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Casey, the newborn daughter of one of the authors of this
paper, received a positive result on an experimental medical
screening test, indicating that she may lack an enzyme re-
quired to digest certain fats. The interpretation of this test re-
sult was complicated by uncertainty about the false-positive
rate for the test—this was the first positive reading—and the
prevalence of the medical condition. We used a simple Bayes-
ian model to help assess the probability that Casey actually
had the enzyme deficiency and to help better understand the
role and value of this screening test. The model we used and,
more generally, our style of analysis could also be used with
other new diagnostic tests, such as tests used in manufacturing
and environmental contexts as well as other medical situations.

Casey Katharine Carswell Smith, the
second daughter of Lori Carswell

and one of the authors of this paper, was
born January 4, 1995. Casey was an appar-
ently healthy baby, born after a more-or-
less routine pregnancy and delivery. As
with most newborns, she had a small sam-
ple of blood drawn from her heel shortly

after her birth, which was sent off to a lab
for routine tests. Unlike most newborns,
however, Casey was also part of an exper-
imental screening program in which a new
procedure was being used to test blood for
certain genetic metabolic disorders. This
experimental test had been applied to ap-
proximately 13,000 newborns, and Casey



SMITH, WINKLER

INTERFACES 29:3 64

was the first to test positive.
The test results came back when Casey

was approximately six weeks old. The
screening test indicated that Casey had an
elevated level of a particular molecule (the
long-chain acylcarnitine species called
C14:1) in her blood, an expression of the
lack of an enzyme required to digest a
particular form of long-chain fats. This is a
very rare condition that, if not treated, of-
ten presents itself as a sudden and myste-
rious death (included in the broad cate-
gory of sudden infant death syndrome or
SIDS) or severe illness after a few months
of life, often accompanied by permanent
damage to vital organs. Casey exhibited
no obvious symptoms of this problem—
although none would necessarily be ex-
pected at her age—and her older sister
and parents did not have any known met-
abolic disorders. There is no clearly de-
fined treatment regimen for this condition,
but the doctor suggested that, given that
the condition had been identified before
any damage was done, certain dietary
practices and other precautions could save
Casey’s life and give her a good chance of
enjoying a high quality of life.

The experimental test was developed at
Duke University Medical Center and had
been applied to every child born at Duke
Hospital and Durham Regional Hospital
in the three years prior to Casey’s birth.
The test involves extracting materials from
the newborn’s blood and evaluating these
materials in a tandem mass spectrometer
to look for telltale signs of undigested fats
in the blood. The test is noninvasive be-
cause it makes use of blood samples that
are routinely collected from newborns to
screen for other metabolic disorders (spe-

cifically, PKU deficiencies). In addition to
testing for the specific long-chain defect
indicated in Casey’s case, this new test
screens for a variety of different metabolic
disorders including more common
medium-chain defects as well as other
long-chain defects. Casey’s result was the
first positive for any of the defects in the
history of the screening program.

When we speak of a “positive test re-
sult,” it is important to remember that the
test result does not, in itself, constitute a
definitive diagnosis. Instead, doctors typi-
cally interpret a positive result on a
screening test as an indication to perform
more specific follow-up tests. Neverthe-
less, the doctor spoke frequently of “con-
firming the diagnosis” in his conversations
with the parents and, when pressed by the
parents for a probability, indicated that he
thought the probability that Casey had the
deficiency was in the 80 to 90 percent
range.

The question we struggled with was
how to think about the results of this test.
In a sense, this is a classic Bayes’ rule exer-
cise, like those encountered in statistics
and decision analysis courses. We need to
consider the base rate (or, in epidemiologi-
cal terms, the prevalence) of the condition
and the false-positive and false-negative
rates for the test and then calculate the
posterior probability of Casey having the
enzyme deficiency given the result of the
test. But in this case there is a twist: be-
cause the test has no history of positive re-
sults—true or false—we need to think es-
pecially carefully about the false-positive
rate. Clearly the false-positive rate for this
test cannot be too high; otherwise we
would have observed some false positives
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Figure 1: To determine the likelihood that
Casey had the enzyme deficiency, we con-
structed a simple probability tree showing the
probabilities of the various possible out-
comes.

in the 13,000 tests that had been per-
formed. But does this mean it is zero?
Moreover, because the condition for which
Casey tested positive is very rare and
identified fairly recently, there is a ques-
tion about the prevalence of the condition.

Casey’s parents were deeply concerned
by the doctor’s diagnosis and the appar-
ently dire nature of the condition. But, be-
ing aware of the need to think carefully
when interpreting screening tests, they
were suspicious of the doctor’s assessment
and pressed him for details concerning the
likelihood of the condition and the false-
positive rate. They enlisted the help of
their friend and “consultant” (Winkler),
who is an expert in Bayesian statistics and
could provide more objective support and
advice. Though we now know more about
Casey’s condition and this new test, the
analysis we describe was based on our
state of information while waiting for re-
sults from follow-up tests.

While our analysis was specific to
Casey’s situation, the general structure of
Casey’s problem arises more frequently,
whenever new diagnostic tests are evalu-
ated or deployed. For example, similar sit-
uations arise when considering new
screening tests for other medical condi-
tions, new environmental assays, or new
screening procedures for credit checks or
quality control. We believe that the gen-
eral framework and model we used could
also be useful in these other situations.
However, our primary goal is to demon-
strate by example how some rough quan-
titative judgments and simple analysis can
improve understanding, communication,
and decision making in a highly charged
and emotional situation, fraught with un-

certainty and potentially grave outcomes.
What to Think?

We began our analysis of Casey’s prob-
lem by drawing a probability tree (Figure
1) and trying to determine appropriate
numbers to place in it. The first question
we considered was the prevalence of the
specific enzyme deficiency indicated in
Casey’s case; that is, the probability that a
randomly selected newborn would have
the C14:1 enzyme deficiency. The doctor
reported that there were very few known
cases of people living with this condition;
but, given that most people suffering from
this condition had died as infants, this
alone does not tell us much about the like-
lihood of the condition. We also knew,
however, that every SIDS death in North
Carolina in the previous five years had
been autopsied and that this condition had
not been implicated in any of them. We
also believed that our doctor and his col-
leagues, being leading authorities in this
field, would be aware of cases in other
states where this enzyme deficiency was
implicated, certainly if there were many of
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them. The doctor indicated that he esti-
mated that, in total, long-chain enzyme
deficiencies occur in about one in 40,000
newborns, but that Casey’s specific C14:1
deficiency was among the rarer of the
eight long-chain deficiencies that had been
identified. Based on all of this, we esti-
mated the prevalence to be one in 250,000.
Recognizing our uncertainty about the
prevalence, we considered a range from
one in 100,000 to one in a million when
performing sensitivity analysis.

Next we considered the false-positive
rate; that is, the probability of obtaining a
positive test result if Casey did not actu-
ally have the deficiency. Given the rarity
of the condition that Casey tested positive
for, we knew that this was a critical as-
sumption, and we didn’t have much guid-
ance. Other screening tests that we knew
more about—such as HIV tests, drug tests,
amnio fetal protein tests—had false-
positive rates in the one-in-100 to one-in-
1,000 range. (Sox et al. [1988] lists false-
positive and false-negative rates for a
variety of medical tests.) But we knew this
test couldn’t have a false-positive rate in
that range because, if the rate were this
high, we would almost certainly have seen
some false positives in the 13,000 new-
borns tested before Casey. We took a fig-
ure of one in 20,000 to be a rough estimate
for our initial analysis and considered a
range from one in 5,000 to one in 1,000,000
for sensitivity analysis. It was clear to us
that we would have to think about and
model this uncertainty more carefully.

Finally, we considered the false-negative
rate; that is, the probability of obtaining a
negative test result if Casey actually had
the deficiency. Here again we had little

hard evidence, but we suspected that the
rate was not high. Based on what we
knew about the design of the test, we fig-
ured that if the deficiency were present, it
would probably be detected. We also
knew that there had been no known cases
in which a child had the deficiency and
passed the test. However, given the rarity
of this condition and the small number of
newborns tested, this observation is hardly
surprising. We assumed a false-negative
rate of one in 1,000 and considered a
range from one in 100 to one in 1,000,000.

Given these base-case numbers, we ap-
plied Bayes’ rule to calculate the probabil-
ity that Casey had the C14:1 enzyme defi-
ciency given the test result:

P(Has Def. | ` Result)

4 P(Positive Result | Has Def.) P(Has Def.)/

{P(Positive Result | Has Def.) P(Has Def.)

` P(Positive Result | No Def.) P(No Def.)}

4 (.999)(.000004)/{(.999)(.000004)

` (.00005)(.999996)}

4 .00000396/{(.00000396) ` (.00005000)}

4 .0740.

Thus, given the positive test result, we es-
timated the probability of Casey actually
having the deficiency to be approximately
7.4 percent or one in 13.5. This probability
suggests a legitimate cause for concern for
the parents, but it is much lower than the
80- or 90-percent probability suggested by
the doctor.

To understand the impact of changes in
the assumptions on this result, we varied
each of the numbers over the ranges indi-
cated earlier and summarized the effects
using a tornado chart (Figure 2). This anal-
ysis showed that reasonable variation in
the false-negative rate has little impact on
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Figure 2: To understand the impact of changes in our assumptions on the probability that
Casey has the deficiency, we constructed this tornado chart. The bars of the chart show the pos-
terior probabilities given by varying the assumptions, one at a time, from their base-case val-
ues. The vertical line shows the probability (.074) with the base-case assumptions.

the posterior probability. Increasing the
prevalence from one in 250,000 to one in
100,000 increases the posterior probability
to about .17, still well below the probabil-
ity the doctor suggested. Decreasing the
false-positive rate to one in a million, how-
ever, increases the posterior probability to
.80. The magnitude of this effect confirmed
our earlier intuition that we needed to
think more carefully about the false-
positive rate. This is what we did next.
How Accurate Is the Test?

Our sensitivity analysis showed the key
impact of the false-positive rate. To im-
prove our analysis, we needed to acknowl-
edge that little was known about the false-
positive rate and to think carefully about
how to use the information we did have.
Given that there were no false positives in
13,000 previous tests, it was clear that the
false-positive rate could not be very high.
But given the low prevalence of Casey’s
hypothesized enzyme deficiency, it would
take extreme confidence in the test to get
posterior probabilities in the 80- to 90-per-
cent range. How should we think about
this false-positive rate? What do 13,000
negative test results tell us about the false-

positive rate?
We chose to approach the questions

about the false-positive rate as a Bayes’
rule problem as well. First, we needed to
ask what our beliefs about the true false-
positive rate would have been before we
saw 13,000 negative test results by specify-
ing a prior probability distribution on this
quantity. Then we needed to consider the
likelihood of seeing 13,000 negative test
results given the different possible true
false-positive rates. We could then update
our distribution on the false-positive rate
using Bayes’ rule.

To simplify our analysis, we assumed
that the uncertainty surrounding the false-
positive rate could be described using a
beta-binomial model. In using this model,
we assumed (1) that successive test results
could be modeled as independent draws
from a Bernoulli process with a false-
positive probability p for each test and (2)
that our prior distribution on the false-
positive probability could be described by
a beta distribution. Assumption (1)
seemed natural and appropriate in this
setting and, given the ability of the beta
distribution to capture a variety of differ-
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ent shapes and forms of distributions, as-
sumption (2) seemed reasonable given the
nature of the test and the circumstances of
the analysis. (Clemen [1996] and Winkler
[1972] give more details on the beta distri-
bution and the beta-binomial model.)

We worked together to develop a prior
distribution that described our beliefs
about the likelihood of false positives be-
fore we saw the results of the experimen-
tal screening tests. With the beta distribu-
tion, one way to specify a distribution is to
specify an expected false-positive rate (the
mean of the distribution) and an equiva-
lent sample size. In assigning an expected
false-positive rate, we thought about the
accuracy of other screening tests and
thought that before we had seen any ex-
perimental screening results it might have
been reasonable to assess an expected
false-positive rate of about 0.001. This was
consistent with the performance of other
tests we were familiar with [Sox et al.
1988]. Given how the test works, it seemed
that it could be quite accurate, but unlike
the tests reviewed by Sox et al., before the
screening experiment that Casey was part
of, it had not been used on large popula-
tions and could still prove disappointing.

With the beta distribution, the equiva-
lent sample size describes how spread out
this prior distribution is; it can be inter-
preted, intuitively, as if our prior state of
information is equivalent to having seen
this many observations. We chose an
equivalent sample size of 1,000. Using the
beta distribution, this implies that, before
seeing any results from the screening test,
we felt that there would be a 10-percent
chance of having a false-positive rate less
than one in 9,482, a 50-percent chance of

having a false-positive rate less than one
in 1,442, and a 90-percent chance of hav-
ing a false-positive rate less than one in
434 (see Figure 3). In the good cases (for
example, the 10th percentile case), this
would be one of the most accurate medical
screening tests available; in the medium
and bad cases, its performance would be
more routine. We thought that this prior
appropriately described our uncertainty
before the screening test, but we also rec-
ognized the need to do more sensitivity
analysis and, if necessary, to review the
assumptions with the doctor.

Casey was the first to test
positive.

With the beta-binomial model, it is easy
to update the prior distribution based on
the results of the screening tests using
Bayes’ rule. Given a prior with a mean of
one in 1,000 and equivalent sample size of
1,000, if (hypothetically) we had a new
sample of 1,000 screening tests that in-
cluded five false positives, we would take
our new equivalent sample size to be 2,000
(4 1,000 ` 1,000) and revise our expected
false-positive rate up to six (4 1 ` 5) in
2,000. In the actual case, having seen no
false positives in 13,000 samples, we had a
new equivalent sample size of 14,000 (4
1,000 ` 13,000), and we revised our ex-
pected false-positive rate down to one in
14,000. Observing no false positives thus
shifted the distribution for the false-
positive rate to the left (Figure 3).

Thus, given that we had seen no false
positives in 13,000 trials, we believed that,
if Casey did not have the enzyme defi-
ciency, there was a one-in-14,000 chance
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Figure 3: The prior probability density func-
tion describes our uncertainty about the false-
positive rate before seeing any results from
the screening tests. The posterior density
function describes our uncertainty after ob-
serving no false positive in 13,000 trials.

Figure 4: This chart shows how the probabil-
ity that Casey has the deficiency varies with
our assumptions about the prior distribution
for the false-positive rate. Our base-case as-
sumptions yield a probability of 5.3 percent
and are marked with an X in the figure. The
middle curve shows probabilities based on an
equivalent sample size of 1,000 and varying
prior expected false-positive rates. The other
curves show the same results with different
equivalent sample sizes.

that she would have a positive test result.
To calculate the probability that she truly
had the enzyme deficiency, we used this
false-positive rate in the Bayes’-rule calcu-
lation described earlier. This gives a prob-
ability that Casey has the C14:1 deficiency
of 5.3 percent.

Like our earlier calculation, this one is
also based on some fairly rough assump-
tions, and it is important to understand
the sensitivity of our results to these as-
sumptions. This posterior probability (the
probability that Casey has the C14:1 defi-
ciency given the test result) varies depend-
ing on the expected false-positive rate and
the equivalent sample size assumed for
the prior distribution on the false positive
rate. As we decrease the prior expected
false-positive rate (Figure 4), holding con-
stant the equivalent sample size, Casey’s
probability of having the deficiency in-
creases, but it does not reach the 80- to 90-
percent range until the prior expected
false-positive rate decreases to about one
in 100,000. As we decrease the equivalent
sample size, holding constant the expected
false-positive rate, Casey’s probability of
having the deficiency increases, but
reaches a probability of only 34 percent
with an equivalent sample size of 100.
Considering changes in both parameters
simultaneously, we found that to reach
probabilities in the 80- to 90-percent range
we would need an unlikely combination
of expecting an extremely low false-
positive rate and yet having a small equiv-
alent sample size. This analysis gave us
confidence that the doctor’s probability
was too high and that a more appropriate
probability would be in the one to 10 per-
cent range with five percent being our

base-case probability.
How Could the Doctor Be So “Wrong”?

As you may have guessed, follow-up
tests performed shortly after learning of
Casey’s positive test result revealed that
Casey’s enzyme system was functioning
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normally. Repeating the test on another
spot blood sample from the original new-
born screening card gave results identical
to the first, but a repeat of the same test
with a new sample and some other tests
indicated no problems. While the doctor
believes that these results suggest a tran-
sient impairment to Casey’s enzyme sys-
tem present at birth (perhaps due to a de-
layed maturation of her enzyme system),
Casey’s test result was certainly a false
positive in that she showed no evidence of
an enzyme deficiency in these follow-up
tests.

The fact that Casey’s result was a false
positive does not imply that our five-
percent probability was right and that the
doctor’s 80- to 90-percent probability was
wrong; we could simply have been among
the lucky 10 or 20 percent to have a false
positive. Nevertheless, this experience and
our modeling do suggest the need to be
careful in interpreting test results. Because
many people find the five-percent proba-
bility surprising or counterintuitive, we
briefly review some of the psychological
heuristics and biases affecting people’s in-
tuitive probability judgments in these
kinds of situations so that you might be
aware of these traps if you find yourself in
an analogous situation.

We believe that the doctor was employ-
ing what Kahneman and Tversky refer to
as the representativeness heuristic when
forming his intuitive evaluation of Casey’s
situation. Kahneman and Tversky [1974]
suggest that when judging the probability
that some object belongs to a particular
category, people typically use a heuristic
in which the judgments are based on the
degree to which the object exhibits charac-

teristics that are representative or stereo-
typical of the category. The more the ob-
ject resembles the stereotype, the higher
the judged probability. While this kind of
similarity is an important consideration in
forming probability judgments, it does not
consider the prevalence of objects in the
category and consequently leads to pre-
dictable biases in which subjects ignore or
underestimate the effect of the base rate or
prior probability.

In this setting, we believe that the repre-
sentativeness heuristic was operating at
two different levels. First and most obvi-
ously, given that Casey had tested positive
for the C14:1 enzyme deficiency, she ap-
peared to fit the stereotype of somebody
with this deficiency and it was natural for
the doctor to assume that she had the con-
dition regardless of how rare it is. This is a
common problem with the interpretation
of test results, exhibited by lay people and
physicians. For example, Eddy [1982] did
a study in which he asked physicians to
judge the probability that a woman had a
malignant breast tumor based on an X-ray
that correctly classifies 80 percent of the
malignant tumors and 90 percent of be-
nign tumors. This woman was judged to
have a one-percent probability of having a
malignant tumor prior to having an X-ray
come back positive for a malignancy. In
this study, Eddy found that 95 out of 100
doctors estimated the probability to be
about 75 percent. Applying Bayes’ rule,
the probability is only 7.5 percent.

In Casey’s situation, the doctor, with a
background in genetic testing and a role
as a research physician, is familiar with
Bayes’ rule and is likely to be aware of
this phenomenon. But given the extremely
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low false-positive rates, it is easy to see
how someone—even an expert—reasoning
intuitively could exhibit this bias. In a note
debriefing the parents after the follow-up
tests had been completed, the doctor em-
phasized this similarity in test results: “All
the patients with the [long-chain enzyme
deficiency] had stood out quite flagrantly,
and Casey’s sample looked like theirs.”
This similarity and the fact that the false-
positive rate for the test is, in his words,
“essentially zero,” seemed to be dominat-
ing his thinking. But the prevalence is also
essentially zero, and to make sense of the
comparison, most of us would have to do
some calculations along the lines of those
outlined earlier.

We also suspect that the representative-
ness heuristic played a role in the doctor’s
arriving at an estimate of essentially zero
for the false-positive rate. Kahneman and
Tversky [1974] and others have found
that, when forming probability estimates
in this kind of setting, intuitive judgments
tend to be dominated by the sample pro-
portion and are insufficiently sensitive to
the size of the sample and prior probabil-
ity. Having no false positives in 13,000
tries is certainly stereotypical performance
for a test that never generates false posi-
tives and, following the representativeness
heuristic, one might naturally assume the
false-positive rate to be zero. In the beta-
binomial model, given our prior distribu-
tion (equivalent to having seen one false
positive in 1,000 tries), one could not ar-
rive at an expected false-positive rate of
one in 100,000 or less without having per-
formed the test more than 99,000 times
with no false positives. Here again, though
Casey’s physicians were trained in statis-

tics and likely to be aware of the impor-
tance of sample size, Casey’s situation is
extreme and likely to lead people making
intuitive judgments into this familiar trap.

The anchoring-and-adjustment heuristic
may have also played a role in the doc-
tor’s intuitive evaluation. When using this
heuristic to estimate probabilities, people
anchor on a probability from some appar-
ently analogous situation and adjust the
probability for use in the present situation.
The anchors are sometimes inappropriate
and the adjustments are often insufficient
[Kahneman and Tversky 1974]. For exam-
ple, a doctor might anchor on a high pos-
terior probability, thinking only about
how accurate the test is, and adjust that
number insufficiently to reflect the specific
characteristics of the test and the base rate
of the condition being tested. Alterna-
tively, the doctor might focus on a poste-
rior probability for some other test—for
example, one that might give a 90-percent
posterior probability—and then adjust in-
sufficiently for the situation at hand. The
use of such a heuristic seems particularly
likely when interpreting a new test since
physicians don’t have much experience
with positive test results and have not had
the opportunity to observe, for example,
that only a small proportion of those who
test positive actually have the condition.
How Much Is the Test Worth?

One common reaction to hearing of
Casey’s false positive is to think that the
test is a waste of time, money, and emo-
tion. But we cannot draw this conclusion
based on Casey’s outcome; we must com-
pare the possible outcomes with the test to
those without the test. To get a sense of
the value of the test, we constructed a de-
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Figure 5: To understand the value and role of the test, we constructed a decision tree showing
each of the possible outcomes and the costs in each scenario. The numbers beneath each node
in the tree represent the expected costs given that you are in the state corresponding to that
node.

cision tree showing the possible outcomes
with and without the test (Figure 5). In
constructing this tree, we relied on our
own judgment. Because this was intended
as a quick, rough analysis, it should be in-
terpreted more as a demonstration of the
kind of analysis required to address this
question than as an accurate evaluation of
this particular test. Our goal was to better
understand the purpose of the test and its
medical benefits.

Starting at the bottom of the tree, we

first considered the possible outcomes in
the case where no test was performed. In
this case, we assumed Casey’s probability
of having the enzyme deficiency to be one
in 250,000, our expected prevalence for the
condition. If she does not have the condi-
tion, she would live a normal life, and we
assigned a cost of zero dollars to this situ-
ation. If she does have the enzyme defi-
ciency, the question is whether the doctors
would catch the condition before it killed
Casey or caused permanent damage; we
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assumed, for the sake of argument, that
each of these outcomes was equally likely.

To capture the value of the test, we had
to place some monetary value on the vari-
ous possible health states. We assessed a
value of life of $10 million that would be
lost in the event of Casey’s death. This
number is to be interpreted as a small-risk
value of life as in Howard’s [1980] model
for valuing life risks; it is appropriate only
for valuing small risks of death—one in
250,000 qualifies as a small risk—and it re-
flects the parents’ trade-off between qual-
ity and length of life and risk aversion.
While economists’ estimates of the average
small-risk value of life are typically in the
$2 to $6 million range, the higher number
for Casey reflects her parents’ preferences
and economic situation.

In the scenario in which the enzyme de-
ficiency is discovered before it does any
permanent damage, we assumed a 15-per-
cent reduction in the value of Casey’s life,
reflecting a diminished quality of life and
life expectancy due to this deficiency. If
the condition is discovered after it has
done permanent damage, we assumed a
40-percent reduction in the value of
Casey’s life for these same reasons. While
we did not discuss these potential out-
comes in much detail, the doctors had de-
scribed the case of a woman in North
Carolina who was living with this condi-
tion and had recently given birth to a
healthy baby. In her case, the condition
was not identified until after it had done
considerable damage, and she lived with
severe health problems. This suggested
that the condition could be managed
through dietary restrictions and other pre-
cautions, particularly if the condition were

identified before it had done damage.
Nevertheless, these management strategies
are restrictive and may not be perfect, so
we have assumed some decrease in the
quality of life and life expectancy, even if
the condition is identified before it does
damage.

Calculating expected costs in the case in
which we don’t perform the test, we
found an expected cost of $20.67. This fig-
ure implies that Casey’s parents should be
willing to pay up to $20.67 for a hypothet-
ical white pill that would guarantee that
Casey would not have the C14:1 enzyme
deficiency. The screening test is not such a
white pill, but by allowing for the early
detection of this deficiency, it makes it
more likely that doctors will catch the de-
ficiency before it causes death or damage.

If the test is performed, is negative, and
Casey truly does not have the deficiency,
she will lead a normal life, and we again
assigned a cost of zero dollars. In the
event that the test is negative and Casey
truly has the deficiency (the test gave a
false negative), then the situation is similar
to the case in which she has the enzyme
deficiency and no test was done. We have
assigned a cost for this scenario that is
equal to the expected costs of having the
deficiency without testing. If the screening
test comes back positive and Casey truly
has the deficiency, then we face essentially
the same situation we would if we had
discovered the condition without testing
before it did any damage. As in that case,
we assigned a cost of $1.5 million, reflect-
ing a diminished quality of life and life ex-
pectancy due to this deficiency amounting
to 15 percent of the assumed value of
Casey’s life.
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In the event of a false positive, Casey
would lead a normal life, but we would
have costs associated with follow-up test-
ing and the emotional trauma to the par-
ents in dealing with this false positive. We
estimated the costs of follow-up testing to
be about $200 and the trauma costs to be
about $1,500 (that is, the parents would be
willing to pay $1,500 to avoid the ordeal
associated with the positive result). These
follow-up tests were fairly noninvasive
(blood and urine samples) and were per-
formed quickly. If the follow-up tests had
been more invasive or required more time,
the costs and trauma would have been
much higher. There would also be emo-
tional trauma and testing costs in those
scenarios in which Casey truly has the en-
zyme deficiency, but we assume that these
costs are included in (and dwarfed by) the
loss of value in Casey’s life.

Casey is now a thriving four-
year-old.

Calculating the expected total costs with
the test, we find an expected cost of $6.14:
if the test has been done but we do not
know the results yet, the value of a hypo-
thetical white pill that would guarantee
that Casey would not have the C14:1 en-
zyme deficiency is $6.14. The value of the
test is then the difference in expected costs
with and without the test, or $20.67 1

$6.14 4 $14.53. The test actually costs
about $6 per child to perform and thus
seems like a good investment.

To understand the sensitivity of these
results, we constructed another tornado
chart showing how the value of the test
changes as we vary these assumptions

over their possible ranges (Figure 6). This
analysis showed that the critical assump-
tions affecting the value of the test are the
prevalence, the assumed value of life, and
the probability of death before detection; if
we wanted to accurately determine the
value of the test, we would have to think
more carefully about these assumptions.
Interestingly, the false-positive rate—
which was critical in calculating the prob-
ability that Casey actually has the defi-
ciency—is not very sensitive in this
calculation. This is because the overall
probability of a false positive is rather
small and the costs associated with such a
false positive are very small compared to
value of the life potentially saved.

In reviewing these results, you should
remember that the value calculated is
based on our own assumptions (particu-
larly those concerning the prognosis if
Casey were to have the deficiency) and
does not include the value of the test in
screening for defects other than the C14:1
deficiency or any value of learning about
the test for potential application to others.
If we were to include the ability of the
same test to screen for other deficiencies
(the test also screens for the medium-chain
enzyme deficiencies, which occur in about
one in 23,000 newborns) or the value of
learning for others, the overall value of the
test would increase substantially, and we
would see that this $6 test is a very good
investment.
Conclusion

Since the results of the follow-up test
were available soon after we did our anal-
ysis and before the doctors performed any
invasive medical procedures, the main
benefit of the analysis was to give Casey’s
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Figure 6: This tornado chart shows how the value of test varies with different assumptions.

parents some peace of mind. While a five-
percent chance that one’s child has such a
serious problem is not an easy thought to
bear, it is far less difficult than the 80- or
90-percent chance the doctor initially sug-
gested. In other situations, however, the
follow-up tests or procedures might be
more invasive or risky (for example, sur-
gery) and the difference between the two
probabilities could lead to very different
courses of treatment. By constructing the
decision tree and calculating the value of
the test, we were better able to appreciate
the medical benefits of the test and, in the
end, the parents felt good about the test
even though it generated a false positive
for Casey. While Casey’s parents were for-
tunate to have the training to allow them
to reason through the implications of the
test result, patients and families would
lack such training in most cases, and it
would be up to the physicians or counsel-
ors to help them interpret the test result
and its implications appropriately. Our ex-
perience demonstrates how some rough
quantitative judgments and simple analy-
sis can help patients and families properly
understand the nature, magnitude, and se-

verity of the risks they face and avoid the
traps associated with inappropriate, but
commonly used, heuristics.

While we have focused here on the in-
terpretation and evaluation of the test in
terms of its impact on Casey and her par-
ents, the analytic framework could be ex-
tended to consider such questions as
whether the testing program should be
scrapped or adopted for broader use. The
analytic structure of Casey’s problem—a
diagnostic test with unknown perfor-
mance characteristics—arises in many
other settings, including other medical
tests, environmental assays, and various
other screening procedures, such as those
used for credit checks or quality control.
In these problems, the model we used and
variations on it may prove helpful. More
generally, in these other contexts and in
many other difficult situations, we believe
that some rough quantitative judgments
and simple analysis can help improve un-
derstanding, communication, and ulti-
mately decision making.
Epilogue

Shortly after Casey’s false positive, the
screening program identified its first true
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positive, but for a more common medium-
chain defect rather than the long-chain de-
fect suspected in Casey’s case. Subse-
quently the screening program has been
adopted more broadly and, starting last
year, every child born in the state of North
Carolina is now tested using this proce-
dure. With a total of 93,000 newborns
tested to date, the program has identified
10 cases of children with medium-chain
enzyme deficiencies. None have been
found to have the long-chain deficiency
suspected in Casey’s case. To date, there
have been only two false positives, one for
a medium-chain deficiency and one
(Casey) for the long-chain deficiency.
Other states are considering adopting this
screening program, but none has yet fol-
lowed North Carolina’s lead.

Casey, we are happy to report, is now a
thriving four-year-old with no apparent
enzyme deficiencies.
Acknowledgment

We are grateful for helpful comments
provided by Bob Clemen, Ward Edwards,
Craig Fox, Dennis Fryback, Ralph Keeney,
Harold Lehmann, Dennis Lindley, David
Millington, Mike Rothkopf, and, particu-
larly, Lori Carswell.
References
Clemen, Robert T. 1996, Making Hard Decisions:

An Introduction to Decision Analysis, Duxbury
Press, Pacific Grove, California.

Eddy, David M. 1982, “Probabilistic reasoning
in clinical medicine: Problems and opportu-
nities,” in Judgment Under Uncertainty: Heu-
ristics and Biases, eds. Daniel Kahneman, Paul
Slovic, and Amos Tversky, Cambridge Uni-
versity Press, Cambridge, England, pp. 249–
267.

Kahneman, Daniel and Tversky, Amos 1974,
“Judgment under uncertainty: Heuristics and
biases,” Science, Vol. 185, pp. 1124–1131.

Howard, Ronald A. 1980, “On making life and

death decisions,” in Societal Risk Assessment:
How Safe Is Safe Enough?, eds. Richard C.
Schwing and Walter A. Albers, Jr., Plenum
Press, New York, pp. 89–113.

Sox, Harold C., Jr.; Blatt, Marshal A.; Higgins,
Michael C.; and Marton, Keith I. 1988, Medi-
cal Decision Making, Butterworth’s, Boston,
Massachusetts.

Winkler, Robert L. 1972, Introduction to Bayesian
Inference and Decision, Holt, Rinehart and
Winston, New York.


