynamic programming
using a subjectively defined discount rate, but the
result does not provide a market value for the project
and its options.
The application of decision analysis to real-option

valuation problems seems natural because decision
trees are commonly used to model project flexibility,
but there has been limited work in this area (Howard
1996). Nau and McCardle (1991) and Smith and Nau
(1995) study the relationship between option pricing
theory and decision analysis and demonstrate that the
two approaches yield the same results when applied
correctly. Smith and Nau propose a method that inte-
grates the two approaches by distinguishing between
market risks, which can be hedged by trading secu-
rities and valued using option pricing theory, and
private uncertainties, which are project-specific risks
and can be valued using decision analysis techniques.
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Smith and McCardle (1998, 1999) illustrate how this
approach can be applied in the context of oil and gas
projects and provide a discussion of lessons learned
from applications to some case studies.
The distinction between market risks and project-

specific risks is often a very natural one in oil and gas
exploration projects, since oil and gas prices are mar-
ket risks, while the project-specific risks may be the
probability of a dry hole or the probability distribu-
tion regarding the volume of reserves. The McCardle-
Nau-Smith approach (henceforth MNS) has a natural
appeal in problem contexts such as these. However,
there are projects in other industries where the dis-
tinction between market risks and project-specific
risks is not as sharp.
Copeland and Antikarov (2001) have proposed a

more general approach (henceforth CA) to valuing
real options that may be applied to problems in cases
where there is no market-traded asset. To obtain this
generality, they make the assumption that the present
value of the project without options is the best unbi-
ased estimator of the market value of the project
(the marketed asset disclaimer, or MAD assumption).
Under this assumption, the value of the project with-
out options serves as the underlying asset in the repli-
cating portfolio, which implies that the markets are
complete for the project with options. If the changes
in the value of the project without options are then
assumed to vary over time according to a random
walk stochastic process, more formally called geomet-
ric Brownian motion (GBM), then the options can be
valued with traditional option pricing methods.
These assumptions are conceptually similar to those

adopted earlier by Luehrman (1998a, b) to ration-
alize the direct application of the classic Black and
Scholes (1973) option-pricing model to real options.
While Luehrman’s approach has generally been dis-
counted as too simplistic (Triantis and Borison 2001),
the development by CA is more robust. For example,
it allows for the modeling of project cash flows and
other project-specific risks to capture a more realistic
representation of the underlying problem, for the use
of stochastic processes other than the GBM, and for
the separation of market and private risks.
Copeland and Tufano (2004) have recently cham-

pioned this approach in an article in Harvard Busi-
ness Review, guaranteeing it high visibility among

practitioners. However, their presentation is based on
the use of binomial lattices and the construction of
market portfolios that replicate the risk characteristics
of the project, and therefore it suffers from a lack of
intuitive appeal. Adapting this method to use bino-
mial decision trees provides transparency to its logic
and offers a link to decision analysis approaches to
real-options valuation.

3. A Decision Analysis Approach to
Valuation

Decision tree analysis (DTA) can be used to model
managerial flexibility in discrete time by construct-
ing a tree with decision nodes that represent deci-
sions the manager can make to maximize the value
of the project as uncertainties are resolved over the
project’s life. This approach allows some of the lim-
itations of the static DCF approach to be overcome.
In fact, a naïve approach to valuing projects with real
options would be to simply include decision nodes
corresponding to project options into a decision tree
model of the project uncertainties and solve the prob-
lem using the same risk-adjusted discount rate judged
to be appropriate for the original project without
options.
However, the naïve approach does not provide a

correct valuation of the real options. This is because
the optimization that occurs at the decision nodes
changes the expected future cash flows, thereby alter-
ing the risk characteristics of the project. Thus, the
standard deviation of the project cash flows with flex-
ibility is different from that of the project without
flexibility, and the risk-adjusted discount rate for the
project without options may not be appropriate after
the real options have been included in the model.
This observation has caused some authors to incor-
rectly conclude that DTA cannot be used to value
real options (e.g., see the discussion in CA 2001).
However, as noted by Smith (1999), the differences
between the DTA and finance approaches are largely
matters of style, and DTA can readily be augmented
to incorporate market information about risk.
To adjust the naïve approach, we can use the repli-

cating portfolio method to determine the correct dis-
count rates for the project and thereby capture the
market information about project risks. Let us first
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assume there is a project of an unknown value V and
a replicating portfolio of an amount A of a market-
traded stock with a current price S and of B dol-
lars invested in a risk-free bond that pays an interest
rate r . For simplicity, we assume that for a one-period
model with probability q the stock price will move up
to Su at the end of the period, and with probability
1− q it will move down to Sd, where u is a number
greater than 1 reflecting a proportional increase in the
stock value, and d = 1/u is a number smaller than 1
reflecting a proportional decrease. This approach can
be extended to multiple time periods by simply con-
tinuing to apply these same percentage changes to
the values determined at the end of the one-period
model, as we will show later.
The value of this portfolio one period from now

will be ASu+B�1+r� and ASd+B�1+r� in the up and
down states, respectively, and we assume that the val-
ues of the project in these same up and down states,
Vu and Vd, are known. The dynamics of the stock,
the bond, and the replicating portfolio are shown in
Figure 2. For these portfolio values to replicate the
value of the project in each of the up and down states
exactly, the appropriate values of A and B must be
determined by solving a system of two equations in
two unknowns, Vu = ASu+ �1+ r�B and Vd = ASd +
�1 + r�B, which yield A = �Vu − Vd�/��u − d�S�

and B= �uVd − dVu�/��u− d��1+ r��. If the holdings A
and B are the replicating portfolio for the project at the
end of the period, then by the basic no-arbitrage argu-
ment of finance theory, their current price, AS+B,
must also be the price, or value, of the project V .
While this form of the replicating portfolio method
provides a market-based adjustment for the risk in the
project, for a multiperiod and multistate project this
proves to be cumbersome computationally, since this
exercise must be repeated for each node of the lattice.

Figure 2 Dynamics of the Stock Price, the Bond Yield, and the Project Value
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Note that the expressions for A and B do not
include the probability q of an up move in the stock
price, which eliminates the necessity of trying to esti-
mate this variable. This is an important advantage
of this approach to valuation, since it relies only on
information that can be calculated from market data.
If the value of q were known, then the appropriate
discount rate for the project could be found by solving
the relationship between the expected future value
and the current value V of the project for k, as shown
in Equation (1).

V = quVu + �1− q�dVd

1+ k
(1)

Fortunately, there is an equivalent but simpler pricing
algorithm that is analogous to the replicating portfolio
approach and that avoids the need to estimate q or k.
In this alternative approach, we account for the

project risk by adjusting the up and down proba-
bilities rather than by adjusting the discount rate.
The discount rate in Equation (1) is set equal to the
risk-free rate of interest r , which is known, and (1)
is solved for the value of the implied probability p

instead of the value k. Since the risk-free rate r will be
less than the risk-adjusted discount rate k, the derived
probability p will be less than the true probability of
the “up state,” q.
The solution for p is easily obtained by using the

relationship V = AS + B and substituting the values
for A and B determined above. The resulting equation
for the current value of the project is:

V =
[(
1+ r − d

u− d

)
Vu +

(
u− �1+ r�

u− d

)
Vd

]/
�1+ r� or

V = �pVu + �1− p�Vd�

1+ r
�

where p = �1+ r − d�/�u− d�. These values are often
called “risk-neutral” probabilities because assets are
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priced as if there is a risk-neutral representative
investor with an estimate of probability p for the up
state.
This risk-neutral probability p can then be used in a

binomial lattice or tree to calculate an expected value
given the future payoffs, and the risk-free rate can be
used to discount the future payoffs. This shifts the
problem of finding the appropriate risk-adjusted dis-
count rate for a project to the problem of finding the
appropriate risk-neutral probabilities to use in calcu-
lating the risk-neutral measure of value. Fortunately,
the latter problem is often easier to solve, since these
risk-neutral probabilities may be available from mar-
ket data or from assumptions based on theoretical
arguments regarding the underlying stochastic pro-
cess associated with the value of the project. More-
over, the GBM with constant volatility is the most
common assumption regarding the stochastic process
associated with the project value, and this implies that
the values of p and �1− p� are constant and applied
throughout the lattice or tree, whereas the values of A
and B must be calculated for every node.
We demonstrate this approach by solving an exam-

ple from a recent article by Copeland and Tufano
(2004). In this example, a firm is considering a
phased investment in a plant. An initial investment
of $60 million to cover the cost of permits and prepa-
ration for the effort is due immediately. At the end of
one year, a commitment of $400 million is required for
the design phase of the new plant. Once the design is
completed one year later, the firm would have a two-
year window during which to make the final invest-
ment in the plant of $800 million, which would pay
for construction. If the firm decides not to invest dur-
ing these two years, it then foregoes the opportunity
to build the plant.
From the real-options perspective, this investment

opportunity is a compound option. The initial pay-
ment of $60 million gives the firm the option to con-
tinue with the project for one year, at the end of which
it has the option to invest an additional $400 million
in the design phase. In turn, the completion of the
design phase gives the firm the option to construct
the plant at the end of year two or at the end of year
three.
The firm estimates that if the plant existed today it

would be worth $1,000 million based on a traditional

net present value (NPV) calculation with the informa-
tion currently available, but the value of this plant in
future years is uncertain and is expected to change
over time. The investments at the end of years one,
two, and three are options and will be made only if
they are justified by the revised estimate of the project
at that point in time.
To carry out an analysis of this problem some

assumptions must be made regarding the uncertainty
in the future value of the project. A common assump-
tion regarding stock prices is that current prices
already incorporate all relevant information available
at this point in time, and that future changes will be
the effect of random and thus unpredictable shocks,
which are modeled as a random walk. This assump-
tion and other arguments support the use of a GBM
to model the dynamic uncertainty associated with
stock prices (Hull 2003). CA (2001, Chapter 8) use
similar arguments to justify the use of the GBM to
model changes in the value of a project over time
in some instances, and it is used in this example for
simplicity.
However, the assumption of the GBM model may

not be appropriate in all situations, and it is not a
requirement of the CA approach. In the discussion
section we describe how alternate models of stochas-
tic processes may be approximated using binomial
lattices or trees and used with this approach.
The critical parameters required to model the GBM

are the starting value, $1,000 million in this example,
the risk-free interest rate r , assumed to be 8% per year,
and the volatility, denoted as � , which is the annual-
ized percentage standard deviation of the returns and
is given as 18.23% in this example. This allows the
computation of the values of p, u, and d, respectively
the risk-neutral probabilities and the up and down
proportional changes in the value per period illus-
trated in the previous example. With these param-
eters, this continuous-time stochastic process can be
approximated with a discrete time binomial lattice.
Copeland and Tufano assume this process represents
the evolution of the project value, without options,
over time and that this serves as the underlying asset
(MAD assumption).
The idea behind the calculation of the parameters

used in the binomial approximation of the stochastic
process is relatively simple. If the value of the project
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Figure 3 The Binomial Tree Approximation to the Geometric Brownian Motion
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is assumed to follow a GBM, then the estimate of its
value at any point in time has a lognormal distribu-
tion. By equating the first and second moments of a
binomial and a lognormal distribution, we can calcu-
late the corresponding values of u and d, and thus
Vu = Vu and Vd = Vd, for each branch of the binomial
approximation to ensure that the discrete distribution
approximates its continuous counterpart in the limit
as �t becomes small. Adding the convenient speci-
fication that u = 1/d to the equations for matching
the mean and variance of the GBM yields u= e�

√
�t .

We then obtain the risk-neutral probability p = �1 +
r�t−d�/�u−d�. In this example, we model three peri-
ods and choose �t = 1. Therefore, u = e0�1823 = 1�2,
d= 0�83, and p= 0�673. We emphasize again that only
three parameters are needed to specify this discrete
approximation to the GBM estimate of the evolution
of the uncertain project value over time: the estimate
of the current value of this project, the volatility of
the returns from the project, and the risk-free rate. For
details associated with this binomial approximation,
see Cox et al. (1979) or Hull (2003).
Copeland and Tufano (2004) solve this problem

using a recombinant binomial lattice and obtain the
value of the options by calculating a replicating port-
folio with values for A and B at each node in the
lattice. The value of the project at any point in this
lattice is given by Vi� j = V0 u

i−jdj . While this approach

is technically correct (given their assumptions), it is
neither intuitively appealing nor computationally
transparent.
The same parameters can be used in a decision tree

with binary chance nodes to yield an equivalent bino-
mial tree for the project value, as shown in Figure 3.
The values shown at each node in the tree are dis-
counted Year 3 values, instead of the actual values at
each point. However, it can easily be verified that this
binomial tree corresponds to the lattice developed by
Copeland and Tufano. Notice, for example, that the
value at the end of the up move in Time 1 and the
down move in Time 2 is exactly equal to the value at
the end of the down move in Time 1 and the up move
in Time 2. These two nodes would be combined into
one node in the corresponding binomial lattice.
The advantage of using the corresponding bino-

mial tree rather than a binomial lattice can now be
illustrated. The real options in the project can sim-
ply be modeled with decision nodes in the tree.
This results in the tree in Figure 4, which shows
that the expected value of the project with options
is $11 million after subtracting the initial investment
cost. Notice, however, that the effort should be aban-
doned if the expected value of the project is lower at
the end of the first time period, one year in this case.
The approximation to the GBM could be improved by
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Figure 4 Solution to the Real-Options Problem Using a Binomial Tree
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adding additional periods of shorter duration at the
expense of some computational burden.
This alternative approach yields the same optimal

exercise policy and the project value of $71 million
shown in Copeland and Tufano (2004) prior to sub-
tracting the investment cost. However, by using risk-
neutral probabilities in a decision tree, we did not
need to solve for the replicating portfolio at each
node. Further, the optimal policy is obvious from the
graphic view of the decision tree, whereas it must be
inferred from a binomial lattice representation.
The decision analyst might remain somewhat skep-

tical at this point, however, since this approximation
to the value of the project over time is based on the
GBM assumption, and the volatility of 18.23% was
simply given as one of the parameters for this prob-
lem. How might the volatility be derived in practice?
One might conjecture that the source of this volatil-
ity would be associated with uncertainties in some
underlying factors, such as sales volumes, prices,
costs, and competitors’ actions. Further, this analysis
is focused on the change in the estimated value of the
project and is very similar conceptually to the anal-

ysis of the value of a stock option using the Black
and Scholes model. Therefore, it is similar in spirit
to the simplistic option valuation approach suggested
by Leuhrman (1998a). There are no allowances for
changes in the cash flows over time, for the fact that
the value of any project with a finite life will change
as it is being executed or for options that occur during
the operating life of the project.
A traditional decision tree analysis of this same

problem might include estimates of the uncertainties
associated with these underlying factors (sales vol-
umes, prices, etc.) in the calculation of the present
values for the project, highlighting what Smith (1999)
has called an emphasis on modeling the sources of
uncertainty in decision analysis versus an emphasis
on modeling the dynamics of the uncertainty in real
options. As we shall see, however, these same sources
of uncertainty can be used to estimate the volatility of
the project returns, and their impacts on cash flows
over time can be modeled as well within this same
generalized framework. The latter, in turn, allows the
representation of real options that may occur during
the operating life of the project.
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4. Solving Real-Options Problems
with Binomial Decision Trees

Building on the work of Nau and McCardle (1991),
Smith and Nau (1995) suggested an approach for the
valuation of real options using decision analysis tech-
niques that differ in some significant ways from the
one described above. The valuation procedure utilizes
a separation of the project cash flows into two com-
ponents, one subject to market risks and the other
subject to private risks. Market risks depend only on
market states and can be hedged by creating a repli-
cating portfolio of traded securities. Private risks are
project specific and thus cannot be hedged by trad-
ing securities. The market component is then valued
using market information (risk-neutral probabilities),
while the private component is valued using subjec-
tive beliefs and preferences (subjective probabilities
and certainty equivalents). In this approach, as long
as all the market risks can be hedged with a marketed
commodity or security, there is no need to estimate a
risk-adjusted discount rate for the project risks.
This approach is generalized in an integrated roll-

back method. The steps of the procedure are as fol-
lows: (1) Calculate the NPV for all endpoints; (2) for
chance nodes with private uncertainties, use the
firm’s subjective probabilities and exponential utility
function; and (3) for chance nodes with market uncer-
tainties, use risk-neutral probabilities inferred from
market information. Smith and Nau (1995) demon-
strate this approach for the example of a plant in-
vestment with two underlying uncertainties: future
demand (which is correlated to a marketed security)
and plant efficiency (private risk).
In many projects, some uncertainties fall some-

where in between the notions of private and market
risks. For example, a pharmaceutical company’s new
drug development project may not include risks that
can be replicated by a traded asset, but the price of
the product is clearly a “market risk.” Moreover, a
project may have numerous uncertainties to model.
Even if we can separate them into these two classes
and establish replication for each individual market
uncertainty, the underlying decision tree is compu-
tationally unwieldy since we must include a sepa-
rate chance node for each uncertainty in each time
period. Smith and McCardle (1999) refer to the latter

as a “dream tree” that cannot be solved because of its
large size and suggest ways of trimming it.
An alternative to the construction of large trees

with multiple uncertainties in each time period is the
application of binomial decision trees to the approach
proposed by CA (2001), illustrated in the previous
example. In the discussion that follows, we will let Vi

and Ci be random variables representing the uncer-
tain project values and cash flows in period i, and
�Vi and �Ci will be their corresponding means. Realiza-
tions of these random variables will be denoted with
lower case, and the values associated with the dis-
crete approximations to these random variables will
be denoted as Vij and Cij , where j indicates an out-
come state.
In this development, we make the assumption that

the value of the project will evolve following a GBM
process but describe alternative assumptions in the
discussion. To show how this GBM assumption is
utilized, let Vi be the value of a project at time
period i and Vi+1/Vi be its return over the time
period between i and i+ 1. Under the random walk
assumption, the logarithm of the random return z=
ln�Vi+1/Vi� is normally distributed, and we define �z
and �2 as the mean and variance of this normal dis-
tribution. The assumption that the distribution of the
logarithm of the project returns at any time is normal
implies that the distribution of the project value at any
time is lognormal. Therefore, Vi will be lognormally
distributed and can be modeled as a GBM stochas-
tic process in the form dV = �V dt + �V dw, where
�= �z+ �1/2��2 and dw = �

√
dt is a standard Wiener

process. For a discussion of the random walk assump-
tion, see also Hull (2003) and Luenberger (1998).
The assumption that project returns follow a ran-

dom walk is important for projects that involve sev-
eral uncertainties because it allows any number of
uncertainties in the project model to be combined
into a single representative uncertainty: the uncer-
tainty associated with the stochastic process of the
project value V . The parameters of this process can
be obtained from a Monte Carlo simulation of the
project cash flows. With these parameters, a discrete-
time model using a binomial lattice or tree can be
used to approximate the composite continuous-time
stochastic process as before.
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Consider a project that will last n periods that
requires an initial investment I to be implemented
and that generates an expected cash flow �Ci, i =
1�2� � � � �n in each of these periods. For simplicity we
assume that the cash flows are paid instantaneously
at the end of each time period in a manner analogous
to stock dividends.
The problem is modeled in three steps. First, the

expected present value of the project at Time 0 is cal-
culated. Next, a Monte Carlo simulation is performed
to combine several sources of uncertainty into a single
representative uncertainty, which defines the stochas-
tic process for the value of the project. The third and
last step is to construct a binomial tree to model the
dynamics of the project value using the parameters of
the stochastic process and to add the decision nodes
to model the project’s real options.
These first two steps are identical to those pro-

posed by CA (2001). For the third step we provide
an alternative solution methodology based on a bino-
mial tree that offers computational advantages and
a more intuitive logic. For completeness, we briefly
summarize the first two steps below and then discuss
our proposed modifications of the third step in more
detail.

Step 1
The expected present value of the project at Time 0,
�V0, is determined using the traditional DCF method
and without considering any managerial flexibility.
This requires the estimation of the appropriate risk-
adjusted discount rate for the project without options
and introduces an element of judgment into this
valuation approach (which we shall discuss subse-
quently). These cash flows are then discounted at this
estimated risk-adjusted discount rate � to obtain the
expected present value of the project in each period:

�Vt =
n∑
i=t

�Ci

�1+��i−t
� (2)

The expected present value of the project will de-
crease in each period as t increases if the cash flows
are all positive, due to the payout of the cash flows
in each period. Thus, for a project with finite life, the
final value of the project will be 0.
The lognormal distribution of the project’s value

can be defined by the mean and standard deviation of

its returns. Under the MAD assumption, the present
value of the project without options is taken as its
market price, as if the project were a traded asset.
Assuming that markets are efficient, purchasing the
project at this price guarantees a zero NPV, and the
expected return of the project will be exactly the same
as its risk-adjusted discount rate �. As a result, the
mean of the project’s returns is exogenously defined.

Step 2
The standard deviation of the returns, or volatility
of the project, can be estimated from a Monte Carlo
simulation of the project returns. In this process, key
project uncertainties are entered as simulation input
variables in the project cash flow pro forma worksheet,
so that each iteration of a simulation of the worksheet
provides a new set of future cash flows ci, i= 1� � � � �n,
from which a new project value v1 at the end of the
first period is computed from (2):

v1 =
n∑
i=1

ci
�1+��i−1

�

Then a sample of the random variable z can be deter-
mined using the relationship

z= ln
(
V1
�V0

)
� (3)

where �z= E�z� is the mean of the distribution of the
project returns between Time 0 and Time 1. The esti-
mate of the standard deviation of z, denoted as s,
is obtained from the simulation results. The project
volatility � is then defined as the annualized percent-
age standard deviation of the returns and is estimated
from the relationship s/

√
�t, where �t is the length

of the period in years used in the cash flow pro forma
worksheet. If the time period between V1 and �V0 is
one year, then � = s.

Step 3
With the project volatility determined as indicated
above, and given the initial expected project value �V0,
a binomial lattice can be constructed to model the
stochastic process for project value. The volatility for
each time period in the binomial lattice is �

√
�t,

where �t is the time period used in the lattice. This
is the approach illustrated by CA (2001).
In contrast to the CA approach, we use a binomial

tree and express the project value in terms of a more
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basic variable: the project cash flows. To do this, we
use the cash flow payout rate, #i = �Ci/�Vi, to calcu-
late the cash flows that are paid out at the end of
each time period as a function of the project value.
We assume that the cash flows will vary over time,
reflecting the uncertainty in the project value, but that
they will remain a constant fraction of the residual
value of the project in each time period. These cash
flows �Ci� j � will therefore be a function of the project
value and the stochastic process that drives the bino-
mial model. The primary advantage of this approach
is that it provides greater flexibility in the modeling
of the real options of the project.
To obtain the cash flows, we begin by building

the tree of pre–cash flow payout values. These val-
ues are calculated according to the following equa-
tions, where the superscripts u and d correspond to
the up and down state values and the state subscript
is suppressed:

V u
i = �Vi−1−Vi−1 #i−1�u

V d
i = �Vi−1−Vi−1 #i−1�d�

The logic of this relationship should be transparent.
Vi−1 is the value of the project in the previous state,
and Ci−1 = Vi−1#i−1 is the cash flow paid out at the
end of the period, which reduces the project value in
the subsequent states.
There are no cash flows in the initial period �i= 0�,

since the project has not yet been initiated, so #0 = 0.
For i = 1, V u

1 = uV0 and V d
1 = dV0. For all subsequent

periods, the cash flow payout rate is assumed to be
constant across states in each period but variable in
time, so the cash flows in each period are a fixed pro-
portion of the value of the project in that period and
state, as noted above. That is,

#i =
�Ci

�Vi

= Ci� j

Vi� j

∀ j� (4)

Therefore, the discounted cash flow in each period/
state is simply given by

Ci� j =
Vi� j#i

�1+ r�i
� (5)

Thus, (5) provides the branch values in each chance
node of the binomial tree. Since risk-neutral probabil-
ities are being used, these cash flows are discounted

at the risk-free rate to arrive at the present value of
the project at Time i= 0.
The use of project cash flows in this approach

provides a greater level of detail in modeling the
operation of the project and the effects of manage-
rial decisions. For example, these cash flows could
“ramp up” over the early years of a project as sales
are forecasted to grow and decrease at an increasing
rate at the end of the project life-cycle. As another
example, a model of the development of an oil field
could show “lumpy” increases in production as new
wells are added, and then show a decrease in pro-
duction that would follow a decline curve. The model
allows simple abandon options to be included in the
tree and expansion and contraction options that can
be modeled as percentage changes in the underlying
cash flows. For example, the option to sell a half inter-
est in the project could be modeled as a 50% reduc-
tion in subsequent cash flows, or the option to expand
operations could be modeled as a percentage increase
in cash flows.
The use of these cash flows, rather than project

values, allows the easy use of decision trees rather
than binomial lattices to evaluate project options. As a
result, the evaluation of real options can be carried out
conveniently using “off-the-shelf” decision tree soft-
ware and allows options to be included in the models
using decision nodes that are a natural part of this
problem representation.

5. An Example Problem
We illustrate this approach to the evaluation of real
options by solving for the value of an oil production
project using commercially available decision analysis
software, DPL™. While a decision tree representation
in DPL™ does not take advantage of the recombining
feature of binomial lattices and thus results in larger
trees than necessary, it is a convenient and flexible
modeling tool that provides a simple and intuitive
visual interface.
The example project has estimated reserves of

90 million barrels, and the initial production level
of 9 million barrels declines by 15% per year over
its 10-year operating life. The variable operating cost
starts at $10 per barrel in Year 0 and grows at 2% per
year. Oil price starts at $25 per barrel and grows at
3% per year. There is also a $5 million per year fixed
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Table 1 Base Case Expected Cash Flows for the Project

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining reserves 90�0 81�0 73�4 66�8 61�3 56�6 52�6 49�2 46�3 43�9
Production level 9�0 7�7 6�5 5�5 4�7 4�0 3�4 2�9 2�5 2�1
Variable op cost rate 10�2 10�4 10�6 10�8 11�0 11�3 11�5 11�7 12�0 12�2
Oil price 25�8 26�5 27�3 28�1 29�0 29�9 30�7 31�7 32�6 33�6
Revenues 231�8 202�9 177�6 155�5 136�2 119�2 104�4 91�4 80�0 70�0
Production cost �96�8� �84�6� �74�0� �64�8� �56�9� �50�0� �44�0� �38�8� �34�3� �30�4�
Cash flow 135�0 118�3 103�6 90�7 79�3 69�2 60�4 52�6 45�7 39�6
Profit sharing �33�7� �29�6� �25�9� �22�7� �19�8� �17�3� �15�1� �13�1� �11�4� �9�9�
Net cash flows 101�2 88�7 77�7 68�0 59�5 51�9 45�3 39�4 34�3 29�7
PV of cash flows 404�0 444�5 377�6 317�7 264�0 215�6 171�7 131�8 95�1 61�3 29�7
Cash flow payout rate 0.228 0.235 0.245 0.258 0.276 0.302 0.344 0.414 0.559 1.000

cost that is not shown in the table. The appropriate
risk-adjusted discount rate is assumed to be 10% per
year, and the risk-free rate is 5% per year. We initially
determine the expected value of the future cash flows,
which are shown in Table 1. All values are in millions
of dollars.
The Year 0 present value of the expected cash flows

is $404.0 million, which was calculated using the risk-
adjusted discount rate of 10% per year. This is used
as the best estimate of the current market value of
the project without options (base case). The required
up-front investment is $180 million, so the project’s
NPV is $224.0 million. The project value at the end
of each year may be determined using Equation (2),
along with the corresponding cash flow payout rate #i
in each period using (4). For example, the cash flow
payout rate in Year 1, #1, is 101�2/444�5 = 0�228, as
shown in Table 1.
In the next step, project uncertainties that may have

some correlation with the market are inserted into
this deterministic model to perform a Monte Carlo
simulation on the project cash flows. We assume that
the project has two primary sources of market uncer-
tainty, price and variable operating costs, which fol-
low a GBM stochastic diffusion process with a mean
annual rate of increase of 3% and volatility of 15%
for the price process and of 2% and 10%, respec-
tively, for the variable costs process. We could have
made additional input variables to this model uncer-
tain and included correlations or other relationships
among them without any impact on the subsequent
computational burden.
After a large number (e.g., 10,000) of iterations,

the Monte Carlo simulation will provide the standard

deviation of the project returns (3) to obtain an esti-
mate of the project volatility, which was determined
to be � = 46�6%. This estimate of the project volatil-
ity was calculated directly from the simulation as
explained earlier, and since the time periods are one
year in length in this example, this is the annualized
volatility of the project returns. The project volatility
may be significantly different from the volatility of the
underlying project uncertainties because of the effects
of operational leverage. In this example, the impact
of price uncertainties on project cash flows may be
magnified by the subtraction of operating and fixed
costs.
The final assumption is that these returns are nor-

mally distributed; consequently, the project values are
lognormally distributed and can be modeled as a
GBM with constant volatility. The binomial approx-
imation to the GBM process may be modeled using
the DPL™ software. The input parameters are the
Year 0 value of the project, the volatility � , the risk-
free rate of return r , and the project cash flow payout
ratios. The values of u, d, and the risk-neutral prob-
ability p are incorporated into the model and com-
puted according to the formulas defined previously.
The cash flows in the DPL™ model are computed
using (5), and the value of the project is determined
by applying the usual procedures of dynamic pro-
gramming implemented in a binomial tree and dis-
counting the expected cash flows at the risk-free rate
of return.
This construction of the tree guarantees that the

present value obtained with this model is the same as
the one calculated with the spreadsheet, as illustrated
in Figure 5, where only the first four of the ten periods
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Figure 5 Binomial Tree Model of Value of Project Without Options

High

204.10.437

[1,143]

Low

80.370.563

[637.1]

T3

T4

T4

T4

T4

T4

T4

T4

T4

T3

T3

T3

High

168.90.437

[858.3]

High

80.370.437

[534.7]

Low

31.650.563

[335.5]

 Low

66.510.563

[422.6]

T2
High

139.60.437

[613.2]

High

80.370.437

[450.1]

Low

31.650.563

[250.9]

High

66.510.437

[338]

High

31.650.437

[210.5]

Low

12.460.563

[132.1]

Low

26.190.563

[166.4]

T2
Low

54.980.563

[241.4]

T1
[404]

of the tree are shown. Tree building can be greatly
simplified by developing a standard template for a
binomial tree for any given number of time periods.
The inputs to the binomial tree can also be linked to a
spreadsheet using software packages such as DPL™.
This binomial tree represents the underlying asset

and can now be used to evaluate real options. Sup-
pose the project can be divested in the fifth year of its
life for a price of $100 million. The firm might specif-
ically want this option if it is averse to risks later in
the project life. Given the binomial tree representa-
tion, this option can be evaluated by simply inserting
a decision node in Year 5 that models the managerial
flexibility that exists in the fifth year of the project.
Additional options can be evaluated by adding the

appropriate decision nodes in the tree. For example,
suppose the firm can also buy out its partner (assume
the partner holds a 25% interest) in Year 5 at a cost of
$40 million. Since the firm already owns 75% of the
project, purchasing the remaining 25% represents an
increase in value of one-third. A new present value
for the project is then computed using the same risk-
neutral probabilities, as illustrated in Figure 6, where
again, not all nodes are expanded.
In some of the states the option to abandon by

divesting ownership in the project will be exercised,

and in others the buy-out option is exercised. The
value of the project with these real options is
increased to $444.9 million, as shown in Figure 6.
More options and time periods can be added in a
straightforward manner.
As noted earlier, additional market uncertainties

could be added to the simulation model and would
increase the volatility estimate for the project if not
negatively correlated with the other risks. As a result,
the value of the options would increase relative to the
project base value because of the increase in volatility.
In a manner consistent with the approach Smith

and Nau outlined earlier, we can also add private
uncertainties to this problem. For example, suppose
the oil production in this example is driven by an
underlying aquifer, and there is uncertainty about the
level at which the oil-water interface exists. When
this interface reaches the well, it will begin produc-
ing water, and operations will be shut down. This is
an example of an uncertainty that has zero correlation
with any marketed security. We can model this uncer-
tainty in the decision tree by adding chance nodes in
the appropriate time periods in the tree and increas-
ing the probability as time goes on and the limit of
oil production is approached. A decision tree for this
addition to our model is shown in Figure 7, where we
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Figure 6 Value of Project with Option to Buy Out and Divest
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assume that water can only reach the well after five
years of operation.
As we would expect, adding this uncertainty re-

duces the overall value of the project ($428.0 million,
solved tree not shown), since the occurrence of water
in the well terminates the cash flows but the exposure
to this downside loss is greatly limited by our option
to divest. Without this option, the project value would
fall to $397.1 million. This value is easily calculated by

simply removing the decision branch for the abandon
option.
Thus far, in considering the private uncertainty, we

have assumed the firm is risk neutral. This may be
reasonable for a very large firm that has exposure to
many such projects. However, a small firm with a
limited number of such capital investments may be
risk averse, rather than risk neutral. As the cost of
the investment increases, a risk-averse firm will have
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Figure 7 Project with Real Options and a Private Risk
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a decreasing marginal value for the project because it
loses the ability to diversify its risks. The risk aversion
of such a firm can be modeled by assessing its utility
function. For this example, we assume the firm’s util-
ity function is the exponential form U�c0� c1� � � � � cT �=
−∑T

t=0 exp�−ct/RTt�, where ct and RTt are the cash
flows and risk tolerances, respectively, in each period.
We use RT0 = $100MM and increase each subsequent
risk tolerance over time to reflect the firm’s time pref-
erence for cash flows, as indicated by a 10% discount
rate. An effective risk tolerance for each period can
then be calculated as described by Smith and Nau
(1995) and entered into the chance nodes for the pri-
vate risks for the calculation of the certainty equiva-
lent for the project.
The firm’s effective risk tolerance is applied to

chance nodes for the private risk only, so the risk-
neutral view is retained for the chance nodes in the
tree that are risk-adjusted by the risk-neutral proba-
bilities. This change in the model results in a drop
in value measured by the certainty equivalent to
$400.5 million. Although the value has been further
reduced, the risk-averse firm is protected by the aban-
don option.

6. Discussion
The objective of showing the developments in the pre-
vious sections was to illustrate how binomial deci-
sion trees can be used to solve real-option problems
using the approach suggested by CA (2001). To make
this discussion as simple and transparent as possible,
we have focused on their basic approach as it is pre-
sented in their textbook. However, this approach can
be modified to include the use of alternate stochastic
processes rather than the GBM, and therefore it pro-
vides additional flexibility.
In practice, there are a number of issues that should

be considered in an attempt to apply this method-
ology within a decision-analysis framework. Like all
modeling approaches, this framework has its limita-
tions, but it also has some flexibility that should be
recognized. We will organize this discussion to focus
on the assumptions required by this approach, and
on ways in which this model might be extended. As
we shall see, the CA approach implemented using
binomial decision trees can be viewed as complimen-
tary to the decision analysis approach to solving real-
options problems developed by McCardle, Nau, and
Smith.
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The MAD Assumption
The use of the MAD assumption by CA as the basis
for creating a complete market for an asset that
is not traded could lead to significant errors, since
the approach is based on assumptions regarding the
value of the project without options that cannot be
tested in the market place. Since identical copies of
the project are not freely traded in the market, this
should be recognized as a strong modeling assump-
tion to justify the use of risk-neutral pricing for project
options.
The choice of the discount rate for the project with-

out options is left to the discretion of the analyst,
and the use of the WACC will not be appropriate
for all projects even though it is commonly used in
practice. Therefore, it is important to realize that the
issue of selecting a “risk-adjusted” discount rate for
the project is not resolved by this methodology.
Under ideal conditions, the MNS approach avoids

this problem by dividing risks into market and
private categories and by using information from
market-traded commodities (oil prices in the case of
Smith and McCardle 1999) or from a correlated stock
price (Smith and Nau 1995) to estimate the risk-
neutral probabilities for these risks. We agree that
this should be done when such market information
is available, and in fact it can be incorporated into
the CA simulation model was well. For example, the
stochastic process for oil price in the example pro-
vided in the previous section could easily be speci-
fied using market information (e.g., see Schwartz and
Smith 2000). It might also be possible to find market
replication to approximate the cost process, in which
case the appropriate risk-adjusted rate for the project
would be the risk-free rate, and this would be logi-
cally consistent with the MNS approach.
As a practical matter it may be difficult to iden-

tify replicating portfolios of market-traded assets for
all market risks in a project. For example, the risks
associated with a pharmaceutical company’s new
drug might include marketing costs, market size, and
price, and it may be impractical to estimate repli-
cating portfolios of market-traded assets for each of
them. In such a case, Smith (personal communication,
May 2002) suggests estimating the risk premiums for
these risks by considering their correlations with the
market and effectively estimating their appropriate

“risk-adjusted” discount rates, which would result in
a similar discounting approach to the one suggested
by CA. Therefore, when used with proper judgment
regarding the pricing of market risks, the MNS and
CA approaches will use similar modeling inputs.

Market vs. Private Risks
The risks that are included in the simulation model
used by CA (2001, Chapter 9)—price, quantity, and
variable costs—may all have some correlation with
the market and therefore be considered market risks.
The use of the simulation model as a basis for esti-
mating the project’s value without options and its
volatility should be restricted to include only risks
that arguably have some correlation with the market.
CA (2001, Exhibit 10.1) illustrate how to include

private risks in their analysis as well, and treat them
independently in a manner similar in spirit to the
approach suggested by Smith and Nau (1994). That
is, these risks are kept separate in their “event tree,”
but the solution is still carried out using replicating
portfolios at each node. This same problem can be
solved using DPL™, where the discrete approximation
to the underlying stochastic process is kept separate
from chance nodes representing the private risk. This
approach is also illustrated by the incorporation of the
private risk associated with the oil-water interface in
the example in the previous section.

GBM Assumption
The GBM assumption is a standard one in finance as
an estimate of the price or value of a market-traded
asset. As indicated earlier, CA provide a rationale and
some empirical results to support this assumption as
a reasonable one to consider for estimating the future
value of a project. However, they also recognize that
this assumption may not be appropriate for every
project. For example, they discuss the use of the bino-
mial lattice to value options on projects that follow an
arithmetic Brownian motion (ABM) in instances when
the change in the asset’s value is assumed to be addi-
tive rather than multiplicative and project value may
go negative.
However, there is considerable flexibility in mod-

eling the underlying stochastic process with a bino-
mial tree. If the primary uncertainty associated with
an asset is thought to be mean reverting, as in the
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case of oil or other commodity prices, then Hahn and
Dyer (2004) show how a binomial tree may be used to
approximate such mean-reverting models as the one-
factor Ornstein-Uhlenbeck process or the two-factor
Schwartz and Smith (2000) process. CA (2001, Chap-
ter 9) also discuss the use of a mean-reverting stochas-
tic process within this framework.
We have illustrated the use of simulation to esti-

mate the volatility associated with a project by cal-
culating its value at the first period only and then
assuming that it remains constant over the life of
the project, as required by the GBM assumption.
That assumption could be verified by calculating the
volatility at other time periods during the simulated
project life using Equation (3), modified to adjust for
the appropriate time period. This would be especially
relevant if some of the risks in the simulation model
were changing over its life in idiosyncratic ways. For
example, if the production rate were decreasing over
time, the volatility might be decreasing as well. Other
uncertainties may not occur until several time periods
have passed, such as those associated with a planned
investment decision or new product introduction, or
they may even be modeled as jump processes.
This heteroskedasticity could be incorporated by

changing the volatility in the binomial tree at the
appropriate time periods, which would be imple-
mented by corresponding changes in the values
of u, d, and the risk-neutral probability p in these time
periods. CA (2001, p. 342) recognize this possibility
and note that the stochastic process could be mod-
eled with a binomial tree rather than with a binomial
lattice. While it may be possible to develop a recom-
bining lattice with changing volatility over time, this
introduces additional complexity into the calculation
of the probabilities on the branches. It is relatively
straightforward, however, to model a heteroskedastic
process using the decision tree approach that we have
illustrated.
The obvious alternative to the CA approach is to

use the model and distributions from the Monte Carlo
simulation to build a traditional decision tree with
chance nodes for each uncertainty in each period
and value the options in the problem without using
the GBM approximation or one of the extensions
mentioned above. This may lead to a more complex
model and would require the estimation of a set of

conditional probability distributions for the uncertain-
ties in each period where they appear. If the uncer-
tainties were correlated, this approach would become
even more challenging. But if one were careful about
exploiting the recombining nature of the resulting
trees, it could still be manageable.
The representation of the individual market risks

with separate chance nodes might provide additional
insights into the way the optimal exercise strategies
for the options depend on a key uncertainty, and
this might be lost when these uncertainties are com-
bined into a single stochastic process using the CA
approach. The choice of one approach or the other
should depend, we suggest, on both the nature of the
problem and the preferences of the modeler.

Binomial Lattice vs. Binomial Trees
We have discussed how binomial trees with risk-
neutral probabilities may be used to provide discrete
time approximations to the stochastic processes that
are often used in the valuation of real options. While
this approach is suggested by CA, they emphasize
the use of binomial lattices and replicating portfolios.
We believe that most decision analysts—and most
managers without technical training in real options—
would find a problem representation based on bino-
mial trees to have more intuitive appeal.
Even for a simple model such as the one illus-

trated in the previous section, the decision tree very
quickly becomes large. In most practical problems
the complexity of the decision tree will be such that
full visualization will be impossible. However, even
large problems with literally millions of endpoints for
the tree can be solved using this approach. Brandão
(2002) provides an example of the application of this
methodology to the evaluation of options associated
with a highway project in Brazil that includes 20 time
periods and several different options, resulting in a
decision tree with 2 × 109 endpoints that is solved
within practical computational times.
If only the expected value of a project is needed, it

is not necessary to expand the binomial tree beyond
the point at which the last option is introduced as a
decision node, since the expected value of this expan-
sion is known at that point. This is illustrated in Fig-
ure 4, where the binomial chance node for the third
period is not expanded if the decision to invest in the
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new plant is made. This could provide some compu-
tational efficiency in some applications.
While an n period recombining binomial lattice has

a total of �n+ 1��n+ 2�/2 nodes, an equivalent bino-
mial tree has 2n+1 − 1 nodes, which represents a sig-
nificant difference for large values of n. Therefore,
we conducted a simple comparison of the computa-
tional performance of a real options problem modeled
with the binomial tree versus the binomial lattice. The
problem we selected was the example problem used
by Copeland and Tufano (2004) and solved using a
binomial tree with n = 3 time periods in our earlier
example.
We created a binomial lattice to solve this problem

using a VBA code and compared its performance to
the corresponding binomial tree representation solved
using DPL™ (version 6). While other commercial deci-
sion tree software, such as PrecisionTree™, could be
used for example problems in a classroom setting, we
believe that the influence diagram interface in DPL™

is useful for modeling problems of realistic size using
this approach. We made no effort to optimize the com-
putational efficiency of the DPL™ software, and sim-
ply used the default settings.
According to Hull (2003), in practice solving a

binomial lattice with n= 30 usually gives reasonable
results, so we used this as the upper limit for our
range. The results were obtained with an IBM T40 lap-
top computer using a 1.5 GHz processor and 256 K
RAM, and are shown in Figure 8.
As indicated in Figure 8, a well-constructed lattice

is much more computationally efficient, which may
be very important in large problems or when a high

Figure 8 Comparison of Computational Efficiency: Tree vs. Lattice
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degree of accuracy in the estimate is required. How-
ever, the binomial tree is certainly a practical com-
putational tool for n = 20 periods and could even
be used for larger numbers of time periods, up to
approximately the n= 30 periods suggested by Hull.
A characteristic of the binomial method is that the
convergence is not smooth and oscillates around the
true value (Clewlow and Strickland 1998, p. 20). For
this reason it may be desirable to make several com-
puter runs with binary decision trees of different time
periods and average the results. On the other hand,
estimates of value in real-options problems may not
require the same accuracy that is typically demanded
when using lattices to value financial options.
The lattice also provides a representation of the

problem that is visually more compact. The optimal
exercise decisions can be indicated by shading or for-
matting values shown in the lattice, and it may be
easier to see thresholds, e.g., exercise if the value
exceeds some specific number, in the lattice. However,
binomial lattices do become complex when dealing
with multiple uncertainties, “path-dependent” uncer-
tainties or payoffs, and complex options. These prob-
lems can be handled more conveniently with binomial
trees. For example, compound options can be mod-
eled simply by adding additional decision nodes to
the binomial trees.
According to Triantis and Borison (2001), the choice

of a binomial lattice or tree structure by analysts in
practice often reflects the background of the individ-
ual as well as the complexity of the project being eval-
uated. Binomial lattices are typically used by those
with finance training who are looking at relatively
straightforward investment problems.
Perhaps a more relevant comparison of the com-

putational efficiency of the binomial tree based on
the CA approach would be with the probability tree
required by the MNS method. If there is only one mar-
ket uncertainty in the corresponding tree, and a tri-
nomial chance node is created with estimates of high,
medium, and low outcome values, for example, then
after 10 periods it would contain 88,573 nodes, com-
pared with 66 for the binomial lattice and 2,047 for
the binomial decision tree. Of course the use of the
trinomial chance nodes would provide more precision
in the estimation of the stochastic process associated
with the risk, so a smaller number of periods might
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be used. If there were two market uncertainties in the
problem, as in the example in the previous section,
the MNS probability tree with trinomial chance nodes
would contain almost 4 billion nodes after 10 peri-
ods. In general, it would contain 1+∑n

i=1�x
m�i chance

nodes, where x is the number of branches at each
node, m is the number of market risks, and n is
the number of periods. A seasoned analyst would
never try to build such a tree and would find ways
to trim it to a manageable size. For example, Smith
and McCardle (1998, 1999) discuss the use of dynamic
programming formulations and lattices in such set-
tings. Nevertheless, it should be clear that the MNS
approach will generate very large “dream trees” as
well and cannot be applied naively to projects on a
period-by-period basis.
In practice, we think that the decision analyst

should be aware of the trade-offs between the use of
the binomial tree and the binomial lattice to model
real-option problems and recognize that there may be
situations in which one or the other would be pre-
ferred. Similar considerations would apply to the use
of the MNS approach as well.

Summary
We have shown an approach for solving real-option
valuation problems with decision analysis methods
that is consistent with finance-based methods used
in practice. This approach provides a straightforward
yet flexible way to implement real-option valuation
techniques using off-the-shelf decision analysis soft-
ware. Additional computational efficiencies may be
obtained by using specially coded algorithms to solve
binomial lattices, although at the cost of having to
forgo the simple user interface offered by decision tree
programs such as DPL™ and the advantage of visual
modeling and a logical representation.
The CA approach can be used to create models that

are consistent with the ideas developed by MNS. The
primary difference between these two approaches is
in the treatment of the market risks in the models. CA
suggest reducing them to one stochastic process by
focusing on their impacts on cash flows. MNS model
these individual risks in each time period. This sug-
gests that the CA approach might be an appropriate
choice if there are several market risks and several
time periods in a model, whereas the MNS approach

may be the preferred approach if the number of mar-
ket risks is limited, as in oil and gas exploration. Indi-
vidual modeling skills and preferences would also be
a major consideration.
We agree with Triantis and Borison (2001) that

there should be a convergence of real-option eval-
uation models between finance and decision analy-
sis. In their recent summary article, Smith and von
Winterfeldt (2004) also call for more research on
the links between decision analysis and finance. The
recognition of the similarities between the use of bino-
mial decision trees and the use of binomial lattices for
solving real-option problems offers a rich opportunity
for further research.
Our comparisons between the CA and MNS ap-

proaches have been based on observations and mod-
eling experiences rather than on a rigorous theoreti-
cal analysis, and we acknowledge that more could be
done to explore these ideas. Likewise, our computa-
tional comparisons were merely suggestive of more
rigorous work that could be done to investigate the
computational properties of these methods.
Based on our experience in modeling ABM and

GBM processes, we have also developed a binomial
decision tree approach that can be applied to model
mean-reverting stochastic processes (Hahn and Dyer
2004). In this spirit there may be more to be gained
by reviewing other work on binomial lattices that has
appeared in the finance literature and adapting some
of these models into a decision analysis framework.
All of the spreadsheets and DPL™ models for the

example problems in this paper are available in the
Online Supplements section of the Decision Analysis
web page.
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