
Decision Analysis
Vol. 2, No. 2, June 2005, pp. 89–102
issn 1545-8490 �eissn 1545-8504 �05 �0202 �0089

informs ®

doi 10.1287/deca.1050.0041
©2005 INFORMS

Alternative Approaches for Solving
Real-Options Problems

(Comment on Brandão et al. 2005)

James E. Smith
Fuqua School of Business, Duke University, Box 90120, Durham, North Carolina 27708-0120,

jes9@duke.edu

Brandao et al. (2005) describe an approach for using traditional decision analysis tools to solve real-option val-
uation problems. Their approach calls for a mix of discounted cash flow analysis and risk-neutral valuation

methods and is implemented using Monte Carlo simulation and binomial decision trees. In this note, I critique
their approach and discuss some alternative approaches for solving these kinds of problems. My criticisms and
suggestions concern implementation issues as well as more fundamental issues. On implementation, I discuss
the use of binomial lattices instead of trees, and alternative methods for estimating volatilities. More fundamen-
tally, I discuss alternative approaches that rely entirely on risk-neutral valuation and model the uncertainties in
the problem more directly.
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1. Introduction
The real-options approach to evaluating investments
dates back to Myers (1977, 1984), who suggested
using techniques like those used to value put and call
options on stocks to value real (nonfinancial) invest-
ments where management can “exercise options” to
adapt strategies during the course of the project.
Some have taken this charge quite literally and sug-
gest using the Black-Scholes formula for valuing put-
and-call options on a stock to value real projects
(see, e.g., Luehrman 1998). Applying this formula in
real-options applications requires drawing an anal-
ogy between the project and a put or call option:
For example, starting the project is like exercising a
call option with a strike price equal to the capital
investment required for the project. Of course, deci-
sion analysts have long modeled options or “down-
stream decisions” using decision tree models. While
options may be familiar to decision analysts, real-
options analysis typically uses a risk-neutral val-
uation procedure that is less familiar to decision
analysts. The risk-neutral valuation procedure incor-
porates risk premiums by risk-adjusting probabilities

rather than risk-adjusting discount rates or determin-
ing certainty equivalents using a utility function.
Brandão et al. (BDH) (2005) describe an approach

for solving real-options problems that builds on the
ideas of Copeland and Antikarov (2001, hereafter
C&A) and uses traditional decision analysis tools.
Specifically, BDH propose a three-step process:
(1) Calculate the expected net present value (NPV)

of the project without options using a deterministic
discounted cash flow (DCF) analysis based on a risk-
adjusted discount rate.
(2) Estimate the volatility of the value of the project

without options using this discounted cash flow
model and a Monte Carlo simulation that describes
the uncertainty in the project cash flows.
(3) Build a binomial tree that approximates a geo-

metric Brownian motion approximation of the uncer-
tainty in the value of the project without options over
time and incorporate options in this tree. In this step,
values are calculated using risk-neutral valuation, that
is, calculating expected NPVs using risk-neutral prob-
abilities and discounting at the risk-free interest rate.
In Steps 1 and 2, BDH follow C&A exactly. In Step 3,
they differ from C&A in recommending use of a

89



Smith: Alternative Approaches for Solving Real-Options Problems
90 Decision Analysis 2(2), pp. 89–102, © 2005 INFORMS

binomial decision tree rather than a binomial lat-
tice. Like earlier real-options work, the BDH and
C&A approach can be interpreted as building on the
analogy with an option on a stock: The first step
provides an estimate of the value of the underly-
ing stock and the second step estimates the volatil-
ity of this stock. Project cash flows are modeled as a
time-varying dividend stream paid by the stock. The
numerical methods in Step 3 of the process are quite
similar to those used to value American or Bermudan
put-and-call options on a stock (those that allow early
exercise), although BDH contemplate somewhat more
general kinds of options.
In this paper, I critique BDH’s approach and discuss

some alternative approaches for solving real-options
problems. Although I focus on areas where I disagree
with BDH’s proposal, there are also many points of
agreement that should be emphasized. First, above
all, we agree that it is important to model the reso-
lution of uncertainty over time, and options that can
be exercised as information is gathered. The values,
strategies, and insights derived from these dynamic
models may be significantly different and richer than
those generated by models that do not capture these
dynamics. Second, we agree that it is important to
recognize the relationship of the project to the mar-
ket and the implications this has for values and opti-
mal strategies. Again, the values and insights derived
from such analyses may be significantly different from
those that use a constant corporate discount rate
and/or utility function to calculate expected NPVs or
certainty equivalents for all projects. Third, we agree
that the marriage of simulation, decision tree, and/or
dynamic programming models with risk-neutral valu-
ation techniques provides a very fruitful approach for
modeling dynamics and incorporating market infor-
mation into project evaluations.
My criticisms of BDH’s approach concern specific

implementation issues as well as more fundamental
issues. To be constructive as well as critical, I sug-
gest alternative approaches that address these con-
cerns. In §2, I consider the use of binomial lattices
in Step 3 of BDH’s procedure and compare the lat-
tice approach to BDH’s binomial tree representation
using BDH’s oil production problem as an example.
In §3, I show that BDH’s (or C&A’s) proposed pro-
cedure for calculating volatilities often overstates the

actual uncertainty in the cash flows and, hence, will
overstate the value of many options. In §4, I turn
to more fundamental issues and recommend using
a fully risk-neutral approach to value projects rather
than using a mix of discounted cash flow and risk-
neutral methods. The fully risk-neutral approach is,
I believe, better grounded in theory and leads to
a single coherent valuation model that can be used
to value projects with and without options. In §5,
I discuss the use of the value of the project with-
out options as the underlying uncertainty and argue
that, although this approach is potentially useful in
some cases, it is not broadly applicable. In this section,
I consider more general techniques that model the
underlying uncertainties directly, focusing on the use
of Monte Carlo methods (e.g., Longstaff and Schwartz
2001) for solving real-options problems. In §6, I sum-
marize and conclude.
BDH’s paper contains numerous caveats and qual-

ifications; many of my criticisms and suggestions
elaborate on points they mention in their paper. In
critiquing their approach and discussing alternatives,
my goal is to help decision analysts better understand
these methods so that they can improve their model-
ing of dynamic decision problems.

2. Binomial Lattices vs. Binomial
Trees

BDH discuss the pros and cons of using binomial
trees versus using binomial lattices to model real-
options problems, and recommend the use of bino-
mial trees. They recognize that binomial trees are
more “computationally intensive” than binomial lat-
tices, but argue that binomial trees are “simpler and
more intuitive” (see BDH’s abstract). Although deci-
sion trees may be more familiar to decision ana-
lysts, I think that when lattices can be used, they
are both simpler and more intuitive than trees. In
this section, I will present a lattice model of BDH’s
oil production example so readers may compare the
two approaches. Luenberger (1998) and Hull (1997)
provide more detailed introductory discussions of
lattices.
Figure 1 shows a lattice model of the BDH oil pro-

duction example implemented as an Excel spread-
sheet; this spreadsheet is available from the journal’s
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Figure 1 A Lattice Model of BDH’s Oil Production Example

Assumptions

Initial Value 404.0 u 1.593607
� 46.6% d 0.627507
�t 1 r�t 0.05
r 0.05 p 0.437

Cash flow payout ratios

0 1 2 3 4 5 6 7 8 9 10

0.00000 0.2277 0.2350 0.2446 0.2577 0.2759 0.3054 0.3436 0.4144 0.5591 1.0000

Values without options (then-current $million)

0 1 2 3 4 5 6 7 8 9 10

404.0 643�8 792�4 966�0 1	162�9 1	375�6 1	587�3 1	764�7 1	845�9 1	722�6 1	210�4
253�5 312�0 380�4 457�9 541�7 625�0 694�9 726�9 678�3 476�6

122�9 149�8 180�3 213�3 246�1 273�6 286�2 267�1 187�7
59�0 71�0 84�0 96�9 107�7 112�7 105�2 73�9

28�0 33�1 38�2 42�4 44�4 41�4 29�1
13�0 15�0 16�7 17�5 16�3 11�5

5�9 6�6 6�9 6�4 4�5
2�6 2�7 2�5 1�8

1�1 1�0 0�7
0�4 0�3

0�1

Cash flows (then-current $million)

0 1 2 3 4 5 6 7 8 9 10

0.0 146�6 186�2 236�3 299�7 379�5 480�0 606�3 764�9 963�1 1	210�4
57�7 73�3 93�0 118�0 149�4 189�0 238�8 301�2 379�2 476�6

28�9 36�6 46�5 58�8 74�4 94�0 118�6 149�3 187�7
14�4 18�3 23�2 29�3 37�0 46�7 58�8 73�9

7�2 9�1 11�5 14�6 18�4 23�2 29�1
3�6 4�5 5�7 7�2 9�1 11�5

1�8 2�3 2�9 3�6 4�5
0�9 1�1 1�4 1�8

0�4 0�6 0�7
0�2 0�3

0�1

Values with options (then-current $million)

0 1 2 3 4 5 6 7 8 9 10

444.9 686�4 848�9 1	060�4 1	333�1 1	667�6 1	587�3 1	764�7 1	845�9 1	722�6 1	210�4
296�7 347�5 412�5 501�8 632�4 625�0 694�9 726�9 678�3 476�6

175�8 191�1 206�1 224�8 246�1 273�6 286�2 267�1 187�7
125�7 128�1 123�2 96�9 107�7 112�7 105�2 73�9

108�2 109�1 38�2 42�4 44�4 41�4 29�1
103�6 15�0 16�7 17�5 16�3 11�5

5�9 6�6 6�9 6�4 4�5
2�6 2�7 2�5 1�8

1�1 1�0 0�7
0�4 0�3

0�1
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website. Although BDH’s Figures 6 and 7 show only
a very small portion of the full binomial tree for the
problem, Figure 1 provides a complete description
of all possible cash flows and values. The top part
of the spreadsheet shows the model’s assumptions;
these are exactly as given by BDH. The initial value is
assumed to be $404.0 million, the volatility � is 46.6%
per year, the time step �t is one year, and the risk-free
rate r is 5% per year. The up multiplier u is given by
exp
��t�= exp
46�6% per year× 1 year�= 1�594, and
the down multiplier d is 1/u= 0�6275. The probability
of an up move p is 
1+ r�t− d�/
u− d�= 0�437. The
cash flow payout ratios t are as discussed by BDH
and shown above the matrix in Figure 1.
The top lattice in Figure 1 shows the possible values

of the project without options. At each point in the
lattice the value may go up with probability p= 0�437
or down with probability 1−p. Going up corresponds
to staying in the same row in the lattice and going
down corresponds to moving down one row. If we let
Vt	 j denote the value of the project without options in
period (column) t and state (row) j , following BDH,
the up and down values in period t are given in terms
of the previous period values by

Vt	 j = Vi−1	 j 
1− t�u

Vt	 j+1 = Vi−1	 j 
1− t�d�

The key feature of the lattice model is that an up move
followed by a down move leads to the same value as
a down followed by an up; this follows from d= 1/u.
Thus, the trees in a lattice model recombine rather
than explode into a “bushy mess.”
The next lattice in Figure 1 shows the possible

project cash flows. As discussed by BDH, these cash
flows are assumed to be the product of the payout
ratios 
t� and the values given in the first lattice. The
first four years of these cash flows correspond to
the cash flows shown in Figure 6 of BDH, although
the cash flows in BDH’s Figure 6 are stated in present
value terms (discounting to period 0 at the risk-free
rate r� rather than the then-current terms used in
Figure 1.
The third lattice in Figure 1 shows the dynamic pro-

gramming rollback values for determining optimal
strategies and calculating the corresponding values.

When there are no options, the period-t state-j value
�t	 j is given as

�t	 j = ct	 j +
1


1+ r�

p�t+1	 j + 
1− p��t+1	 j+1�	

so the present value at period t in state j 
�t	 j � is the
cash flow received in that period plus the discounted
expected value in the next period. To incorporate
options, we replace this formula with an expanded
version that reflects the options available in a given
period. In this example, BDH consider three alterna-
tives at the end of year 5: continuing as before, buying
out the partner’s 25% share for $40 million, or selling
your share for $100 million (divesting). In year 5, the
rollback values are given by

�t	j = max
{
ct	j+

1

1+r�


p�t+1	j+
1−p��t+1	j+1�	

ct	j−$40+ 4/3

1+r�


p�t+1	j+
1−p��t+1	j+1�	

ct	j+$100
}

(1)

where the three terms in the maximum correspond to
the values of three options available. For example, in
the second case you get the period’s cash flows, pay
$40 million, and then get 4/3 of the expected future
value (100% interest rather than 75% interest in the
property). The optimal strategies are indicated in the
lattice; bold indicates that buying out the partner is
optimal and bold italic means divesting is optimal.
Other options or options in other periods could be
incorporated in a similar manner. The final value and
optimal strategies calculated using the lattice model
are identical to those given by BDH’s decision tree.
The present value of $444.9 million suggests that the
option to buy out or divest is worth $444�9−$404�0=
$40�9 million.
The lattice framework is admittedly less general

than the decision tree framework. In order for the tree
to recombine, you must be able to identify states—
here values of the project without options—such that
future probabilities and cash flows depend on the
current state, but not on the path taken to reach
that state. However, when you can build a lattice
(BDH’s framework ensures that you can), the lat-
tice provides a much more compact representation
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than the corresponding decision tree. With a bino-
mial lattice, the number of endpoints is equal to the
number of periods n 
=11 in the example, counting
period 0) and the total number of nodes in the lat-
tice is n
n+ 1�/2 
=66�. Models this size can easily
be implemented in a spreadsheet, and it is easy to
build larger models by simply copying and pasting
in Excel; no sophisticated programming or special-
purpose software is required. In contrast, the bino-
mial tree has 2n−1 
=1	024� endpoints and 2n − 1

=2	047� nodes and is larger still when you include
decisions; problems this size require professional deci-
sion tree programs. The differences in model sizes
become much more pronounced if you consider more
periods, either by considering a longer time horizon
or finer time steps. Hull (1997, p. 206) notes that when
valuing financial options, practitioners typically con-
sider 30 or more periods. With 30 periods, the bino-
mial lattice would have 465 nodes, while the corre-
sponding binomial tree would have more than a bil-
lion nodes, without considering any decisions. The
lattice is still easily manageable in a spreadsheet. As
shown in BDH’s Figure 9, the binomial tree requires
several hours to evaluate using the most powerful
professional decision tree program.
The more compact lattice representation also

seems easier to understand. There is less redundant
information—the binomial tree repeats the same prob-
ability in many places and equivalent states are rep-
resented many times—and the states are ordered in
a natural way. For example, one can see clearly in
the lower lattice in Figure 1 that the optimal policy
calls for divesting in low-value states and buying out
the partner in high-value states; with these particular
parameters, it is never optimal to continue. Of course,
this same policy is optimal in the binomial tree, but it
is harder to see this structure.

3. Estimating Cash Flow Volatilities
As discussed by BDH, their approach to valuing
options approximates the stochastic process for value
of the project without options with a geometric
Brownian motion (GBM) process whose initial value
is determined by the DCF analysis (in Step 1) and
whose volatility is determined by a simulation based
on this DCF analysis (in Step 2). As discussed ear-
lier, this approximation is motivated by drawing an

Figure 2 The GBM Approximation of the Cash Flows in the Oil
Production Example
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analogy to the standard model of stock prices used in
the Black-Scholes model for valuing options on stocks.
A second approximation is the assumption that the
cash flows generated by the project without options
are a constant proportion of its value. This cash flow
approximation simplifies the analysis by allowing you
to use the value of the project as a state variable that
determines cash flows.
How do these approximations perform in the oil

production example? Figure 2 shows the mean and
10th, 50th, and 90th percentiles of the future cash
flows using BDH’s original cash flow model (in
heavy lines) and the same percentiles for BDH’s
GBM approximation (with light lines). The percentiles
for the original model were calculated using BDH’s
Monte Carlo simulation model with their assump-
tions. The percentiles for the cash flows in the GBM
approximation were calculated using BDH’s esti-
mated parameters: The initial value is $404.0; the
volatility is 46.6% per year; the drift is 10% per
year (BDH’s risk-adjusted discount rate); and the cash
flows are generated using the payout rates (the ts)
given by BDH. In Figure 2, we see that although
the expected cash flows are the same in the original
and GBM approximation, the GBM approximation
greatly overestimates the uncertainty in the future
cash flows: The 90th percentiles are much too high
and the 10th percentiles are much too low.
The main problem here is that the volatility is over-

estimated. In Step 2 of their process, BDH (following
C&A) recommend estimating the volatility by track-
ing z̃ = ln
 �V1/�V0� in a Monte Carlo simulation of
the cash flows and taking the volatility of the GBM
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approximation to be equal to the standard deviation
of z̃. Here, �V1 is the period-1 NPV of future cash flows
generated in the simulation and �V0 is the period-0
expected NPV calculated in Step 1 of their process.
I do not understand the basis for this recommenda-
tion. The standard deviation of ln
 �V1/�V0� would be
the appropriate volatility if the values truly followed a
GBM (with constant volatility) and �V1 were period 1’s
expected NPV of subsequent cash flows; this volatility
would reflect the resolution of a single year’s uncer-
tainty and its impact on expectations for future cash
flows. In the procedure proposed here, however, �V1

is the NPV of a particular realization of future cash
flows that is generated in the simulation, and the stan-
dard deviation of ln
 �V1/�V0� reflects the resolution of
all future uncertainties. A second concern with this
approach is what to do when �V1 is zero or negative
and ln
 �V1/�V0� is −	 or undefined. Negative �V1s occur
in about 1 out of 2,000 trials in the oil production
example; I suspect these scenarios were simply dis-
carded in BDH’s calculations. These zero and negative
values are not possible in the GBM approximation.
Although I cannot think of any easy way to con-

vert the volatility that BDH calculate into an appro-
priate volatility, one fairly simple way to estimate a
more appropriate volatility would be to simulate the
GBM approximation and search for a volatility for the
GBM approximation that matches, as well as possible,
the uncertainty in the original model. For instance,
in the oil production example, the current NPV of
all cash flows ( �V0� has mean and standard deviation
of $404 million and $168 million, respectively. If we
assume a volatility of 25.5% per year in the GBM
approximation, we find a mean and standard devia-
tion of �V0 of $404 million and $168 million, matching
those in the original cash flow model. The cash flow
percentiles for this approximation are shown in Fig-
ure 3, along with those in the original model. The fit
here is much better than that shown in Figure 2, but
still not perfect.
Using this volatility of 25.5% per year in the lat-

tice model of Figure 1, we find that the project with
options is now worth $423.7 million rather than the
$444.6 found using a volatility of 46.6% per year. The
value of the option with a volatility of 25.5% per year
is $423�7 − $404�0 = $19�6 million, slightly less than
half of the value ($40.4 million) given by assuming

Figure 3 An Alternative GBM Approximation
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a volatility of 46.6% per year. Clearly, the volatility
estimate makes a difference!
Although our discussion of BDH’s volatility esti-

mate has focused on how well the process approxi-
mates the current unconditional distribution for cash
flows, we should also consider how well the approx-
imation captures future conditional forecasts that
determine the optimal exercise decisions. For exam-
ple, a mean-reverting process may lead to very differ-
ent policies and values than a GBM process; see, e.g.,
Smith and McCardle (1999). Moreover, if the under-
lying uncertainties have a variety of different forms
of processes—for example, if oil prices are mean
reverting and costs follow a GBM—then the overall
project value may not be well approximated by any
simple univariate process, such as a GBM or a mean-
reverting process. In general, the problem of approx-
imating a high-dimensional stochastic process with a
low-dimension (here univariate) summary process is
an interesting research problem that goes well beyond
the question of how to pick a volatility parameter for
a GBM process.
Although this is an interesting research question,

ultimately I am not convinced such a univariate
approximation is necessary because, as discussed in
§4 below, one can instead model the underlying
uncertainties—here, oil prices and variable operating
costs—directly and approximately solve the model
using Monte Carlo techniques. This more direct
approach not only avoids the need to approximate the
value process, it also allows one to model additional
kinds of options. However, if you are going to use
this GBM approximation (or another simple univari-
ate approximation), it is important to think carefully
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about the assumed volatility and to consider how well
the approximation matches the uncertainty in, and
dynamics of, the actual cash flows.

4. On Risk-Neutral Valuation
BDH and C&A’s valuation procedure uses a mix of
discounted cash flow and risk-neutral valuation meth-
ods. In Steps 1 and 2 of their procedure, they deter-
mine the NPV of the project without options and its
volatility using a discounted cash flow (DCF) analysis
that calculates NPVs using a risk-adjusted discount
rate. When valuing options in Step 3, C&A assume
that this project without options is a traded security
and use this hypothetical security to construct a port-
folio that replicates the payoffs of the project with
options. BDH carry out an equivalent analysis using
risk-neutral valuation, i.e., using risk-adjusted or risk-
neutral probabilities and discounting at the risk-free
rate.
Rather than using a mixture of DCF and risk-

neutral valuation techniques, we could instead use
a fully risk-neutral approach where we construct a
single, coherent risk-neutral model and use it to esti-
mate the value of the project both with and without
options. In this approach, we would risk-adjust the
probabilities or processes associated with the uncer-
tainties or stochastic factors in the model (e.g., oil
prices and the variable operating costs) and calculate
the value of any investment—including the project
without the option—by determining its expected NPV
using these risk-neutral probabilities or processes
and discounting at the risk-free rate. We will briefly
review two different ways to justify this fully risk-
neutral approach in situations where the project can-
not be perfectly replicated by trading securities.

Equilibrium Valuation. First, as is common in the
finance literature (see, e.g., Schwartz 1994), we can
justify the fully risk-neutral approach using an equi-
librium model of asset prices such as that developed
by Cox et al. (CIR 1985) to estimate a risk adjust-
ment for the drifts or growth rates of the stochastic
processes for the uncertain factors in the model. If
we had true drift � for some process, the risk-neutral
drift is given by �∗ = � − �, where � is a risk pre-
mium that depends on the correlation of the factor
with aggregate wealth and the other factors in the

economy. Drawing on Merton’s (1973) intertemporal
capital asset pricing model (CAPM), researchers often
take the risk premium for factor i to be �i = �i
rm− r�

where rm is the expected return on the market portfo-
lio, r is the risk-free rate, and �i is the beta for factor i
(given by �im/�

2
m where �im is the covariance between

the factor and the market and �2
m is the variance of

the market). The project value given by this equilib-
rium approach is an estimate of the market value of
a project, the value the project would have if it were
traded in a market in equilibrium.
Although Schwartz (1994) and others describe this

equilibrium approach to risk-neutral valuation as one
that can be applied to investments that cannot be per-
fectly replicated by trading securities, if you read CIR
closely (see p. 368), you will note that their model
assumes that markets are complete in that any con-
tingent claim can be replicated by a linear combi-
nation (perhaps with weights changing over time)
of a set of basis claims that are traded. This is, in
some respects, like C&A’s MAD (Marketed Asset Dis-
claimer) assumption, which assumes that the project
without options is itself a traded stock that can be
used to form replicating portfolios. CIR’s assumption
is stronger in that it assumes that any claim tied to
the underlying stochastic factors can be replicated.
However, despite its name, the MAD assumption or
CIR’s stronger and more precise version of it, does
not strike me as crazy: If the goal is to estimate the
value the project would have if it were traded in a
market in equilibrium, then it seems reasonable and
consistent to calculate these values by contemplating
a world (or economy) where the project and its under-
lying stochastic factors can be replicated and/or are
traded. The equilibrium approach is constructive in
that it provides a framework for thinking about and
estimating risk premiums for stochastic factors that
cannot be replicated.
Applying this equilibrium approach in the oil pro-

duction example, we could estimate the risk-neutral
drift for oil prices by considering prices for long-term
oil futures or forward contracts. For example, if the
long-term futures prices are not growing or declining,
this would suggest that the risk-neutral drift is 0% per
year. The risk premium �i is the difference between
the true drift (assumed by BDH to be 3% per year)
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and the risk-neutral drift. If we assume that the vari-
able operating costs are uncorrelated with the market
portfolio, then this equilibrium approach would sug-
gest that no risk adjustment is required, and the risk-
neutral drift would be the same as the true drift of
2% per year.
CIR’s equilibrium model also specifies risk-adjusted

discount rates that can be used to calculate project
values as expected NPVs using the true (rather than
risk-neutral) stochastic processes for the underlying
factors. However, these risk-adjusted discount rates—
unlike the risk adjustments to the stochastic factors
in the risk-neutral approach—will vary from project
to project and, for a given project, will typically vary
with time and with the values of the stochastic fac-
tors. For instance, in the oil production example, even
if the risk premiums for oil prices and variable oper-
ating costs are constant, the equilibrium discount rate
for the project without options would change over
time as the production rate decreases and prices and
operating costs vary.

Decision Analytic Valuation. A second way to jus-
tify this fully risk-neutral approach is to use the
decision-analytic valuation procedure developed in
Smith and Nau (1995). As BDH note, this proce-
dure distinguishes between market risks that can be
hedged by trading existing securities, and private
risks that cannot. Project values are given by an inte-
grated valuation procedure that, in the case of a risk-
neutral decision maker, determines project values by
calculating expected values using risk-neutral prob-
abilities for market risks and true probabilities for
private risks; all discounting is done at the risk-free
rate. In this framework, dependence between market
and private risks is captured by assessing true prob-
abilities for the private risks conditional on the con-
temporaneous market state. The values given by this
procedure are justified by an extension of the Fisher
Separation Theorem, which shows, given certain util-
ity assumptions, that these values are indifference
prices for a decision maker who simultaneously con-
siders investments in securities and the projects: The
decision maker would be just indifferent to buying or
selling the project for these amounts. In an appendix
to this note, we discuss how to handle uncertain-
ties that “fall somewhere in between the notions

of private and market risks” (BDH, p. 77) in this
framework.
In the oil production example, if we assume that

oil prices are market risks with a risk-neutral growth
rate of 0% per year and that the variable operating
costs are independent of oil prices and are private
risks, then the integrated valuation procedure uses
the risk-neutral process for oil prices and the true
process for costs. If we also assume that the deci-
sion maker is risk neutral, then the resulting valuation
model will be the same as that given by the equi-
librium approach. Thus, these two different lines of
argument lead to the same fully risk-neutral valuation
procedure.

Results for the Example. As indicated earlier, in
this fully risk-neutral approach the value of an invest-
ment is its expected NPV given by using these risk-
neutral processes and discounting at the risk-free
rate. You can calculate these expected NPVs how-
ever you want. For a project with embedded options,
you might use a decision tree or lattice model. For a
project without options, you might use Monte Carlo
simulation. In the oil production example, because
the cash flows and NPVs are linear functions of
these underlying uncertainties, we can calculate the
expected NPV of the project without options using a
deterministic model based on expected oil prices and
variable operating costs, like that shown in BDH’s
Figure 5. Figure 4 shows a risk-neutral version of this
deterministic analysis that assumes a risk-free dis-
count rate of 5% per year and risk-neutral growth
rates of 0% and 2% per year for oil prices and variable
operating costs, respectively. The result is an NPV of
$392 million, compared to an NPV of $404 million
given by BDH’s analysis.
The difference between these two NPVs reflects

fundamental differences in the way the two ap-
proaches value future oil production and costs. In
BDH’s DCF analysis, oil prices grow at 3% per year
and are discounted at 10% per year; thus, in net,
the present value of future oil production decreases
7% per year. With the risk-neutral procedure, prices
grow at 0% and are discounted at 5% and, in net, the
present value of future production decreases 5% per
year. Consequently, the risk-neutral procedure places
higher values on future oil production. However, the
risk-neutral valuation procedure also places higher
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Figure 4 A Risk-Neutral Version of BDH’s Base Case Analysis

Year 0 1 2 3 4 5 6 7 8 9 10

Production Level 9�0 7�7 6�5 5�5 4�7 4�0 3�4 2�9 2�5 2�1
Variable Op Cost Rate 10�2 10�4 10�6 10�8 11�0 11�3 11�5 11�7 12�0 12�2
Oil Price 25�0 25�0 25�0 25�0 25�0 25�0 25�0 25�0 25�0 25�0

Revenues 225�0 191�3 162�6 138�2 117�5 99�8 84�9 72�1 61�3 52�1
Production Cost 
96�8� 
84�6� 
74�0� 
64�8� 
56�9� 
50�0� 
44�0� 
38�8� 
34�3� 
30�4�

Cash Flow 128�2 106�7 88�6 73�4 60�6 49�9 40�9 33�3 27�0 21�7
Profit Sharing 
32�1� 
26�7� 
22�1� 
18�3� 
15�1� 
12�5� 
10�2� 
8�3� 
6�8� 
5�4�

Net Cash Flows 96�2 80�0 66�4 55�0 45�4 37�4 30�7 25�0 20�3 16�3

PV of Cash Flows 392.0 411�6 331�2 263�8 207�3 159�9 120�1 86�9 59�0 35�8 16�3
Cash Flow Ratios 0.2336 0.2415 0.2518 0.2654 0.2842 0.3113 0.3528 0.4233 0.5664 1.0000

values on future costs: The growth rates for costs are
not risk-adjusted and the risk-neutral procedure dis-
counts them at 5% per year instead of 10%. In this
particular example, the cost effect is dominant and
the risk-neutral value is lower than the risk-adjusted
value. However, in other examples—such as an explo-
ration play—where the production streams are further
in the future, the higher value of future production
could be dominant and we might find higher values
with the risk-neutral valuation procedure.
In summary, I prefer the fully risk-neutral approach

to BDH’s mix of risk-adjusted discount rate and risk-
neutral approaches for three reasons. First, although
the assessment of factor- and/or uncertainty-specific
risk adjustments may require subjective judgments
of correlations (or betas) that are similar to those
required in estimating a risk-adjusted discount rate,
I believe that the decomposed, factor-level risk-
adjustments are likely to be easier to think about
and estimate than an aggregate risk-adjusted dis-
count rate. Second, these factor-specific adjustments
can more plausibly be assumed to be constant over
time, and the same ones can be used consistently
for different projects that involve these same factors.
Third, the fully risk-neutral approach leads to the
development of a unified and coherent probabilistic
model that can be used to value projects with and
without options.

5. On the Choice of Underlying
Uncertainty

As discussed earlier, BDH’s approach to valuing
options is based on approximating the stochastic pro-
cess for the value of the project without options with

a geometric Brownian motion (GBM) process; BDH
also mention the possibility of using, for example,
arithmetic Brownian motion or mean-reverting pro-
cesses. Various project options are then viewed as if
they were derivative securities whose cash flows are
derived from the value of this project without options.
Although this approach has the advantage of reduc-

ing a potentially complex multidimensional problem
to a univariate problem, I am not convinced that
many real-options problems can be formulated this
way. In the oil production example, the options con-
sidered are both examples of what might be called a
scale option, the ability to increase or decrease one’s
interest in the investment in exchange for a cash pay-
ment or receipt. In this example, one option is to buy
out the partner’s 25% share for $40 million. The sec-
ond option is to sell your 75% share in the project
for $100 million. Scale options are easy to evaluate in
this framework because the value of the option can
be easily determined as a function of the value of the
project without options. For example, in the buyout
option, the cash flows and values after exercise are
given by multiplying the cash flows and values of the
project without options in each period by 4/3. C&A
also consider exit and scale options in their case study
illustrating this approach.
Although scale options are certainly important, it is

difficult to value many other kinds of options using
the value of the project without options as the under-
lying uncertainty. For example, it is not clear whether
an option to delay the start of a project can be for-
mulated this way. In the oil production example,
the evolution of value of the project without options
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reflects the resolution of uncertainty in costs. In prac-
tice, this cost uncertainty might evolve differently—
perhaps with less volatility—or not at all, if you are
not actually producing at the site; clearly, production
would be delayed. In other real-options models, we
might be interested in options that depend on partic-
ular uncertainties. For example, one might consider
signing a contract with a customer that places a cap
or floor on the price paid for the oil produced. Alter-
natively, one might consider the possibility of using
enhanced oil-recovery methods that would produce
additional oil but with a different cost structure. As
I reflect on my experiences in modeling real-options
problems, I think these scale options are the only
options that I have encountered whose payoffs can be
determined as a function of the value of the project
without options.
To value more general options, we typically need

to use models that consider the evolution of the
underlying uncertainties directly. In the oil produc-
tion example, such a direct model would consider
uncertainty in both oil prices and variable operating
costs over time. We could formulate this model as
a two-dimensional lattice model in which we keep
track of both the oil price and the variable oper-
ating costs in each period. (See, e.g., Luenberger
1998 for a discussion of two-dimensional lattices.)
We could do the same thing, albeit less efficiently,
using a two-dimensional binomial or trinomial tree.
Although these approaches would suffice for this two-
dimensional example, BDH seek general methods
that can handle more uncertainties without becoming
overly difficult to implement. As BDH point out, both
lattices and trees suffer from the “curse of dimension-
ality” and their size and complexity grows rapidly
with the number of uncertainties in the problem.
Decision tree modelers and lattice builders are thus
often forced to focus their models on a few key under-
lying uncertainties.
Although there is no “magic bullet” for simplifying

these complex problems, the new Monte Carlo meth-
ods developed for valuing high-dimensional finan-
cial options appear quite promising for real-options
problems as well. (See Glasserman 2004 for a compre-
hensive review of Monte Carlo methods in finance.)
In the simulation approach for valuing options, we
build a Monte Carlo simulation model that takes into

account all of the uncertainties in the problem, which
can then be used to calculate expected NPVs for any
given exercise policy. If we want to use risk-neutral
valuation, then we should use risk-neutral probabili-
ties for the uncertainties and discount at the risk-free
rate. We then approximate the optimal exercise policy
using one of many different possible methods. Finally,
given this near-optimal exercise policy, we calculate
the expected NPV of the project using this exercise
policy. As these near-optimal exercise policies are fea-
sible, the project value generated by this procedure
provides a lower bound on the project value that
would be found using a truly optimal policy.
To calculate an optimal exercise policy, at each deci-

sion point, we need to examine the expected future
NPV (the continuation value) for each alternative,
conditioned on the resolution of all uncertainties up to
that time. The optimal policy then selects the alterna-
tive with the maximum continuation value in a given
information state. This is how the roll-back procedure
for solving decision trees or dynamic programs works
(see, e.g., Equation (1)). There are a variety of ways
one can construct near-optimal policies using simu-
lation. In some cases, we can assume a parametric
form for the exercise policy and estimate an optimal
parameter. For example, if we have a single decision
and think that the optimal policy should be of the
form “exercise if the oil price is above some thresh-
old,” we can run simulations with different threshold
oil prices and note the threshold price that leads to
the highest expected NPV. This approach will work
well if you can identify a good parametric family of
exercise policies that has relatively few parameters.
Alternatively, following Longstaff and Schwartz

(2001), you can estimate the required continuation
values using linear regression and then use these
estimated regression equations to determine a near-
optimal policy. We will illustrate Longstaff and
Schwartz’s approach in the oil production example. In
this example, the option to adjust partnership inter-
ests is exercised in year 5 and we want to estimate
the expected continuation values as a function of the
oil price and variable operating costs at that time.
To do this, we can run a simulation model for the
project without options (e.g., assuming that you con-
tinue without buying out your partner or divesting),
recording the NPV of the cash flows after year 5
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(the realized continuation value) and the year 5 oil
price and variable operating costs in each scenario.
We then run a regression relating the realized contin-
uation values (Y ) to the year 5 oil prices (p) and vari-
able operating costs (c). For example, using the fully
risk-neutral model discussed in the previous section,
in one particular simulation of 10,000 trials we found
the following estimated regression equation:

�Y =−18�49+ 9�77p− 10�06c� (2)

Although these linear terms are sufficient in this
case, we could easily include additional terms in this
regression, for example, nonlinear transformations or
powers of p and c, as well as products of these vari-
ables. If there were additional uncertainties in the
problem that might affect these expected continuation
values, you can simply add additional basis functions
to the regression model.
The estimated regression equation provides an esti-

mate of the expected continuation value as a func-
tion of the year 5 state variables and can be used to
determine a near-optimal exercise policy: In any sce-
nario, we calculate the estimated expected continua-
tion value �Y from the values of p and c generated in
that trial using the regression equation (2). If this �Y
is less than $100 million, then you should divest in
year 5. If the estimated value of the partner’s share
(�Y/3) exceeds the cost to buy it out ($40 million),
then you should buy out the partner. In the other sce-
narios (i.e., if the estimated �Y is between $100 and
$120 million), you should continue without adjusting
the partnership interests. Figure 5 shows these esti-
mated continuation values (�Y ) for the three alterna-
tives as a function of year 5 oil price (p) and year 5

Figure 5 Estimated Continuation Values for the Oil Production
Example
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operating cost (c). For scenarios with low costs and
high prices, this near-optimal strategy calls for buy-
ing out the partner. With high costs or low prices, you
should divest. For a relatively small range of prices
and costs (the black region in the center of Figure 5),
continuing with the current share is recommended.
Simulating using this near-optimal policy, we find
an expected NPV of $421 million, compared to an
expected NPV of $392 million without the option to
change the partnership structure in year 5.1

Longstaff and Schwartz’s method readily general-
izes to more complex problems. Although the com-
plexity of the procedure is relatively insensitive to the
number of uncertainties in the problem, its complex-
ity grows with the number of decisions and alterna-
tives in the problem in the same way as decision trees.
In general, we need to perform this kind of regres-
sion analysis to estimate conditional expectations for
each alternative of each decision in the model, work-
ing backwards from the last decision towards the first.
In the oil production example, we only need to do
one regression analysis for the continue alternative
because the expected continuation value for the divest
alternative is a constant, and the expected continua-
tion values for the buyout option are a simple linear
function of the continue values. If the buyout option
had a more complex impact on the cash flows (sup-
pose, for example, it altered the costs), then we would
have to run a second simulation that assumes you
buy out your partner in year 5 and then run a regres-
sion with these simulations results to estimate the
expected continuation value for this alternative. If we
had additional decision points, we would need to run
additional regressions, working backwards from the
last set of decisions. For example, if we had a similar
set of buyout or divest options in period 3, we would

1 In this particular example, because (a) the cash flows are a lin-
ear function of oil prices and variable operating costs, and (b) the
expected future prices and operating costs are a linear function of
current prices, the expected continuation value is in fact a linear
function of these two state variables. These exact continuation val-
ues can easily be calculated in the spreadsheet. The near-optimal
policy thus has the same form as the true optimal policy, and the
policies and corresponding values differ only because of sampling
errors in the simulations used to estimate the regression equation
and final values. The value given by using the exact optimal policy
is very close to that given by using this approximate policy.
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first determine an approximately optimal policy for
period 5 and then use this near-optimal policy when
estimating continuation values for period 3.
Longstaff and Schwartz (2001), Tsitsiklis and Van

Roy (2001), and Glasserman (2004) discuss these
simulation procedures in detail and consider their
convergence properties. As these and other authors
discuss, in practice there is an element of art in
selecting good basis functions to use in these regres-
sion models. However, experience in valuing financial
options suggests that the procedure is quite robust
and will perform well with a wide range of different
basis functions.

6. Conclusions
Let us take stock and summarize. We have considered
a series of variations on BDH’s proposed method for
solving real-options problems. The results for the oil
production example for each of these variations are
shown in Table 1. In §2, we argued for the use of bino-
mial lattices, when applicable, instead of binomial
trees. Although the results in this example are iden-
tical to those given by a binomial tree, I believe the
lattice framework is simpler and easier to understand
and apply in these problems; readers may judge for
themselves. In §3, I argued that the BDH’s volatilities
overestimate the uncertainty in many problems, and
consequently overestimate the value of many options.
If we reconsider the oil production example using
a more appropriate volatility of 25.5% per year, the
value of the option is slightly less than half the value
given by BDH’s analysis.

Table 1 Summary of Results for Different Approaches

NPV of NPV of
project project

Solution without with NPV of
Model/assumption technique options options option

1. BDH approach Binomial 404�0 444�9 40�9
with � = 46�6%/yr lattice

2. BDH approach Binomial 404�0 423�7 19�7
with � = 25�5%/yr lattice

3. Fully risk-neutral Binomial 392�0 411�6 19�6
base case lattice
w/� = 25�5%/yr

4. Fully risk-neutral, Monte Carlo 392 421 29
direct approach simulation

Although the variations in §§2–3 are important,
they preserve the general framework of BDH’s
approach. The variations considered in §§4–5 are
more fundamental. In §4, I argued that rather than
using a mix of risk-neutral and discounted cash flow
methods, we should use a fully risk-neutral approach
to value the project with, as well as without, options.
I believe this approach is better grounded in theory
and easier to apply correctly. In this example, the fully
risk-neutral approach leads to a lower value, but in
other cases we may find higher values. If we use this
new NPV as the starting point for a GBM approxima-
tion of the value of the project without options, we
find that even though the overall values are lower, the
value of the option does not change much.
In §5, we consider the use of the value of the project

without options as an approximate underlying uncer-
tainty. Although this approximation may be helpful in
simplifying the analysis of scale options, to evaluate
other kinds of options we typically need to model the
project’s actual underlying uncertainties. If there are
many uncertainties, it may be difficult to model the
project using lattices or decision trees, but new simu-
lation methods may be quite helpful in these settings.
This simulation approach is quite general—one can
consider many different kinds of options and many
uncertainties—and the near-optimal policies can be
readily interpreted in terms of the project variables.
For instance, in the oil production example, the near-
optimal policies describe what to do as a function
of prices and variable operating costs. Even though
these near-optimal policies may be more complex to
find, they seem easier to interpret than policies stated
in terms of the value of a hypothetical project without
options.
Let us also recap some of the key points where

BDH and I agree. First, we agree that it is important
to model dynamics in decision problems and recog-
nize the value of options associated with investments.
Second, we agree that it is important to recognize
the impact of the market on project values. Finally,
we agree that Monte Carlo simulation, decision-tree,
and/or dynamic programming models provide pow-
erful tools for valuing projects and options using
risk-neutral valuation methods. Although I have been
critical of aspects of BDH’s approach, I believe that



Smith: Alternative Approaches for Solving Real-Options Problems
Decision Analysis 2(2), pp. 89–102, © 2005 INFORMS 101

their approach also contains some useful elements—
particularly using decision-tree models with risk-
neutral probabilities to model real options—that deci-
sion analysts should understand and appreciate.
In critiquing BDH’s approach and discussing alter-

natives, my goal has been to help decision ana-
lysts better understand these methods so that they
will be better able to model dynamic decision prob-
lems. Although some of the methods discussed
here—risk-neutral valuation, lattices, and Monte
Carlo methods for dynamic programming—may be
unfamiliar to many decision analysts, these tools
can be quite useful for modeling project dynamics
and options. The tools that decision analysts know
well—including influence diagrams, decision trees,
and probability assessment methods—are also quite
helpful for modeling project dynamics and options. In
summary, although I disagree with aspects of BDH’s
proposal, we agree that there is much to be gained
from integrating the real options and decision analy-
sis approaches to project evaluation.
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Appendix
On page 77, BDH write:

In many projects, some uncertainties fall somewhere between
the notions of private and market risks. For example, a new
drug development project for a pharmaceutical company may
not include risks that can be replicated by a traded asset, but
the price of the product is clearly a “market risk.”

In this appendix, I use this example of a drug develop-
ment project to illustrate how the integrated valuation pro-
cedure can be applied to “uncertainties that fall somewhere
between the notions of private and market risks.”

First, although the price for the pharmaceutical product
is related to the market for the product, it is clearly not
a “market risk” in the sense of the integrated valuation
framework, which would require that it could be perfectly
hedged by trading securities. However, this price might be
correlated with the market portfolio represented by, say, the
S&P 500. We can capture this dependence in the integrated
framework by expanding the valuation model to consider
the return on the market portfolio as well as the price for
the pharmaceutical product, explicitly modeling the depen-
dence between these uncertainties. However, as we will
demonstrate, this expansion need not complicate the model
used to evaluate the project.

Now let us be specific and assume that the price p for the
product in a given period and the market return m for that
period have a bivariate normal distribution with marginal
distributions p ∼ N
�p	�

2
p � and m ∼ N
�m	�

2
m� and corre-

lation coefficient �pm. The conditional distribution p � m is
then N
�p +�
m−�m�	 
1−�2��2

p � where �= �pm
�p/�m�=
�pm/�

2
m can be interpreted like a beta in the CAPM. If

we assume that the return on the market portfolio can be
hedged, then m is a market risk. Assuming there are no div-
idend payments, the risk adjustment for this traded security
would typically set the mean of the risk-neutral distribu-
tion to r , so in the risk-neutral model m ∼ N
r	�2

m�. The
price p for the pharmaceutical product, however, cannot be
hedged, and thus is a private risk. The integrated valuation
procedure uses the conditional probabilities for p � m, and
these would not be risk adjusted in any way.

Now suppose the decision maker is risk neutral and eval-
uates investments using the integrated valuation procedure.
In this case, project values are expected values calculated
using risk-neutral probabilities for market risks and true
conditional probabilities for private risks. If the project cash
flows depend on the market return m only through m’s
impact on the price p, we can integrate out this uncertainty
about m and collapse this expanded model to a simpler
model that considers uncertainty in p but not m. However,
to arrive the correct project values, when integrating out
the uncertainty about m, we must use the risk-neutral dis-
tribution for m together with p �m. The resulting marginal
distribution for p is N
�p +�
r −�m�	�

2
p �, where the mean

�p − �
�m − r� reflects a risk premium of eta �
�m − r� for
the correlation with the market that is very much like that
given by using Merton’s intertemporal CAPM to risk-adjust
drifts in the equilibrium risk-neutral approach.

Thus, the integrated valuation procedure can accommo-
date risks that “fall somewhere between the notions of mar-
ket and private risks” without complicating the evaluation
model. To apply this approach in practice, we need to assess
the correlation or beta for the uncertainty. As discussed at
the end of §4, the judgments involved are similar to those
typically used to specify a risk-adjusted discount rate for
the project as a whole. However, I suspect that in most cases
these judgments would be easier to make for the individual
uncertainties in the problem than at the aggregate project
level.
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