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In this note, we respond to Smith’s (2005) discussion of the approach outlined in our paper (Brandão et al.2005) on using traditional decision analysis methods to solve real-options problems. Our response addresses
several areas where we largely agree with Smith, but have different views on modeling preferences or on
the practicality of implementing alternative modeling approaches. We view the issue raised by Smith on the
estimation of process volatility to be a valid concern and propose a modification to our method to address this
problem.
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1. Introduction
Smith (2005) provides a discussion of our proposed
approach (Brandão et al. 2005; hereafter, BDH) for
using traditional decision analysis methods to solve
real-options problems. In addition, he provides an
overview of some alternative approaches to solving
real-options problems, and a discussion of their rel-
ative advantages. We consider this dialogue to be a
constructive one, and have a few observations and
clarifications to add regarding his comments.
In his discussion, Smith identifies a number of areas

where he disagrees with our approach. We feel that
it is appropriate to point out where Smith’s concerns
are based on modeling preferences rather than on fun-
damental limitations of the BDH approach. We also
point out the areas where we agree with Smith in
principle, but have different views on the practicality
of the alternative modeling approaches he discusses.
Finally, Smith raises a substantive point regarding the
estimation of the project volatility that we use in mod-
eling the stochastic process associated with the under-
lying value of the project. We consider this criticism
to be a valid one, and we suggest a revised approach
to calculating the volatility of project value as a result.
Smith begins his discussion by describing the BDH

approach as the three-step process that we used to

illustrate the use of decision trees to approximate the
uncertainty in project cash flows over time with a geo-
metric Brownian motion (GBM). While his description
of this example is an accurate one, we view the BDH
approach as being much more general, as indicated
by our discussion of alternative ways that it could be
implemented, including some illustrated by Smith.
The “BDH approach” is based on the use of event

trees to approximate an appropriate stochastic pro-
cess using risk-neutral valuation by calculating a net
present value (NPV) with risk-neutral probabilities
and discounting at the risk-free rate, as Smith notes.
Within this structure it is possible to solve some
real-options problems using commercially available
decision-tree software by simply introducing these
options as decision nodes. This idea was first illus-
trated with a simple example involving the approxi-
mation of the uncertainty in project value over time
with a simple GBM model. The second illustration
was based on the work by Copeland and Antikarov
(2001), and is the focus of Smith’s comments.
This approach can be carried out in three steps as

follows:
(1) Calculate the expected NPV of the project with-

out options. In our example, we used a traditional
discounted cash flow analysis using a risk-adjusted
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discount rate, but we also stated in the discussion
that a risk-neutral approach to calculating the NPV
should be used if the appropriate market information
is available. Smith has provided a “fully risk-neutral
approach” that illustrates this idea, and his example
allows us to demonstrate that the BDH approach is
compatible with this approach.
(2) Using this discounted cash flow model and

a Monte Carlo simulation that describes the uncer-
tainty in the cash flows, estimate the parameters
of a stochastic process that is used to approximate
these cash flows. If a standard GBM approximation
is used, then this step requires only the estimation of
the volatility of the process in any arbitrary period
because the volatility of a GBM process remains con-
stant over time. In our discussion, we also noted
that other stochastic processes could be considered for
this approximation, including arithmetic Brownian
motion or a process with time-dependent volatilities.
Smith’s introduction of the fully risk-neutral example
allows us to illustrate the latter alternative.
(3) Build an event tree that uses the stochastic pro-

cess to approximate the uncertainty in the project
value over time using risk-neutral valuation and incor-
porating options in this tree with decision nodes. A
binomial tree would be used to approximate a GBM,
but other tree structures could also be used.
Our response will follow the same structure as

Smith’s comments.

2. Binomial Lattices vs. Binomial Trees
Smith provides a valuable addition to our paper by
solving the oil production example problem using
a lattice approach rather than the binomial tree
approach we employ. As we state in our paper, and
as Smith now shows explicitly, either approach can be
used to obtain the same result. With both approaches
presented, the reader can select the one he or she
would prefer to implement.
As the number of options associated with a problem

increases, the logical statements in a lattice become
increasingly complex and, arguably, more susceptible
to errors. Panko (1998) reports on the high error rates
associated with large spreadsheets, and cites audit
evidence that 20% to 40% of all spreadsheets contain
errors. Naturally, errors of transposition and calcula-
tion can also occur in a decision tree, but we believe

that the logic of a decision tree is relatively transpar-
ent and much more open to inspection by others not
skilled at developing spreadsheet formulae.
When dealing with more complex real-options

problems, we have found it useful to develop our
models in a binomial tree format for a relatively small
number of time periods (less than 30), and to create
lattices that match these results as a check of their
logic. Then, it is straightforward to increase the num-
ber of time periods in a lattice in order to obtain
more precision based on their computational advan-
tages. As these lattices become larger (50 or more
periods for example), they may be coded in program-
ming languages such as Visual Basic, Matlab, or C++,
rather than in spreadsheets, and again we have found
it helpful to debug these programs by matching the
results for a smaller number of time periods to those
from a binomial tree.
We view the choice between binomial trees and

lattices to be primarily a matter of modeling prefer-
ence. As shown by Copeland and Antikarov (2001)
and Copeland and Tufano (2004), the basic approach
we discuss was actually introduced in lattice format.
However, while Smith and others may prefer using
lattices for these types of problems, we anticipate that
many members of the decision analysis community
may prefer working in the binomial tree format.

3. Estimating Cash Flow Volatilities
By duplicating the spreadsheet we created to simulate
the uncertain cash flows for our example, Smith has
indeed identified an issue with our use of Copeland
and Antikarov’s approach (hereafter CA) to estimat-
ing the volatility of the GBM approximation for the
uncertainty in project value over time.
Recall that in our approach, we use simulated cash

flows in the spreadsheet to calculate the period-by-
period project values, from which we can calculate
period-by-period project returns. If a GBM stochas-
tic process provides a reasonable approximation to
the evolution of project value, then the standard
deviations of these period-by-period returns will be
approximately equal. If this is the case, then we can
arbitrarily use the standard deviation of the project
returns in Period 1 to specify the volatility parame-
ter of the stochastic process. Finally, this tree or lattice
spins off state- and period-specific cash flows for the
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project and allows us to model optimal decision mak-
ing and option value for the project.
Following CA (2001, Chapter 9), we defined the

random variable z as the return between time 0 and
time period 1 using the relationship

z= ln
(
V1
�V0

)
= ln

(
C1+ PV1�C2� � � � �Cn	

�V0

)
� (1)

where Ci is the stochastic cash flow from period i and
�V0 is the deterministic present value of the project at
time zero. We used the estimate of the standard devi-
ation of (1) to obtain the volatility of 46.6% for the oil
production project present value.
Smith (2005) observes that our approach overes-

timates the volatility of cash flows. He bases his
argument on the 10th and 90th percentile values
observed for the simulated cash flows in the spread-
sheet, as compared to the 10th and 90th percentiles
that result from simulating the project values with the
46.6% volatility parameter we obtained. He observes
that this standard deviation would be appropriate if
the values followed a GBM with constant volatility
and V1 was Period 1’s expected NPV of subsequent
cash flows rather than a realization of subsequent
cash flows. In contrast, in the procedure we have
used, V1 is the present value of realizations of future
cash flows across all periods that are generated in
the simulation and reflects the resolution of all future
uncertainties.
Smith’s comment suggests a modification to the

specification of the simulation variable z. By changing
the simulation model so that only C1 is stochastic, and
specifying C2� � � � �Cn as expected values conditional
on the outcomes of C1, we capture only the variabil-
ity in V1 that is due to the uncertainty resolved up to
that point. Thus, a better estimate for the volatility of
project value can be obtained using the expression for
project returns shown in Equation (2):

z= ln
(
C1+ PV1�E1�C2	� � � � � E1�Cn	 �C1	

�V0

)
� (2)

We have found that this specification does indeed
provide a better estimate of the volatility of the GBM
approximation of the project value V0. For example,
making this change to the simulation model for the
oil production example, we find the standard devia-
tion of z is reduced from 46.6% to 27.9%. This result

is close to the 25.5% that Smith obtains by search-
ing for a volatility for the GBM approximation that
matches, as well as possible, the mean and standard
deviation of the distribution of the simulated values
of the project value V0.
We can compare the revised approximation of the

GBM for project value with the result of binomial
approximations to the two individual uncertainties in
this problem in a manner consistent with the Smith
and Nau (1995) approach. For simplicity and conve-
nience, we consider the fully risk-neutral version of
the problem that Smith discusses in his comments. In
this model, Smith assumes that the oil price process
will be risk neutral if the drift rate is adjusted by sub-
tracting a risk premium of 3%, so that the risk-neutral
drift rate is 0%. Making this change and discount-
ing cash flows using the risk-free rate yields a project
NPV of $392 million, as shown in Figure 4 of Smith’s
comments.
We show the DPL™ model in Figure 1 for the

approach with the price and cost uncertainties explic-
itly modeled and with the option to expand or aban-
don at the end of Year 5. The “Payoff_i” on the
branches reflect the cash flow calculations, in this case
from the uncertain oil price and variable operating
costs.
Solving this tree yields a project value with options

of $423.2 million. This compares to Model/Assump-
tion 4 in Smith’s comments, in which he obtained
a value of $421 million using the Longstaff and
Schwartz (2001) method based on simulation com-
bined with linear regression.
As illustrated in Figure 1, this tree becomes quite

large even for this relatively simple example with
only 10 periods and two uncertainties, which demon-
strates the desirability of using a univariate approx-
imation of the stochastic process. Using the BDH
approach, we can solve this problem by building a
tree for project value with only one binary event in
each period. Simulating with the worksheet shown in
Figure 4 of Smith’s comments and using the revised
method (2) yields a standard deviation for z of 31.8%,
an estimate of the volatility. We also estimated this
volatility using Smith’s approach, by matching the
mean and standard deviation of the distribution of
the simulated values of the project present value V0
with the same statistics for V0 from a simulated GBM.
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Figure 1 Decision Tree for Oil Production Example
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This approach provided an estimate of 29% for the
project volatility, which is fairly close to the value we
obtained from the simulation of z.
We then constructed a univariate tree for the project

present value assuming a GBM with volatility � =
31�8% and a project value at time zero of $392 mil-
lion. Inserting the decision nodes for the options in
Year 5 and solving this tree gives a value of $418 mil-
lion. This solution of $418 million differs by less
than 1% from $421 million obtained by Smith with the
simulation-based approach. This difference would be
within the acceptable margin of error for many prac-
tical applications.
While we disagree with Smith about the usefulness

of simple univariate approximations of the value pro-
cess, we agree that it is important to consider how
well the GBM approximation matches the uncertainty
in the actual cash flows for a particular application.
Two notable characteristics of a GBM stochastic pro-
cess are that the values at any point in time should be
lognormally distributed and that the standard devi-
ations associated with the period-to-period returns
should be constant. Both of these characteristics can
be checked using the results of the simulation model.
For example, based on a Chi-square test, we can-

not reject the hypothesis that the simulated values of
the Period 1 present values in the original example
problem are lognormally distributed using a p-value
of 5%. To calculate the statistic, we used a sample
size of 5,000 and 55 degrees of freedom, which is
based on partitioning the data into 56 bins. The same
result holds for the revised risk-neutral version of the
problem.

Because the assumption of lognormally distributed
present values appears to be valid, we expect to be
able to specify a GBM that will reasonably approxi-
mate the distribution of cash flows. We check this for
Period 1 by comparing the distribution of cash flows
simulated from the cash flow spreadsheet with the
distribution of cash flows generated from a simulated
GBM for the present value. These two distributions
are shown in Figure 2 and are similar, so we consider
this GBM approximation to be a reasonable one.
We can also test the constant volatility assumption

by simulating z for all periods, not just Period 1, and
calculating the period-by-period volatilities. For our
original example problem, the volatilities were rela-
tively constant, ranging from 27.8% to 28.6%. How-
ever, for the fully risk-neutral version of the example
problem as revised by Smith, we observed that the
volatilities steadily increase from 31.8% in Period 1
to a maximum of 45.6% in Period 10. This occurs in
the fully risk-neutral version of the problem because

Figure 2 Comparison of Probability Density Functions for Cash Flows
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the growth rate for the oil prices is assumed to be
zero while the growth rate for the costs is 2%. This
causes the cost/revenue ratio to increase over time,
creating a leverage effect on the cash flows that causes
the increase in volatility. Our assumed GBM model
with constant volatility of 31.8% does not capture
this increase and slightly underestimates the actual
overall volatility of project value in this case. This is
reflected in the small downward bias in our result as
compared with results from a model that explicitly
includes price and cost.
Because we use a binomial tree rather than a

recombining lattice, we can easily accommodate this
changing volatility in our model as explained in the
discussion section of our paper. Doing so results
in a value with options of $420.3 million, which
is within 0.17% of the result from Smith’s Model/
Assumption 4. The decision trees and the correspond-
ing spreadsheets for these examples are available in
the online supplements section of the Decision Analy-
sis website.
The volatility in each time period in this example is

not constant, and in fact it may be value dependent,
but this approach provides a good approximation for
this problem. While the simple GBM model was used
in our examples for illustration purposes, we do not
consider it to be an essential component of the “three-
step BDH process” as suggested by Smith. This point
was considered in some detail in the discussion sec-
tion of our paper, where we describe some limitations
of the GBM assumption and suggest the use of other
stochastic processes to model project value when a
GBM is not appropriate. This generality is illustrated
with the use of different period-by-period volatilities
for the fully risk-neutral model as explained above.
The procedures for approximating value processes
need to be sensitive to the kinds of options being con-
sidered and to the particulars of the processes.
As we also emphasized in the discussion, if the

project is subject to uncertainties whose resolution
may affect the project risk, such as new information
obtained from geophysical surveys or initial drilling,
then these uncertainties should be modeled separately
at the decision-tree level rather than in the simulation
model. These types of risks tend to decrease with time
and may not be consistent with an effort to approx-
imate their impacts on cash flows with a relatively

simple stochastic process. However, we recognize that
many projects may have cash flow streams and com-
plex option structures that cannot be approximated
closely using these ideas, and other modeling tech-
niques may be more appropriate.
Therefore, we do agree with Smith that the prob-

lem of approximating a high-dimensional stochastic
process with a low-dimensional summary process is
an interesting research problem that goes well beyond
the question of how to pick a volatility parameter for
a GBM process. We also believe, and we think that
Smith would agree, that a univariate approximation
can be a useful tool for analyzing many problems
with multidimensional stochastic processes when care
is taken to ensure that the appropriate assumptions
are reasonably satisfied.

4. On Risk-Neutral Valuation
Smith prefers to use a “fully risk-neutral” approach to
solving real-option valuation problems. We do as well
whenever such an approach is appropriate and com-
putationally feasible. In §6 of our paper we state that
risk-neutral forecasts for uncertain variables should
be used when possible, and that such forecasts can
be incorporated into the CA or BDH methods. Fur-
thermore, in §2 of this response we have shown that
the BDH approach applied with risk-neutral forecasts
leads to similar values to those from the “fully risk-
neutral” approach.
In our discussion we also questioned whether it

would be practical in many cases to adopt this
approach. As we noted, information regarding the
risks of individual factors may be difficult to obtain,
and some of these risks may be correlated. For exam-
ple, variable operating costs associated with an oil
production project may be correlated with oil prices.
In such cases it may be easier to estimate risk-adjusted
discount rates for projects using market data for
benchmark publicly traded companies because many
practitioners are more familiar with this approach and
may find it more acceptable.
We are pleased to see the details Smith provides

in the appendix of his comments regarding a method
for including “semimarket correlated” uncertainties
in the integrated Smith and Nau (1995) valuation
framework. As far as we are aware this approach has
not been published before.
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5. On the Choice of Underlying
Uncertainty

In this section, Smith argues that the BDH approach
is only applicable to projects with “scale” options,
and thus is not sufficiently general. We acknowl-
edge that this approach will not be the most appro-
priate modeling choice for all real-options problems,
although some flexibility can be accommodated in
these models.
Smith also questions the use of the project value

without options as the underlying uncertainty, and
champions the use of simulation-based methods for
evaluating high-dimensional valuation problems. We
agree with Smith that simulation provides a robust
method for modeling multiple uncertainties, includ-
ing those that follow non-GBM stochastic processes
such as mean-reverting or jump diffusion processes.
In fact, the CA and BDH approaches utilize simu-
lation methods, albeit in a different and more lim-
ited way.
Option valuation problems typically require a back-

ward recursive solution to optimal decision policy at
any point in time up until the end of the project’s
life. Monte Carlo simulation, however, is a “forward-
looking” process, and is not naturally suited to this
type of problem. As Smith notes, several different
methods have been proposed for modifying sim-
ulation methods to facilitate approximation of the
value function to evaluate optimal stopping decisions
along simulated paths for the underlying asset. These
include linear regression (Longstaff and Schwartz
2001), linear programming (de Farias and Van Roy
2003), and policy iteration (Ibanez and Zapatero 2004).
Smith is correct that these methods, in principle, allow
us to directly consider each individual underlying
uncertainty; however, in our experience the incremen-
tal modeling and computational requirements of these
approaches can be significant.
For example, we have used the Longstaff and

Schwartz (2001) method to model problems with
an underlying mean-reverting uncertainty and have
found it to work well for a simple abandon option.
However, for more realistic problems with complex
and/or multiple concurrent options, it may be more
challenging to program the required decision-making
logic into the model, as Smith also notes. As an
alternative, Gamba (2002) applies the Longstaff and

Schwartz method separately to each of the individ-
ual options in a problem and then finds ways to
aggregate the incremental values from each option to
derive a single value for the value of the project.
The solution methods associated with these simula-

tion models also are subject to spreadsheet program-
ming errors, and may appear to managers and other
decision makers as a “black box.” We believe that
these tools are important approaches to real-options
valuation, but suffer from many of the same draw-
backs as lattices with regard to transparency and intu-
ition, and in terms of their ability to model relatively
complex real-options problems.

6. Summary
In §§2 and 5, Smith has provided a valuable discus-
sion of alternative approaches to solving real-options
problems by describing the use of lattices and simula-
tion for this purpose. We believe that these tools can
be valuable, and that no one technique will be the best
choice for all real-options problems. The choice of the
appropriate modeling technique should depend on
the characteristics of a specific problem, the needs of
the decision maker, and the modeling preferences
of the analyst. We hope that the readers will become
familiar with all of these tools and make wise choices
among them.
In §4, Smith argued for a “fully risk-neutral” ap-

proach to determining the present value of a risky
project. We agree that this approach should be used
when the necessary information is available, but we
think that other considerations will justify the use of
the mix of risk-adjusted and risk-neutral approaches
in some cases. Once again, we view the choice between
these approaches as being problem dependent.
In §3, Smith highlighted a problem with the calcu-

lation of the volatility of the project value in the BDH
approach. Fortunately, his intuition also suggested
a viable solution to this problem, and we believe
that the modified approach described in this response
addresses this issue. As we discussed in our paper, the
GBM stochastic process must be a reasonable approx-
imation to project value in order for this approach
to be used. Otherwise, consideration should be given
to the use of other stochastic processes to model
project value or to other solution strategies such as
the simulation-based approaches described by Smith.
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In summary, we agree with the majority of Smith’s
comments, and believe that most of our apparent dis-
agreements reflect different preferences and views on
the practical implementation of the various available
approaches to modeling problems. We think that this
dialogue has been a valuable one in clarifying a num-
ber of issues related to the role of decision analysis in
the solution of real-options problems, and hope that
readers will concur. For a related discussion of alter-
native approaches to solving real-options problems,
we also recommend Triantis (2005), Borison (2005),
and Copeland and Antikarov (2005).
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