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Abstract. We consider dynamic selection problems, where a decision maker repeatedly
selects a set of items from a larger collection of available items. A classic example is the
dynamic assortment problemwith demand learning, where a retailer chooses items to offer
for sale subject to a display space constraint. The retailer may adjust the assortment over
time in response to the observed demand. These dynamic selection problems are naturally
formulated as stochastic dynamic programs (DPs) but are difficult to solve because the
optimal selection decisions depend on the states of all items. In this paper, we study
heuristic policies for dynamic selection problems and provide upper bounds on the
performance of an optimal policy that can be used to assess the performance of a heuristic
policy. The policies and bounds that we consider are based on a Lagrangian relaxation of
the DP that relaxes the constraint limiting the number of items that may be selected. We
characterize the performance of the Lagrangian index policy and bound and show that,
under mild conditions, these policies and bounds are asymptotically optimal for problems
with many items; mixed policies and tiebreaking play an essential role in the analysis of
these index policies and can have a surprising impact on performance. We demonstrate
these policies and bounds in two large scale examples: a dynamic assortment problemwith
demand learning and an applicant screening problem.
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Supplemental Material: The e-companion is available at https://doi.org/10.1287/mnsc.2019.3342.
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1. Introduction
In this paper, we consider dynamic selection problems,
where a decision maker repeatedly selects a set of items
from a larger collection of available items. A classic ex-
ample is the dynamic assortment problemwith demand
learning,where a decisionmaker (DM)—prototypically
a retailer—chooses products to offer for sale, selecting
from many possible products, but is limited by dis-
play space. In this problem, product demand rates are
uncertain, and the retailer may want to update the
assortment over the course of the selling season in
response to demands observed in previous periods.
Similar problems arise in Internet advertising (which
ads should be displayed on a news site?), in yield
trials for experimental crop varieties (which experi-
mental varieties should be planted in a trial?), and in
hiring or admissions decisions (which applicants
should be interviewed, hired, or admitted?).

These dynamic selection problems are naturally
formulated as stochastic dynamic programs (DPs) but
are difficult to solve to optimality. Even when the
reward processes are independent across items, the
competition for limited resources (e.g., display space)

links the selection decisions: the selection decision
for one item will depend on the states of the other
available items. In this paper, we study heuristic
policies for dynamic selection problems and provide
upper bounds on the performance of an optimal
policy. We focus on problems with a finite horizon,
but also consider an extension to an infinite-horizon
setting with discounting.
Our methods and analysis are based on a Lagrangian

relaxation of the DP that relaxes the constraint limit-
ing the number of items that can be selected. This
Lagrangian relaxation decomposes into item-specific
DPs that are not difficult to solve and the value of the
Lagrangian provides an upper bound on the value
of an optimal policy. We can solve the Lagrangian
dual problem (a convex optimization problem) to
find Lagrange multipliers that give the best possible
Lagrangian bound. This optimal Lagrangian can
also be used to generate a heuristic policy that
performs well and, if we mix policies and break ties
appropriately, is asymptotically optimal: undermild
conditions, as we increase the number of items avail-
able and the number that can be selected, the relative

3029

http://pubsonline.informs.org/journal/mnsc
mailto:dbbrown@duke.edu
http://orcid.org/0000-0002-5458-9098
http://orcid.org/0000-0002-5458-9098
mailto:jim.smith@dartmouth.edu
http://orcid.org/0000-0002-9429-7567
http://orcid.org/0000-0002-9429-7567
https://doi.org/10.1287/mnsc.2019.3342
https://doi.org/10.1287/mnsc.2019.3342


performance of the heuristic approaches the Lagrangian
upper bound.

We illustrate these results with two example pro-
blems. The first is based on the dynamic assortment
model with demand learning from Caro and Gallien
(2007). The second is an applicant screening problem
where a DM must decide which applicants (e.g., for
a college or job) should be screened (e.g., reviewed
or interviewed) and which applicants should be ad-
mitted or hired.

1.1. Literature Review
Our paper builds on and contributes to two related
streams of literature. First, the dynamic selection
problem can be viewed as a special case of a weakly
coupled DP. For example, Hawkins (2003), Adelman
andMersereau (2008), and Bertsimas andMišić (2016)
study DPs that are linked through global resource
constraints. The dynamic selection problem can be
viewed as a weakly coupled DP where the linking
constraint is a cardinality constraint that limits the
number of items that can be selected in a period.
Hawkins (2003), Adelman andMersereau (2008), and
Bertsimas and Mišić (2016) all consider Lagrangian
relaxations of weakly coupled DPs, similar to the
Lagrangian relaxation in Section 3. Lagrangian re-
laxations of DPs have been used in a number of ap-
plications including network revenue management
(e.g., Topaloglu 2009) and marketing (e.g., Bertsimas
andMersereau 2007 aswell as Caro andGallien 2007).

The dynamic selection problem can also be viewed
as a finite-horizon, nonstationary version of the
restless bandit problem introduced in Whittle (1988).
The restless bandit problem is an extension of the
classical multiarmed bandit problem where (i) the
DM may select multiple items in any given period
and (ii) items may change states when not selected.
Whittle (1988) introduced an index policy where items
are prioritized for selection according to an index that
is essentially equivalent to the Gittins index. Whittle
(1988) motivates this policy through a Lagrangian
analysis, viewing the index as a breakeven Lagrange
multiplier (see Section 4.2) and conjectured that in the
infinite-horizon average reward setting these policies
are asymptotically optimal for problems with many
items. Weber and Weiss (1990) showed that this
conjecture is true under certain conditions but need
not be true in general. Caro andGallien (2007) studied
Whittle indices in the dynamic assortment problem.
Bertsimas andNiño-Mora (2000) study restless bandit
problems with discounted rewards over an infinite
horizon and develop performance bounds based on
a hierarchy of linear programming (LP) relaxations.
They show that the first-order LP relaxation corre-
sponds to the Lagrangian relaxation studied by Whittle
(1988) and they use this relaxation to generate an

index policy. Hodge and Glazebrook (2015) develop
and analyze an index policy for an extension of the
restless banditmodelwhere each itemcan be activated at
different levels. For a comprehensive discussion of the
restless bandit problem, see Gittins et al. (2011).

1.2. Contributions and Outline
Our main contributions are (i) a detailed analysis of
the Lagrangian relaxation of the dynamic selection
problem and, building on this, (ii) the development of
an optimal Lagrangian index policy that performs
well in examples and is proven to be asymptotically
optimal. Specifically, we consider limits where we
increase both the number of items available (S) and
the number of items that may be selected (N) with a
growth condition (for example,N is a fixed fraction of
S). We show that the performance gap (the difference
between the Lagrangian bound and the performance
of the heuristic policy) grows with the same rate as̅̅̅
N

√
for the optimal Lagrangian index, whereas the

gaps for Whittle index policy (Whittle 1988) grow
linearly with N. Mixed policies and tiebreaking play
a surprising and important role in the analysis and
in the numerical results. For example, a Lagrangian
index policy that breaks ties randomly may also ex-
hibit linear growth in the performance gap.1

We begin in Section 2 by defining the dynamic
selection problem and introducing the dynamic as-
sortment and applicant screening problems. In Sec-
tion 3, we describe the Lagrangian relaxation and
discuss its theoretical properties. We describe a
cutting-plane method for efficiently solving the La-
grangian dual optimization problem in the appendix.
In Section 4, we define a number of heuristic policies
including the Whittle index policy and the optimal
Lagrangian index policy. In Section 5, we characterize
the performance of the optimal Lagrangian index
policy and present results on the asymptotic opti-
mality of this policy. In Section 6, we simulate the
heuristic policies of Section 4 in the context of the
two example problems and evaluate their perfor-
mance. In Section 7, we discuss the applicability of
these methods in problems with long time horizons,
considering the conjecture of Whittle (1988) on the
asymptotic optimality of theWhittle index policy and
the counterexample of Weber and Weiss (1990). We
also present an extension of the asymptotic optimality
of the Lagrangian index policy to an infinite-horizon
setting with discounting. In the electronic companion
(EC) in Section EC4, we describe information re-
laxation performance bounds (see, e.g., Brown et al.
2010) based on the Lagrangian relaxation and show
how they improve on the standard Lagrangian bounds.
These bounds are illustrated in the numerical exam-
ples of Section 6. Most proofs and some other detailed
discussions are also provided in the EC.
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2. The Dynamic Selection Problem
We first describe the general dynamic selection pro-
blem and then discuss the dynamic assortment and
applicant screening problems as examples of this
general framework.

2.1. General Model
We consider a finite horizon with periods t � 1, . . . ,T.
In period t, the DM can select a maximum of Nt items
out ofS available. TheDM’s state of information about
item s is summarized by a state variable xs. To avoid
measurability and other technical issues, we will assume
that the state variables xs can take on a finite number of
values. We define a binary decision variable us where
1 (0) indicates item s is (is not) selected. In each period,
item s generates a reward rt,s(xs,us) that depends on
the state xs, the selection decision us, and the period t.
Between periods, the state variables xs transition to a
random new state χ̃t,s(xs, us) with transitions depend-
ing on the current state, the selection decision, and
period. We let x � (x1, . . . , xS) denote a vector of item
states, u � (u1, . . . ,uS) a vector of selection decisions,
and χ̃t(x,u) � (χ̃t,1(x1,u1), . . . , χ̃t,S(xS, uS)) the corre-
sponding random vector of next-period item states.

The DM selects items with the goal of maximizing
the expected total reward earned over the given ho-
rizon. Though a policy formaking these selections can
depend on the whole history of states and actions and
could be randomized, standard DP arguments (e.g.,
Puterman 1994) imply there is an optimal policy that
is deterministic and Markovian, that is, of the form
π � (π1, . . . , πT), where πt(x) specifies a vector of se-
lection decisions u given state vector x, where umust
be in

8t ≡ u ∈ {0, 1}S : ∑S
s�1

us ≤ Nt

{ }
. (1)

Taking the terminal value V∗
T+1(x) � 0, we can write

the optimal value function for earlier periods as

V∗
t (x) � max

u∈8t

rt(x, u) + E V∗
t+1 χ̃t(x, u)( )[ ]{ }

, (2)

where the total reward for a given period is the sum of
item-specific rewards rt(x,u) � ∑S

s�1 rt,s(xs, us). We will
also consider variations of the problem where the
DM must select exactly Nt items in period t, that is,
where the inequality constraint in Equation (1) is
replaced by an equality constraint.

For an arbitrary policy π, we can write the corre-
sponding value function Vπ

t (x) recursively as

Vπ
t (x) � rt(x, πt(x)) + E Vπ

t+1(χ̃t(x, πt(x)))[ ]
, (3)

where the terminal case is Vπ
T+1(x) � 0 for all x. A

policy π is optimal for initial state x if it always sat-
isfies the linking constraint (1) and Vπ

1 (x) � V∗
1(x).

As mentioned in the introduction, the dynamic se-
lection problem can be viewed as a nonstationary, finite-
horizon version of the restless bandit problemofWhittle
(1988). Whittle mentions a number of potential ap-
plications of restless bandits including clinical trials,
aircraft surveillance, and worker scheduling. Bertsimas
and Niño-Mora (2000) mentions applications of rest-
less bandits in controlling drug markets and in con-
trolling a make-to-stock production facility. We will
illustrate our general framework by considering two
specific applications that we describe next.

2.2. Dynamic Assortment Problem with
Demand Learning

Following Caro and Gallien (2007), in the dynamic
assortment problem with demand learning, we con-
sider a retailerwho repeatedly chooses products (items)
to display (select) from a set of S products available,
subject to a shelf space constraint that requires the
number of products displayed in a period to be less
than or equal to Nt. The demand rate for products is
unknown and the DM updates beliefs about these
rates over time using Bayes’ rule. The retailer’s goal
is to maximize the expected total profit earned. As
in Caro and Gallien (2007), we assume the demand
for product s follows a Poisson distribution with an
unknown product-specific rate γs. The demand rates
are assumed to be independent across products and
have a gamma prior with shape parameter ms and
inverse scale parameter αs (ms, αs > 0), which im-
plies the mean and variance of γs arems/αs andms/α2

s .
The state variable xs for product s is the vector (ms, αs)
of parameters for its demand rate distribution. If
a product is displayed, its reward for that period
is assumed to be proportional to the mean de-
mand ms/αs; if a product is not displayed, its reward
is zero.
The assumed distributions are convenient because

they lead to nice forms for the demand distribution
and Bayesian updating is easy. If a product is dis-
played, the observed demand in that period has a
negative-binomial distribution (also known as the
gamma-Poisson mixture). Then, after observing demand
ds, the posterior distribution for the demand rate is a
gamma distribution with parameters (ms + ds, αs + 1),
representing the new state for the product. If a
product is not displayed, its state is unchanged.
In our numerical examples, we will consider pa-

rameters similar to those in Caro and Gallien (2007).
We consider horizons T � 8, 20, and 40. We assume
that all products are a priori identical with gamma
distribution parameters (ms, αs) � (1.0, 0.1) (so the
mean and standard deviation for the demand rate are
both 10) and rewards are equal to the mean demand
ms/αs (i.e., the profit margin is $1 per unit).2 We will
vary the number of products available S and assume
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that the DM can display 25% of the products available
in each period, that is, Nt � 0.25S.

Caro and Gallien (2007) considered several exten-
sions of this basic model that also fit within the
framework of dynamic selection problems. One such
extension introduced a lagof lperiods between the time
a display decision is made and when the products are
available for sale. In this extension, the item-specific
state variable xs is augmented to keep track of
the display decisions in the previous l periods. Caro
and Gallien (2007) also considered an extension with
switching costs,which requires keeping track ofwhether
a product is currently displayed.

Of course, there are many variations on the assort-
ment problem (see Kök et al. 2008 for a review) that do
not fit within the framework of dynamic selection
problems. Although Caro and Gallien (2007) modeled
aggregate demand for a retailer over the course of a
fixed time period (say, a week), recent work on dynamic
assortment problems have modeled the arrivals of in-
dividual customers, for example, to a web page. For
example, Rusmevichientong et al. (2010) consider a
dynamic assortment model with capacity constraints
(like constraint (1)) but where demands are modeled
using a multinomial logit choice model with un-
known customer preferences. Bernstein et al. (2015)
consider a dynamic assortment problem with de-
mand modeled using a multinomial logit choice
model where products have limited inventories. The
multinomial choice model used in these two papers
captures substitution effects and the rewards cannot be
decomposed into the sum of item-specific rewards as
required in the dynamic selection model.

2.3. Applicant Screening Problem
In this example,we consider a set ofS applicants seeking
admission at a competitive college or applying for a
prestigious job. TheDM’s goal is to identify and admit
(or hire) the best possible set of applicants. Each
applicant has an unknown quality level qs ∈ [0, 1],
with uncertainty given by a beta distribution with
parameters xs � (αs, βs), where αs, βs > 0; the mean
quality is then equal to αs/(αs + βs).

In the first T − 1 periods, the DM can screen up to
Nt applicants. Screening an applicant yields a signal
about the applicant’s quality. The signals are drawn
from a binomial distribution with n trials and prob-
ability of success qs on each trial. The number of
trials n in the binomial distribution can be interpreted
as a measure of the informativeness of the signals. For
example, a binomial signalwithn � 5 provides asmuch
information as five signals from a Bernoulli signal
(a binomial with n � 1). After screening an applicant
and observing a signal ds, the applicant’s state is
updated using Bayes’ rule to (αs + ds, βs + n − ds). In
the Bernoulli case, we can think of the signal as being

a “thumbs up” or “thumbs down” indicatingwhether
the screener thought the applicant should be admitted
(or hired) or not. An applicant’s state does not change
when not screened. The rewards are assumed to be zero
during the screening periods. In the final period, the DM
can admit up to NT applicants. The reward for ad-
mitted applicants is their mean quality (αs/(αs + βs))
and the reward for those not admitted is zero.
In our numerical examples, we will focus on exam-

ples with T = 5 and a priori identical applicants with
(αs, βs) � (1, 1). We will vary the number of applicants
S and assume 25% of the applicants can be admitted
and 25% can be screened in each of the four screening
periods (i.e., Nt � 0.25S). We will also vary the in-
formativeness of the signals, taking n � 1 or 5 in the
binomial distribution for the signal process. We will
also consider an example case with Bernoulli signals
(n � 1) and a longer time horizon (T � 51) where a
smaller fraction of applicants can be screened in
each period (Nt � 0.02S) and just 2% can be admitted.
In all of these examples, the DM needs to strike a
balance between a desire to screen each applicant at
least once (which is feasible) and the desire to identify
and admit the best applicants, a process which typ-
ically requires multiple screenings. With the chosen
parameters, theDMcanscreenapplicantsmore thanonce
only if some other applicants are not screened at all.

3. Lagrangian Relaxations
The DP (2) is difficult to solve because the constraint (1)
limiting the number of items selected links decisions
across items: the selection decision for one item de-
pends on the states of the other items. In this section,
we consider Lagrangian relaxations of this problem
wherewe relax this linking constraint and decompose
the value functions into computationally manageable
subproblems. This Lagrangian relaxation can then be
used to generate a heuristic selection policy (as de-
scribed in Section 4) as well as an upper bound on the
performance of an optimal policy. Propositions 1–3 are
fairly standard in the literature onLagrangian relaxations
ofDPs (e.g.,Hawkins 2003, Caro andGallien 2007, and
Adelman and Mersereau 2008). Proposition 4 pro-
vides a detailed analysis of the gradient structure of
the Lagrangian that is important in later analysis.

3.1. The Lagrangian DP
Though one could in principle consider Lagrange mul-
tipliers that are state dependent, to decompose the
DP we focus on Lagrange multipliers λ � (λ1, . . . , λT) ≥
0 that depend on time but not states. As we will see
in Proposition 4, the assumption that the Lagrange
multipliers are constant across states means that an
optimal set of Lagrange multipliers requires the linking
constraint (1) to hold “on average” (or in expectation)
rather than in each state. Taking LλT+1(x) � 0, the
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Lagrangian (dual) DP has period-t value function that
is given recursively as

Lλt (x) � max
u∈{0,1}S

{
rt(x,u) + E Lλt+1 χ̃t(x,u)( )

[ ]
+λt Nt −

∑S
s�1

us

( )}
. (4)

Comparedwith theDP (2), we havemade two changes.
First, we have incorporated the linking constraint into
the objective by adding λt(Nt −∑S

s�1 us); with λt ≥ 0,
this term is nonnegative for all policies satisfying the
linking constraint. Second, we have relaxed the
linking constraint, allowing the DM to select as many
items as desired (we require u ∈ {0, 1}S rather than
u ∈ 8t). Both of these changes can only increase the
optimal value so the Lagrangian value function
provides an upper bound on the true value function.

Proposition 1 (Weak Duality). For all x, t, and λ ≥ 0,
V∗

t (x) ≤ Lλt (x).
Thus, for any λ ≥ 0, Lλt (x) can be used as a perfor-
mance bound to assess the quality of a feasible policy.

The advantage of the Lagrangian relaxation is that,
for any fixed λ, we can decompose the Lagrangian
dual function into a sum of item-specific problems
that can be solved independently.

Proposition 2 (Decomposition). For all x, t, and λ ≥ 0,

Lλt (x) �
∑T
τ�t

λτNτ +
∑S
s�1

Vλ
t,s(xs), (5)

where Vλ
t,s(xs) is the value function for an item-specific DP:

Vλ
T+1,s(xs) � 0 and

Vλ
t,s(xs) � max

{
rt,s(xs, 1) − λt + E[Vλ

t+1,s χ̃t,s(xs, 1)( )],
rt,s(xs, 0) + E[Vλ

t+1,s χ̃t,s(xs, 0)( )]
}
. (6)

The first term in the maximization of Equation (6) is
the value if the item is selected and the second term
is the value if the item is not selected. Intuitively,
the period-t Lagrange multiplier λt can be interpreted
as a charge for using the constrained resource in
period t. We will let ψ denote an optimal deterministic
(Markovian) policy for the Lagrangian relaxation
(Equation (4)) and ψs denote an optimal deterministic
policy for the item-specific problem (6); we reserve π
for policies that respect the linking constraints (1).

3.2. The Lagrangian Dual Problem
As discussed after Proposition 1, the Lagrangian DP
can be used as an upper bound to assess the perfor-
mance of heuristic policies. Although any λ provides
a bound, we want to choose λ to provide the best

possible bound. We can write this Lagrangian dual
problem as

min
λ≥0 Lλ1 (x). (7)

To say more about this Lagrangian dual problem (7),
we will consider a fixed initial state x and focus on
properties of Lλ1 (x) and Vλ

1,s(xs) with varying λ. Ac-
cordingly, for the remainder of this section, wewill let
Vs(λ) � Vλ

1,s(xs) and L(λ) � Lλ1 (x).
First, we note that the item-specific value functions

are convex functions of the Lagrange multipliers so
the Lagrangian dual problem is a convex optimiza-
tion problem.

Proposition 3 (Convexity). For all x, t, and λ ≥ 0, L(λ) and
Vs(λ) are piecewise linear and convex in λ.

Proof. See Section EC1.1. □

In Equation (6) we see that the Lagrangemultipliers
λt appear as costs paid whenever an item is selected;
thus the gradients of Vs(λ) and L(λ) will be related
to the probability of selecting items under an opti-
mal policy for the item-specific DPs (6) for the given λ.
These selection probabilities are not difficult to
compute when solving the DP. Since a convex func-
tion is differentiable almost everywhere, for most λ
these gradients will be unique. However, as piece-
wise linear functions, there will be places where
Vs(λ) and L(λ) are not differentiable and the optimal
solution for the Lagrangian dual (7) will typically be
at such a “kink.” These kinks correspond to values
of λ where there are multiple optimal solutions for
the item-specific DPs. The following proposition
describes the sets of subgradients for the Lagrangian
and their relationships to optimal policies for the
item-specific DPs.

Proposition 4 (Subgradients). Let pt,s(ψs) be the proba-
bility of selecting item s in period t when following a
policy ψs for the item-specific DP (6) and let Ψ∗

s(λ) be the
set of deterministic policies that are optimal for the item-
specific DP (6) in the initial state with Lagrange multi-
pliers λ.

(i) Subgradients for item-specific problems: For
any ψs ∈ Ψ∗

s(λ),
∇s(ψs) � −(p1,s(ψs), . . . , pT,s(ψs)) (8)

is a subgradient of Vs at λ; that is,

Vs(λ′) ≥ Vs(λ) + ∇s(ψs)�(λ′ − λ) for all λ′. (9)

The subdifferential (the set of all subgradients) of Vs at λ is

∂Vs(λ) � conv ∇s(ψs) : ψs ∈ Ψ∗
s(λ)

{ }
, (10)

where convA denotes the convex hull of the set A.
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(ii) Subgradients for theLagrangian.The subdifferential
of L at λ is

∂L(λ) � N +∑S
s�1

∂Vs(λ)

� N + conv · ∑S
s�1

∇s(ψs) : ψs ∈ 	 ∗s (λ) ∀s
{ }

, (11)

where the sums are setwise (i.e., Minkowski) sums
and N � (N1, . . . ,NT).
(iii) Optimality conditions. The Lagrange multiplier

vector λ∗ is an optimal solution for the Lagrangian dual
problem (7) if and only if, for each s, there is a set of policies
ψs,i
{ }ns

i�1 with ψs,i ∈ Ψ∗
s(λ∗) (ns ≤ T + 1) and mixing

weights γs,i
{ }ns

i�1 (with γs,i > 0 and
∑ns

i�1 γs,i � 1) such that

∑S
s�1

∑ns
i�1

γs,i pt,s(ψs,i) � Nt for all t such that λ∗
t > 0 and

∑S
s�1

∑ns
i�1

γs,i pt,s(ψs,i) ≤ Nt for all t such that λ∗
t � 0.

Proof. See Section EC1.1. □

We can interpret the result of Proposition 4(iii) as
saying that the optimal policies for the LagrangianDP
must satisfy the linking constraints (1) “on average”
for a mixed policy ψ̃ � (ψ̃1, . . . , ψ̃S) where the item-
specific mixed policies ψ̃s are independently gener-
ated as a mixture of deterministic policies ψs,i with
probabilities given by the mixing weights γs,i. Here,
when we say the linking constraints must hold on
average (or in expectation), this average includes the
uncertainty in the state evolution when following a
given item-specific policy ψs,i (this determines pt,s(ψs,i))
and the probability γs,i of following policy ψs,i.3

Although the result of Proposition 4(iii) suggests
a mixture of policies where the DM randomly selects
a deterministic policy ψs,i for each item in advance
(i.e., before period 1) and follows that policy through-
out, we could use the policies and mixing weights of
the proposition to construct item-specific Markov
random policies that randomly decide whether to
select an item in each period, with state-dependent
selection probabilities; see Section EC1.2. In both
representations,werandomize independentlyacross items.

In the special case where all items are a priori
identical (i.e., identical item-specific DPs (6) with
the same initial state), the Lagrangian computations
simplify because we no longer need to consider dis-
tinct item-specific value functions. In this case, we can
drop the subscript s indicating a specific item and
the optimality condition of Proposition 4(iii) reduces
to λ∗ is an optimal solution for the Lagrangian dual
problem (7) if and only if there is a set of policies

ψi
{ }n

i�1 withψi ∈ Ψ∗(λ∗) (n ≤ T + 1) andmixingweights
γi
{ }n

i�1 such that

S
∑n
i�1

γi pt(ψi) �Nt for all t such that λ∗
t>0 and

S
∑n
i�1

γi pt(ψi) ≤Nt for all t such that λ∗
t � 0. (12)

Here we can interpret the mixing weights γi as the
probability of assigning an item to policy ψi or we can
view it as the fraction of the population of items that
are assigned to this policy. Alternatively, as discussed
earlier, we can assign all items a Markov random pol-
icy that selects according to state-contingent selection
probabilities. If some, but not all, items are identical, we
get partial simplifications of this form.
Given the piecewise linear, convex nature of the

Lagrangian and the fact that subgradients are readily
available, it is natural to use cutting-plane methods
(see, e.g., Bertsekas et al. 2003) to solve the Lagrangian
dual problem (7). Alternatively, one could use sub-
gradient methods (as in, e.g., Topaloglu 2009 and
Brown and Smith 2014), a Nelder-Meadmethod (as in
Caro and Gallien 2007), or an LP formulation (as in
Hawkins 2003, Adelman and Mersereau 2008, and
Bertsimas and Mišić 2016). We discuss the LP for-
mulation in more detail in Section EC1.3. In the ap-
pendix, we describe a cutting-plane method that
exploits the structure of the subgradients described in
Proposition 4 and exploits the separability (over items
and time) in the Lagrangian dual problem. Unlike the
subgradient or Nelder-Mead methods, the cutting-
plane method is guaranteed to terminate in a finite
number of iterations with a provably optimal solu-
tion. The cutting-plane method also provides the item-
specific value functions (6) as well as the set of optimal
policies and mixing weights of Proposition 4(iii). The
LP formulation provides an exact solution to the
Lagrangian dual and may be more efficient in prob-
lems with long time horizons and small state spaces
(such as the example of Weber and Weiss 1990 in
Section 7.1), but in our dynamic assortment and ap-
plicant screening examples, the LP formulation was
typically much less efficient than the cutting-plane
method. For instance in the dynamic assortment
problem with horizon T � 20, solving the Lagrangian
dual as an LP formulation took about 16 hours using a
commercial LP solver (MOSEK) and exploiting the
simplifications due to having identical items. In
contrast, the cutting-plane method took less than two
minutes with this example.

3.3. Applicant Screening Example
To illustrate the Lagrangian DP and the role of mixed
policies, we consider the applicant screening problem
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described in Section 2.3 in the case with horizon T and
Bernoulli signals. Here the DM can screen 25% of the
applicants in each of the first four periods and can
admit 25% in the final period. As discussed in Sec-
tion 2.3, with these assumptions the DMmust choose
between screening each applicant once or screen-
ing some applicants more than once with the hope
of identifying better applicants to admit. Using the
cutting-plane method to solve the Lagrangian dual
problem (7), we find an optimal solution with λ∗ �
(0.0333, 0.0333, 0.0333, 0.0333, 0.60) and optimal poli-
cies ψi with selection probabilities pt(ψi) and mixing
weights γi shown in Table 1. This mixture of poli-
cies selects 25% of the applicants in each period in
expectation, as requiredby the optimality condition (12).

Figure 1 depicts the mean field evolution of the
screening process with the optimal mixture of poli-
cies shown in Table 1.4 The blue rectangles repre-
sent possible applicant states in each period and the
flows represent state transitions; the widths of the
flows represent the number of applicants making
the given transition. The midpoint of each rectangle
on the vertical dimension represents the expected
quality for applicants in that state. Initially all ap-
plicants are unscreened and have a beta (1,1) prior,
which implies an expected quality of 0.5. In the first
period, the 25% of the applicants following policy
(d) are screened. In expectation, half of them receive
positive signals and half receive negative signals.
The screened applicants then move to higher or lower
states for the next period,with expected qualities equal
to 0.666 and 0.333, respectively. In the second period,
the 25% of applicants following policy (e) are screened
and are similarly split into higher and lower states. In
the third period, there is a mix of applicants being
screened for the first time (from policies (b) and (f)) and
a second time (from policy (e)). The last screening pe-
riod (t � 4) also includes a mix of applicants being
screened for the first and second time.

In the final period, those applicants who have re-
ceived two positive signals in two screenings and

those who have received one positive signal in one
screening are admitted. All others are rejected. On
average, 20% of those admitted have one positive
signal in one screening (with expected quality 0.666)
and 80% have two positive signals in two screen-
ings (with expected quality 0.75): the Lagrangian
value is 0.20 × 0.666 + 0.8 × 0.75 � 0.7333per admitted
applicant. Rejected applicants have an average ex-
pected quality of 0.4222.
Though the optimal Lagrange multipliers λ∗ in this

example are unique, the optimal policies and mixing
weights in Table 1 are not unique. Other optimal mix-
tures may, for example, involve policies that schedule
follow-up screenings differently or screen some of
those who will be screened once in the first or second
period. Some alternative optimal solutionsmay induce
the same flows shown in Figure 1, but others may
induce different flows. However, in all optimal
mixtures, the policies involved must be optimal for
the item-specific DP (6) and the set of policies must be
coordinated to ensure that, on average, 25% of the
applicants are selected (i.e., screened or admitted) in
each period, as required by the optimality condi-
tion (12).

4. Heuristic Policies
The optimal policies for the Lagrangian DP cannot
be implemented because they regularly violate the
linking constraint (1). For instance, in the applicant
screening problem, the optimal policy for Lagrang-
ian selects Nt applicants on average, but if more ap-
plicants receive positive signals than expected, the
Lagrangian policy will screen or admit more appli-
cants than is allowed. In this section, we consider
heuristic policies that respect the linking constraint in
every scenario and hence can be implemented. We
analyze the performance of the optimal Lagrangian
index policy (introduced in Section 4.4) in Section 5
and evaluate the performance of these heuristics for
the dynamic assortment and applicant screening
problems in a simulation study in Section 6.

Table 1. Selection Probabilities for Policies Involved in an Optimal Mixture for the
Applicant Screening Example

Selection probabilities by period(pt(ψi))
Policy (ψi) 1 2 3 4 5 Mixing weight (γi)

a Never screen 0 0 0 0 0 0.300
b Screen once 0 0 1 0 0.5 0.025
c Screen once 0 0 0 1 0.5 0.075
d May screen twice 1 0 0 0.5 0.333 0.250
e May screen twice 0 1 0.5 0 0.333 0.250
f May screen twice 0 0 1 0.5 0.333 0.100

Weighted average 0.25 0.25 0.25 0.25 0.25 1.000
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4.1. Index Policies
The heuristics we consider can all be viewed as index
policies. In an index policy, we calculate a priority
index it,s(xs) that indicates the relative attractiveness
of selecting item s in period twhen the item is in state
xs. Given priority indices for all items, the policies
proceed as follows: (a) if there are more than Nt items
with nonnegative indices, select the Nt items with
the largest indices; (b) otherwise, select all items with
nonnegative indices.5 The linking constraints will thus
be satisfied and these index policies will be feasible
for the dynamic selection problem (2). We will gen-
erally break ties among items with the same priority
index randomly, with the exception of the optimal
Lagrangian index policy described in Section 4.4.

The indices we consider all approximate the value
added by selecting item s in period twhen the item is
in state xs,

it,s(xs) � rt,s(xs, 1) + E[Wt+1,s(χ̃t,s(xs, 1))]( )
− rt,s(xs, 0) + E[Wt+1,s(χ̃t,s(xs, 0))]( )

, (13)

using some item-specific approximation Wt+1,s of the
next-period value function. We generate different
heuristic policies by considering different approxi-
mate value functions. For example, the Lagrangian
index policy for λ takes the approximate value
function Wt+1,s(xs) to be the item-specific value func-
tion Vλ

t+1,s(xs) given by Equation (6). The myopic
policy simply takes Wt+1,s(xs) � 0.

Though we describe these heuristics as index
policies, we can also view these heuristics as being

“greedy”with respect to anapproximate value function
Wt(x) � ∑S

s�1 Wt,s(xs). That is, in each period, the DM
solves an optimization problem that respects the
linking constraint and uses this function to approx-
imate the continuation value:

max
u∈8t

{
rt(x,u) + E[Wt+1 χ̃t(x,u)( )]

}
. (14)

Ranking items by priority index and selecting Nt
items with the largest (nonnegative) indices solves
the optimization problem (14) exactly. In the case of
the Lagrangian index policy, the approximate value
function Wt+1(x) differs from the Lagrangian value
function Lλt+1(x) by a constant. Thus a Lagrangian
index policy can be viewed as using the Lagrangian as
an approximate value function (as in Hawkins 2003
and Adelman and Mersereau 2008).

4.2. Whittle Index Policy
TheWhittle index policy (Whittle 1988) can be seen as
a variation of the Lagrangian index policy where the
Lagrange multipliers are assumed to be constant
over time (i.e., λt � w for all t or λ � w1 where 1 is a
T-vector of ones) and w is a breakeven Lagrange
multiplier for the given period and state. Specifically,
the Whittle index it,s(xs) is the w that makes the DM
indifferent between selecting and not selecting an item,

rt,s(xs, 1) − w + E Vw1
t+1,s(χ̃t,s(xs, 1))[ ]

� rt,s(xs, 0) + E Vw1
t+1,s(χ̃t,s(xs, 0))[ ]

Figure 1. Optimal Flows for the Lagrangian Relaxation of the Applicant Screening Example
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or, equivalently, in the form of Equation (13),

w � rt,s(xs, 1) + E Vw1
t+1,s(χ̃t,s(xs, 1))[ ]( )

− rt,s(xs, 0)( + E Vw1
t+1,s(χ̃t,s(xs, 0))[ ])

. (15)

The intuition behind this follows that of the Gittins
index for the standard multiarmed bandit problem:
the breakeven Lagrange multiplier represents the
most the DM would be willing to pay for use of the
constrained resource and the policy prioritizes by this
willingness to pay.

It is important to note that these Whittle indices
may not be well defined. For example, Whittle (1988)
describes an example where some items are not
“indexable” because there are multiple w satisfying
Equation (15). Even when well defined, these Whittle
indices can be very difficult to compute exactly: to
find the breakeven w for a state xs in period t, we
must repeatedly solve the item-specific DPs (6) with
λ � w1with varying w to identify the breakeven w. If
we want to calculate indices for all periods and states,
we can streamline this process by using a parametric
approach (see Section EC2.1 for details), but this still
essentially requires solving item-specific DPs once for
each period and state. As mentioned in Section 1.1,
Whittle (1988) conjectured that the Whittle index
policy is asymptotically optimal for restless bandit
problems when the items are all indexable; this
conjecture was shown to be false by Weber and Weiss
(1990). We will discuss Whittle’s conjecture and
Weber and Weiss’s counterexample in more detail
in Section 7.1.

Caro and Gallien (2007) showed that Whittle in-
dices are well defined in the dynamic assortment
problem (i.e., the model is indexable) and noted that
computing the indices is a “complicated task.” Rather
than using these hard-to-compute Whittle indices,
Caro and Gallien (2007) proposed an approximate
index that is based on approximating the expected
continuation values in Equation (15) with a one-step
lookahead value function and a normal distribution.
In our numerical examples for the dynamic assort-
ment problem in Section 6, we will focus on exact
Whittle indices but will briefly describe some results
for Caro and Gallien’s approximation.

In the applicant screening problem, the Whittle in-
dices are also well defined but, perhaps surprisingly,
are not helpful in determining applicants to screen. In
period T, the Whittle index for any applicant is the
applicant’smean quality (i.e., the expected reward for
admitting the applicant). In all earlier (i.e., screening)
periods, however, the Whittle index for every ap-
plicant equals zero, regardless of the state xs of the
applicant. Intuitively, w � 0 is the Whittle index for
screening periods because with w � 0, (a) all appli-
cants would be admitted in the final period and

(b) given this, it does not matter whether an applicant
is screened or not in any period because the informa-
tion provided by screening does not affect the admis-
sion decision or value obtained; thus Equation (15)
is satisfied with w � 0. (See Proposition EC1 in Sec-
tion EC2.2 for a formal statement and proof of this
claim.)
Although this failure of the Whittle index policy

initially surprised us, it perhaps should not have been
surprising: the setting here—with a finite horizon
and time-varying rewards—is quite far removed
from the classical multiarmed bandit where these
index policies are optimal and also quite different
from the infinite-horizon stationary restless bandits
that Whittle (1988) considered.

4.3. Modified Whittle Index Policy
Given amodel with finite horizons and/or time-varying
rewards, constraints, and/or state transitions, it seems
natural to consider Lagrangemultipliers that are varying
over time rather than constant over time, as assumed in
the Whittle index. Accordingly, we define a modified
Whittle index of this sort. The indices are calculated
recursively. To find the index mt,s(xs) for period t and
state xs, we set all future Lagrange multipliers λτ (for
τ> t) to be equal to the previously calculated period-τ
indices, that is, m � (mt+1,s(xs), . . . ,mT,s(xs)) for this
same state xs. We then take

mt,s(xs) � rt,s(xs, 1) + E[Vm
t+1,s(χ̃t,s(xs, 1))]( )

− rt,s(xs, 0) + E[Vm
t+1,s(χ̃t,s(xs, 0))]( )

. (16)

The vector (m1,s(xs), . . . ,mT,s(xs)) of modified Whittle
indices for a given state xs can thus be calculated using
a recursive procedure that is similar to solving one
item-specific DP (6).
These modifiedWhittle indices are thus much easier

to calculate than the standard Whittle index. The
modified Whittle indices require effort on the order of
solving one item-specific DP per state, whereas the
standard Whittle indices require solving one DP per
state, per period. Moreover, indexability is not an
issue with the modified Whittle indices because the
period-t index is uniquely defined by Equation (16).6

In our dynamic assortment examples, the modi-
fied Whittle index policies appear to outperform the
Whittle index policies in problems with short time
horizons; the two policies tend to perform similarly
with longer time horizons. In the applicant screening
examples, with our specific numerical assumptions,
the modified Whittle index policy prioritizes screen-
ing unscreened applicants, so it recommends screening
every applicant once. This is true for both Bernoulli
(n � 1) and binomial (n � 5) signal processes. How-
ever, with other prior distributions or constraints,
the modified Whittle index policy may give higher
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priority to applicants who have been previously
screened than those who have not yet been screened.

4.4. The Optimal Lagrangian Index Policy
Although we can define a Lagrangian index policy
for any λ, intuitively, we might expect Lagrange
multipliers λ that lead to better performance bounds
would lead to better approximate value functions and
tend to generate better heuristics. We will show that
the Lagrange multipliers λ∗ that solve the Lagrangian
dual problem (7), do in fact generate an index policy
that is asymptotically optimal (in a sense to be made
precise in Section 5), but we need to take care when
breaking ties if there are items with equal priority
indices. Recall that, in the Lagrangian relaxation,
optimal policies are typically mixed policies where
the mixing coordinates actions across items to en-
sure that Nt items are selected on average in each
period (assuming λ∗

t > 0; see Proposition 4(iii)). Our
proposed tiebreaking scheme for the Lagrangian in-
dex policymimics this mixing to coordinate actions in
the heuristic.

To illustrate the importance of tiebreaking, consider
implementing the Lagrangian index policy for λ∗ in the
applicant screening example discussed in Section 3.3.
In the first period, all applicants are in the same state
and have the same priority index. In thisfirst period, it
does notmatter which applicants are screened so long
as Nt are selected. In later screening periods, some
applicants will have been screened before and the
priority indices are equal for (i) those applicants who
have been screened once and had a positive signal and
(ii) those who have not been screened before. In both
states, the priority indices are equal to the Lagrange
multiplier (λt � 0.0333) because screening and not
screening are both optimal actions in these states in
the Lagrangian DP. Here, tiebreaking is important. If
we consistently break ties in favor of screening un-
screened applicants, all applicants will be screened
once and in the final period the DM will choose ap-
plicants to admit from the many applicants with a
single positive signal. Consistently breaking ties in
favor of rescreening applicants with a positive signal
is also not ideal.

In this applicant screening example, the ties are a
result of there being multiple optimal policies for the
Lagrangian DP. As discussed in Section 3.2, the op-
timal Lagrange multipliers λ∗ will typically lead to
multiple optimal policies for the relaxed DP (4).
Whenever there are multiple optimal policies, there
must be indifference states—like those in the appli-
cant screening example—where selecting and not
selecting are both optimal and the selection index is
equal to that period’s Lagrange multiplier λt. If there
are two such indifference states in the same period,
then items in these two states will be tied. It is difficult

to predict how many indifference states there will
be, how these indifference states will be allocated
over time, and how likely ties will be. In the applicant
screening example with T � 5 and Bernoulli signals,
ties are common and, as we will see in our numeri-
cal experiments, tiebreaking is important. In the Ber-
noulli case with T � 51, tiebreaking is even more
important. In the applicant screening example with
T � 5 and binomial signals (with n � 5), applicants
wind up being more spread out over the state space
and ties occur but less frequently than with Bernoulli
signals (n � 1); tiebreaking plays a role but is less
important than in the Bernoulli case. In the dynamic
assortment examples, there are many indifference
states but they tend to be spread out over time and
tiebreaking makes little or no difference.
Given an index policy π defined by priority indices

it,s(xs), we can define a new index policy π′ that uses a
policy ψ � (ψ1, . . . , ψS) as a tiebreaker by defining a
new index

i′t,s(xs) � it,s(xs) − ε · (1 − ψt,s(xs)), (17)

for a small ε> 0. Here, ε is chosen to be small enough
(e.g., smaller than the smallest difference between
unique values of the original indices it,s(xs)) so the
tiebreaker does not change the rankings of items that
do not have the same index value. With this modified
index, ties will be broken to match the choice with
policy ψs: items not selected by ψs in a given period/
state are penalized slightly, so they will “lose” on this
tiebreaker. Also note that items with an original pri-
ority index it,s(xs) equal to zero will not be selected
with this new index policy if ψs does not select the
item. We break any remaining ties randomly.
We define an optimal Lagrangian index policy π̃ as a

Lagrangian index policy for λ∗ that uses an optimal
mixed policy ψ̃ for the Lagrangian dual problem (7) as
a tiebreaker. Note that with the optimal Lagrangian
index policy, the only states where tiebreaking is
relevant are the indifference stateswhere the selection
indices it,s(xs) are equal to λ∗

t . If it,s(xs)> (<) λ∗
t , then all

optimal policies for the Lagrangian relaxation (6) will
select (not select) the item and all tied items will have
the same index value i′t,s(xs), after taking into account
the tiebreaker as in Equation (17).
We can generate a mixed policy ψ̃ for tiebreak-

ing using any of the three methods discussed after
Proposition 4:
• Simple randommixing: independently randomly

assign each item s a policy ψs according to the mixing
weights of Proposition 4(iii) in each scenario.
• Markov random mixing: ψt,s(xs) in Equation (17)

is randomly selected from {0, 1}with state-dependent
probabilities given in Section EC1.2.
• Proportional assignment: if some or all of the

items are identical, we can sometimes construct a

Brown and Smith: Policies and Bounds for Dynamic Selection Problems
3038 Management Science, 2020, vol. 66, no. 7, pp. 3029–3050, © 2020 INFORMS



nonrandom tiebreaking policy ψ where items are
assigneddifferent policieswith proportions reflecting
the desired mixing weights.

In our numerical examples, we will generate tie-
breaking policies ψs using proportional assignments,
using simple random mixing to allocate noninteger
remainders when necessary. For instance, in the ap-
plicant screening problem with the optimal policy
mixture in Table 1, if S = 1,000, we assign (300, 25, 75,
250, 250, 200) applicants to the six policies listed in
Table 1. If S = 100, the desired proportions are not
integers, so we randomize, assigning (30, 3, 7, 25, 25,
20) or (30, 2, 8, 25, 25, 20) items to these six policies,
each 50% of the time. In Section 6, we use proportional
assignments because it reduces the uncertainty in the
model and seems to lead to slightly better perfor-
mance (see Section 6.4).

5. Analysis of the Optimal Lagrangian
Index Policy

In this section, we characterize the performance of the
optimal Lagrangian index policy and study asymp-
totic properties as we grow the size of the problem.
The main result is the following proposition that
relates the performance of the optimal Lagrangian
index policy to the Lagrangian bound. Here we let r̄
and r denote upper and lower bounds on the rewards
(across all items, states, periods, and actions) and
let N � maxt{Nt}.
Proposition 5. Let λ∗ denote an optimal solution for the
Lagrangian dual problem (7)with initial state x. Let ψ̃ denote
an optimal mixed policy for this Lagrangian and π̃ an optimal
Lagrangian index policy that uses ψ̃ as a tiebreaker. Then

Lλ
∗

1 (x) − Vπ̃
1 (x) ≤

(r̄ − r )∑T
t�1

βt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N̄t(1 − N̄t/S)

√
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

≡ Δψ̃(x)
≤ (r̄ − r )∑T

t�1
βt

̅̅̅
N

√
, (18)

where N̄t is the expected number of items selected by ψ̃ in
period t (N̄t � Nt if λ∗

t > 0 and N̄t ≤ Nt if λ∗
t � 0), and the βt

are nonnegative constants that depend only on t and T.

Proof. See Section EC3.1. □

The proof of Proposition 5 considers the states x̃t
visited using the policy ψ̃ that is optimal for the La-
grangian relaxation and characterizes the differences
in rewards generated by ψ̃ and those generated by the
corresponding optimal Lagrangian index policy π̃.
The key observations in the proof are as follows:

• The selection decisions made by the heuristic π̃
are based on priority indices that are aligned with the

decisions made by ψ̃. Let nt denote the number of
items selected by the relaxed policy ψ̃ in period t in a
particular state; this may be larger or smaller than
Nt. From Equations (6) and (13) and taking into ac-
count the tiebreaking rule (17), we see that items with
priority indices i′t,s(xs) ≥ (<) λt will (will not) be se-
lected by ψ̃. If nt <Nt items are selected by ψ̃, then
these nt items will be among the Nt items with the
largest selection indices andwill also be selected by π̃.
If nt ≥ Nt items are selected by ψ̃, then π̃ will select a
subset of size Nt of those selected by ψ̃. In both cases,
the number of items with different decisions is
bounded by |nt −Nt|. Note that the tiebreaker is es-
sential in ensuring alignment when there are ties in
the original indices.
• Let ñt represent the random number of items

selected when using the relaxed policy ψ̃. With an
optimal policy ψ̃ for the Lagrangian and λ∗

t > 0, the
difference ñt −Nt has zero mean (by Proposition 4(iii))
and the expectation of |ñt −Nt| is bounded by a
standard deviation term of the form

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nt(1 −Nt/S)

√
.

The assumptions that the state transitions and the
mixing of policies are independent across items en-
sure that the standard deviations grow with

̅̅̅
N

√
.

• The βt terms in Equation (18) reflect the maxi-
mum possible number of changes in item states
caused by the selection decision of π̃ deviating from
ψ̃ for a single item in period t. These βt terms grow
with the number of periods remaining as a change in
decision in period t can have downstream implica-
tions on decisions and state transitions for other items
in later periods. Specifically, with an index policy,
changing the state (hence the index) of one item may
affect the selection decisions for two items, as the
changed itemmay become one of the topNt items and
be selected, thereby forcing another item out of the
top Nt (or vice versa). In the worst case, this doubling
of changed states can cascade through all remaining
periods and thus

βt � 1 + 2 + 22 + . . . + 2T−t � 2T−t+1 − 1. (19)

This implies that the
∑T

t�1 βt term in Equation (18) is
equal to 2(2T − 1) − T.
• Finally, the (r̄ − r) terms provide an upper bound

on the possible loss in value caused by the state of a
single item under π̃ deviating from the state under ψ̃
in single period t. This upper bound reflects the
possibility that the DM may earn the minimum re-
ward r rather than the maximum reward r̄ as a result
of the change in state.
This bound may seem quite conservative, but

we will see that in the applicant screening exam-
ples, the gap Lλ

∗
1 (x) − Vπ̃

1 (x) appears to growwith
̅̅̅
N

√
.

Moreover, we have developed simple analytic ex-
amples where the gap between the Lagrangian and
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optimal Lagrangian policies asymptotically grows
with

̅̅̅
N

√
; see Section EC3.2. Thus

̅̅̅
N

√
is the best

possible growth rate for these performance gaps for
general dynamic selection problems.7

We can use Proposition 5 to relate the perfor-
mance of the optimal Lagrangian value function, the
rewards generated by the corresponding optimal
Lagrangian index policy, and the optimal value func-
tion V∗

1(x).
Theorem 1 (Performance Guarantees). In the setting of
Proposition 5,

V∗
1(x) − Δψ̃(x) ≤ Lλ

∗
1 (x) − Δψ̃(x) ≤ Vπ̃

1 (x) ≤ V∗
1(x)

≤ Lλ
∗

1 (x).

Proof. The second inequality was established in Prop-
osition 5. Proposition 1 implies the first and last in-
equalities. The remaining inequality (the third one)
follows from the fact that π̃ is feasible for the DP (2),
that is, it satisfies the linking constraint (1). □

Since Δ̃ψ(x) is bounded by a term that grows with̅̅̅
N

√
, Proposition 5 and Theorem 1 provide insight

into the asymptotic performance of the optimal La-
grangian index policy and bound for large problems.
In our numerical experiments in Section 6, we con-
sider problems where the items are all identical and
we increase S and Nt in proportion. The next result
establishes asymptotic optimality for large prob-
lems in a more general setting. Specifically, we con-
sider a sequence of dynamic selection problems
where we expand the set of items available (indexing
these sets by their cardinality S) and simultaneously
increase the number of items Nt(S) that may be se-
lected in period t, while holding the time horizon T
constant.

Corollary 1 (Asymptotic Optimality). Consider a growing
sequence of dynamic selection problems (indexed by S) and
let V∗

t (x;S), Lλ∗t (x; S), and Vπ̃
t (x;S) denote the corresponding

optimal value functions, values for the optimal Lagrangian,
and value for the corresponding optimal Lagrangian index
policy π̃. If the V∗

1(x;S) are positive and satisfy

lim
S→∞

V∗
1(x;S)̅̅̅̅̅̅̅
N(S)√ � ∞, (20)

then

lim
S→∞

Lλ
∗

1 (x;S) − Vπ̃
1 (x; S)

V∗
1(x;S)

� 0. (21)

Since Vπ̃
1 (x) ≤ V∗

1(x) ≤ Lλ
∗

1 (x), Equation (21) implies

lim
S→∞

V∗
1(x;S) − Vπ̃

1 (x; S)
V∗

1(x; S)
� 0 and

lim
S→∞

Lλ
∗

1 (x;S) − V∗
1(x;S)

V∗
1(x; S)

� 0.

Proof. See Section EC3.1. □

This corollary implies that, when the growth con-
dition (20) is satisfied, the gaps between V∗

1(x; S),
Lλ

∗
1 (x;S), and Vπ̃

1 (x;S), when normalized by V∗
1(x; S),

all converge to zero. Therefore, we can view both the
optimal Lagrangian index policy and the Lagrangian
bound as being asymptotically optimal in this sense.
The growth condition (20) is mild. For example, if
the expected reward associated with selecting an item
is bounded away from zero and limS→∞ Nt(S) � ∞,
then growth condition (20) will be satisfied. We could
normalize the ratios in Corollary 1 by the Lagrang-
ian Lλ

∗
1 (x;S) rather than V∗

1(x; S) (because V∗
1(x;S) ≤

Lλ
∗

1 (x;S)) and find these ratios also converge to zero.
Finally, if we are adding identical items and increasing
S and Nt in proportion (as we will in Section 6.2), the
Lagrangian increases in proportion to S and Nt and we
can normalize by S or Nt and again find the ratios
converge to zero.

6. Numerical Examples
In this section, we evaluate the performance of the
heuristic policies considered in Section 4 in the context
of the dynamic assortment and applicant screening
problems. Specifically, we consider: (i) the myopic
policy, (ii) the Whittle index policy, (iii) the modified
Whittle index policy, (iv) the Lagrangian index policy
for an optimal solution λ∗ to the Lagrangian dual (7),
which randomly breaks ties among items with the
same priority index, and (v) an optimal Lagrang-
ian index policy, which breaks ties as discussed
in Section 4.4. As discussed in Sections 2.2–2.3, we
consider three versions of the dynamic assortment
problem (with horizon T equal to 8, 20, and 40) and
three versions of the applicant screening problem
(with T � 5 and binomial signal with n � 1 and 5 as
well as a case with T � 51 and n � 1). We will vary the
number of items considered (S) in all cases.

6.1. Runtimes
To implement the Whittle, modified Whittle, and
Lagrangian index policies, we must first calculate
their respective indices. Table 2 reports the times
required to calculate these indices for all states for
each example. All calculations were performed using
Matlab on apersonal computer.8 In these examples, the
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items are identical so we need only calculate indices
for a single item, regardless of the number of items
S considered.

In these index calculations, the runtimes are domi-
nated by the time required to solve the item-specific
DPs (6). The time required to solve these DPs is pri-
marily determined by the number of states that
must be considered (also shown in Table 2). In prob-
lems with a fixed state space (such as the Weber and
Weiss (1990) example discussed in Section 7.1), the
time required to solve the item-specific DPs will grow
linearly with T. In the dynamic assortment and the
applicant screening problem, the possible state space
in period t grows quadratically in t (e.g., in the dy-
namic assortment problem, the number of possible
αs values grows linearly, as does the number of
possible ms values), so the computational effort in the
item-specific DPs scales with T3. The time required to
compute the Whittle indices grows with T6 (one must
solve an item-specific DP with ∼T3 states for each of
∼T3 states). The cutting-plane method used in the
Lagrangian index calculation requires repeatedly
solving these DPs, once in each iteration of the al-
gorithm. The number of iterations required to find
an optimal solution is hard to predict but typically
increases with the horizon T, which corresponds to
the dimension of the Lagrange multiplier vector λ
that is being optimized.

In the dynamic assortment examples, we find that
with T � 20, the Whittle indices require about two
hours to compute, the modified Whittle indices re-
quire about 16 minutes, and the Lagrangian indices
require about two minutes. The differences are more
pronounced in the T � 40 case: the Whittle indices
require 10.5 days to compute whereas the Lagrangian
indices require about 45 minutes. In the applicant
screening examples, the item-specific DPs are much
simpler and the calculations take much less time.

6.2. Simulation Results
Figures 2–5 describe the performance of the heuristic
policies with the number of items S (products or
applicants) equal to 4, 8, 16, . . . , 16,384 (� 214). In all

cases, we scale Nt (the number of products displayed
or applicants screened/admitted) with S, takingNt to
be a fixed proportion of S. Note the horizontal axes
in the figures showing S are plotted on a log scale.
The heuristics are evaluated using simulation, with a
sample of 1,000 trials. The samples are common
across heuristics: for any given S, the products have the
same randomly generated demands (and applicants
have the same signals) for all policies. The expected
total rewardsVπ

1 (x) for the policies are estimated from
these simulations and adjusted using a control variate
based on the Lagrangian; see Section EC4. The error
bars in the figures represent 95% confidence intervals
for these estimated values. The Lagrangian bounds
Lλ

∗
1 (x) are calculated exactly.
The (a) panels of Figures 2–5 show the relative

performance of the heuristics, normalizing the total
reward by dividing by the total number of products
displayed in the assortment examples and by the
number of applicants admitted in the screening ex-
amples. The Lagrangian bound scales linearly with S
and, hence, is constant when normalized. The (b)
panels of these figures show estimates of the per-
formance gap for the index policies, Lλ

∗
1 (x) − Vπ

1 (x),
where the estimates of these gaps are plotted on a
log scale.

6.2.1. Dynamic Assortment Examples. In the dynamic
assortment examples with T � 8, in Figure 2(a) we see
that the myopic policy is the worst of the heuristics
considered. Intuitively, the myopic policy fails to
explore enough to find the best products to display.
The other heuristics—the two versions of the Whittle
index policies and the two versions of the Lagrang-
ian index policy—all perform similarly for small S.
For large S, theWhittle index policies are significantly
below the Lagrangian bound whereas the two La-
grangian bounds and the modified Whittle index
appear to approach the Lagrangian bound. If we look
at the performance gaps in Figure 2(b) in abso-
lute terms rather than relative terms, we see that the
gaps for both Whittle index policies grow linearly in
S (linear growth corresponds to a slope of one in the

Table 2. Runtimes, Problem Sizes, and Related Statistics for Index Calculations

Dynamic assortment Applicant screening

n � 1 n � 5 n � 1
T � 8 T � 20 T � 40 T � 5 T � 5 T � 51

Runtimes (seconds)
Whittle 24.0 7,039 904,989 0.0073 0.0171 85.7
Modified Whittle 8.8 982 47,387 0.0024 0.0100 0.71
Lagrangian 0.9 126 2,716 0.0157 0.0179 3.79

States in item-specific dynamic program 12,636 199,710 1,599,820 35 115 23,426
Cutting plane iterations 70 530 826 14 16 540
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log-log plot). In contrast, the performance gaps for
the Lagrangian index policies grow sublinearly. This
implies that in Figure 2(a), the modified Whittle
index policy approaches an asymptote below the
Lagrangian bound, whereas the two Lagrangian in-
dex policies truly approach the Lagrangian bound.
In this example, there is no difference between the
two Lagrangian index policies because there are no
scenarios where products in different states have the
same priority indices, so the tiebreaking rules do not
matter.

Note that the optimal Lagrangian index policies
perform very well for large S. For example, with S =
16,384, the total reward for the optimal Lagrangian
policy is approximately $579,348 (with a mean stan-
dard error of $0.18) and the Lagrangian bound is
$579,354. This implies the optimal Lagrangian index
policy is within $6 of the optimal value!
Figure 3, (a) and (b), are like Figure 2, (a) and (b), but

consider horizon T � 20 rather than T � 8. The results
are similar, but the Whittle index policy fares some-
what better: the Whittle index policy outperforms the

Figure 2. Results for the Dynamic Assortment Examples with Horizon T = 8

Figure 3. Results for the Dynamic Assortment Examples with Horizon T = 20
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modified Whittle index policy for large S, but again
both exhibit linear growth in the performance gap.
The performance gaps for the Lagrangian index
policies again grow sublinearly. With S � 16, 384,
the total reward for the optimal Lagrangian index
policy is approximately $1,736,761 (with a mean
standard error of $4) and the Lagrangian bound is
$1,736,858, so the optimal Lagrangian index policy is
within $97 of the optimal value. The results for the
case with T � 40 are similar and are provided in
Section EC5.

Finally, although we do not show these results in
Figures 2 and 3, we also simulated the one-period
lookahead/normal approximation of the Whittle index

developed byCaro and Gallien (2007) (see Section 4.2)
on these assortment planning examples. The perfor-
mance was similar to that of the Whittle index: on
the assortment planning examples with T � 8, we
found that Caro and Gallien’s approximate Whittle
index policy performs approximately 0.2% worse on
average than the Whittle index policy, ranging from
0.17% to 0.21% for the different values of S. For the
assortment planning exampleswithT � 20 andT � 40,
we found little difference in performance for the exact
and approximate Whittle indices.

6.2.2. Applicant Screening Examples. The performance
of the heuristics is more varied in the applicant

Figure 4. Results for the Applicant Screening Examples with T � 5 and Bernoulli Signals (n = 1)

Figure 5. Results for the Applicant Screening Examples with T � 5 and Binomial Signals (n = 5)
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screening problem. We first consider the case with T � 5
and Bernoulli signals (n � 1). In Figure 4(a), we see
that all of the heuristic policies other than the opti-
mal Lagrangian index policy approach an asymptote
below the Lagrangian bound. As discussed in Sec-
tion 4.2, the modified Whittle index policy here re-
duces to screening every applicant once, which typically
leaves the DM choosing applicants to admit from
those who receive a positive signal when screened.
For large S, this has an expected value of 0.666 per
applicant admitted. (With small S, there is some
chance that fewer than 25% of the applicants will
receive a positive signal so the expected value is less
than 0.666 per applicant admitted.) As discussed in
Section 4.2, the Whittle indices during the screening
stages are all zero, so theWhittle index policy reduces
to randomly selecting applicants to screen. Since the
rewards are zero during the screening periods, the
myopic policy also reduces to random screening. This
random screening policy outperforms “screen all
applicants” (as suggested by the modified Whittle
index policy) because it generates some applicants
with two or more positive signals who will be pre-
ferred to those with a single positive signal. The dif-
ference between the Lagrangian index policies with
optimal and random tiebreaking highlights the im-
portance of tiebreaking, as discussed in Section 4.4. In
Figure 4(b), we see that the performance gaps grow
linearly in S for all of the heuristics other than the
optimal Lagrangian index policy, as we would expect
given the results in Figure 4(a). The performance gap
for the optimal Lagrangian index policy appears to
grow with

̅̅
S

√
(the line has slope 0.5 in the log-log

plot), which is consistent with our theoretical anal-
ysis in Section 5.

Figure 5, (a) and (b) show the same results for the
case with T � 5 and binomial signals where n � 5.
Here the results are similar but the policy that
screens all applicants (as suggested by the modified
Whittle index policy) outperforms random screening
(as suggested by the standard Whittle index policy).
With n � 5, the signals are much more informative
and screening all applicants gives the DM more in-
formation about the applicants than in the Bernoulli
case. For large S, “screen all applicants” is still worse
than the Lagrangian index policies. The difference
between the two tiebreaking methods in the La-
grangian index policy is also smaller here, as ties
are less common with the more informative signals.
However, the performance gap for the random tie-
breaking Lagrangian index policy still grows line-
arly for large S.

The results for the case with T � 51 and Bernoulli
signals are similar to those with T � 5 and Bernoulli
signals and are provided in Section EC5. In this case,
proper tiebreaking makes a big difference.

6.3. Information Relaxation Bounds
In these numerical examples, the gaps between
the optimal Lagrangian index policy and Lagrangian
bound are very small (in relative terms) for large S, but
are more substantial for small S. One might wonder
whether these gaps are due to the policies being
suboptimal or due to slack in the Lagrangian bound.
In Section EC4, we consider the use of informa-
tion relaxations (e.g., Brown et al. 2010) with dynamic
selection problems. These information relaxation
bounds (i) relax the nonanticipativity constraints in the
DP that require the DM to make decisions based only
information known at the time the decision ismade and
(ii) impose a penalty that “punishes” the DM for vi-
olating these constraints. In the assortment plan-
ning example, we consider an information relaxation
where demands for all products are known in ad-
vance. In the applicant screening example, we con-
sider an information relaxation where all signals
are known in advance. In both cases, we consider
penalties based on the Lagrangian approximation of
the value function. We show that these information
relaxation bounds are guaranteed to (weakly) im-
prove on the Lagrangian bounds. Lagrangian relax-
ations and the cutting-plane method described in the
appendix play important roles in the analysis and
computation.
In our numerical examples, these information re-

laxationboundsareshownin the (a)panelsofFigures 2–5.
In these results, we see that the information relaxation
bounds improve on the Lagrangian dual, particularly
when S is small. The improvement is greatest in the
dynamic assortment example with T � 8 and S � 4. In
this case, the Lagrangian bound ensures that the
Lagrangian index policy is within (approximately)
$0.88 per product displayed of the value given by an
optimal solution. The information relaxation bound
tells us that the Lagrangian index policy is in fact
within $0.16 per product displayed of an optimal
solution. These results are discussed in more detail in
Section EC4.

6.4. Variations on the Heuristics
Figure 6 shows results for several variations on the
heuristics discussed above, focusing on the applicant
screening problem. The format of the figure is the
same as the (b) panels of Figures 2–5.
First, we consider the optimal Lagrangian index

policy with reoptimization. That is, in each simu-
lated scenario, in each period, we solve the La-
grangian dual problem (7) with the current state for all
items, breaking ties as in the optimal Lagrangian index
policy. As one might expect, this policy with reoptim-
ization appears to outperform the optimal Lagrangian
policy without reoptimization, but they both appear
to exhibit

̅̅
S

√
growth in the performance gap. These
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applicant screening examples are small enough to
allow reoptimization (the runtimes range fromnine to
46 seconds for the results reported in the figure),
but reoptimization would be very time consuming in
the dynamic assortment examples. With reoptim-
ization, we have to solve the Lagrangian dual prob-
lem in every period in every simulated scenario and
these problems become more complex as the items
that are initially identical will transition to different
states over time and no longer be identical. The fig-
ures also show results for a policy that reoptimizes the
Lagrangian, but breaks ties randomly rather than
using an optimal tiebreaking method: for large S the
performance of this policy matches the performance
of the Lagrangian policy without reoptimization
using random tiebreaking and the errors grow line-
arly in S. Thus reoptimization is not a substitute for
proper tiebreaking.

We also show results for the three differentmethods
described in Section 4.4 for generating a mixed pol-
icy for tiebreaking with the optimal Lagrangian in-
dex policy, without reoptimization. As discussed in
Section 4.4, proportional assignment seems to out-
perform simple random mixing and Markov random
mixing, though the differences are small.

Finally, we show results for a “fluid heuristic”
similar to that described in Bertsimas andMišić (2016).
This fluid heuristic is based on reoptimization of
the Lagrangian dual problem (7), solving the dual LP
formulation (see Section EC1.3) in each period. The
heuristic then selects items to maximize the total flow
for the system for a given period and state, where
these flows are given by the solution to the dual LP
formulation; see Section EC1.3 for a more detailed
description. The intuition behind this heuristic is that

these flows are positive for items that would be se-
lected in the Lagrangian relaxation and maximizing
the flow would, in some sense, lead the heuristic to
mimic the actions selected by the Lagrangian re-
laxation. In the example results in the figure, we see
that the fluid heuristic is competitive with the other
heuristics for small S, but the performance gap grows
linearlywith S like the other policies that do not use an
optimal tiebreaking method, rather than growing
with

̅̅
S

√
like the Lagrangian policies with optimal

tiebreaking.

7. Problems with Long Time Horizons
In this section, wefirst consider the conjecture inWhittle
(1988) on the asymptotic optimality of the Whittle index
policy and the counterexample in Weber and Weiss
(1990). We use this example to motivate the extension
of the results of Section 5 to the infinite-horizon case
with discounting, which we consider in Section 7.2.

7.1. Whittle’s Conjecture and Weber and
Weiss’s Counterxample

It is interesting to compare the asymptotic optimality
result of Corollary 1 to that conjectured in Whittle
(1988). Whittle focused on an infinite-horizon aver-
age reward formulation where the DM had to select
exactly N items in each period and he considered a
single Lagrange multiplier. The solution to the La-
grangian dual problem in this average reward set-
ting yields a Lagrangian relaxed policy that selects
N items per period, in expectation for the long-run
average (see Whittle’s Proposition 1). In his asymp-
totic analysis, Whittle considered a growing se-
quence of problems where items may be of different
types but the proportion of items of each type is held

Figure 6. Results for Applicant Screening Examples with Variations on the Heuristics
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constant as the total number of items S increases. The
number of items selected N is assumed to be a con-
stant fraction α of S.

Whittle conjectured that, if the items are index-
able, then

lim
S→∞

Lλ
∗

1 (x;S) − Vπ̃
1 (x; S)

S
� 0, (22)

where π̃ is the Whittle index policy, rather than the
Lagrangian index policy. Adapting Whittle (1988,
p. 293) to our notation and terminology, the intuition
behind his conjecture was as follows:

The Whittle index policy selects exactly the N � αS
items of largest index. Under the assumption of
indexability, the optimal policy ψ̃ for the Lagrangian
relaxation selects the ñ items of largest index, where ñ
deviates from N only by a term of probable order

̅̅̅
N

√
or, equivalently, ñ/N deviates from α only by a term
of probable order 1/

̅̅̅
N

√
.

Whittle’s intuition is closely related to the intui-
tion behind Proposition 5, as discussed following
that result: the key condition that ensures asymptotic
convergence is that the heuristic policy and the optimal
policy ψ̃ for the Lagrangian relaxation are aligned
so the two policies typically make the same selection
decisions, with the number of different decisions
growing at a rate less than

̅̅̅
N

√
. Whittle’s intuition is

consistent with the logic of Proposition 5 but, in the
finite-horizon setting that we consider, the Whittle
index policy need not be aligned with ψ̃, whereas the
optimal Lagrangian index policy is, by construction,
aligned with ψ̃. Weber and Weiss (1990) showed that
optimal policies asymptotically converge to the La-
grangian bound in the average reward setting [in
the relative sense of Equation (22)] but provided an
example that showed that the Whittle index policy
need not be asymptotically optimal.

In Section EC6, we consider a finite-horizon
adaptation of the example from Weber and Weiss
(1990) with T � 20, 000. The key takeaway from this
example is that, even in problems with constant re-
wards and transition matrices and long horizons, we
may need time-varying Lagrange multipliers to opti-
mally control selection decisions over time. Here
again, mixed policies and careful tiebreaking play
an important role. The initial distribution of items
across states affects the optimal Lagrange multipliers
and a full set of Lagrange multipliers is required to
align the optimal Lagrangian index policy with the
optimal policy for the Lagrangian relaxation in every
period. The Whittle indices depend on the state of a
given item but, by construction, are independent of the
states of all other items and of the distribution of items
and the policy need not be aligned with that for the
Lagrangian relaxation.

7.2. Asymptotic Optimality for Infinite-Horizon
Dynamic Selection Problems

We now consider the extension of the results of
Section 5 to an infinite-horizon setting with dis-
counting, assuming a discount factor δ. We assume
that the rewards for all items are bounded above and
below by r̄ and r and the number of items that may be
selected Nt is bounded above by N.
There are two key challenges that must be

addressed in the infinite-horizon setting. The first
challenge, suggested by the example from Weber and
Weiss (1990), is that to achieve asymptotic optimality,
we may need to consider an infinite sequence of
Lagrange multipliers λ � (λ1, λ2, . . .). This leads to a
Lagrangian dual problem (7) that is practically dif-
ficult (or impossible) to solve to optimality. The
second challenge is that the βt terms (Equation (19))
appearing in the performance bound of Proposition 5
grow rapidly with the horizon T, reflecting the pos-
sible cascading of changes in selection decisions
through subsequent periods. Incorporating discounting
in thefinite-horizonmodel (with horizonT), the result of
Proposition 5 holds as stated, but with

βt(T) � δt−1

2δ − 1
(2δ)T−t+1 − 1
( )

. (23)

(See Section EC7 for a more detailed derivation.) If
δ> 1/2, these βt terms will grow without bound as T
grows and the performance bound becomes in-
creasingly slack. In our discussion, we will focus on
this problematic case where δ ∈ (1/2, 1). (We present
results for δ ∈ (0, 1/2] in Section EC7.)
We will address these challenges by considering a

series of finite-horizon approximations with horizon
T and taking the limit as the horizon T and problem
size S increase simultaneously. Let Lλ

∗
1 (x;T)denote the

optimal Lagrangian with finite horizon T, defined as
in Equation (4) (butwith discounting),whereλ∗ solves
the corresponding Lagrangian dual problem (7). Let
Vπ̃

1 (x;T) denote the present value generated by the
corresponding optimal Lagrangian index policy over
the same finite horizon. Further, let Lλ

∗
1 (x;∞) denote

the optimal infinite-horizon Lagrangian with the
optimal infinite sequence of Lagrange multipliers
and letV∗

1(x) denote the optimal value function. Then,
for any horizon T, we have

Vπ̃
1 (x;T) +

δT

1 − δ
rS⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

≡ V̄π̃
1 (x;T)

≤V∗
1(x)≤ Lλ

∗
1 (x;∞)

≤ Lλ
∗

1 (x;T) +
δT

1 − δ
r̄S⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

≡ L̄λ
∗

1 (x;T)
. (24)
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Here the term on the left, V̄π̃
1 (x;T), represents a lower

bound on the discounted rewards associated with
following the optimal Lagrangian index policy based
on horizon T for T periods and then following
any policy thereafter (which generates rewards of at
least rS in each period). Such a policy is feasible for the
infinite-horizon problem, hence the first inequality in
Equation (24). The second inequality follows from
Lagrangian duality, as in Proposition 1. The final term
L̄λ

∗
1 (x;T) represents the finite-horizon Lagrangian

value for T followed by an upper bound on the re-
wards for all subsequent periods. The final inequality
follows from the facts that the Lagrange multi-
pliers (λ∗

1, . . . , λ
∗
T) that are optimal for the finite-

horizon dual problem are a feasible starting
sequence (λ∗

1, . . . , λ
∗
T, . . .) for the infinite-horizon dual

problem but are not necessarily optimal and that r̄ is
an upper bound on the item rewards.

As in Section 5, we will show that, in relative terms,
V̄π̃

1 (x;T) approaches L̄λ
∗

1 (x;T) as we increase S and T.
Since the optimal value function V∗

1(x) is bracketed
by these terms in Equation (24), this will imply the
desired asymptotic optimality result. In our analysis,
we will consider sums of cash flows in the differ-
ence of L̄λ

∗
1 (x;T) − V̄π̃

1 (x;T) over a horizon T′ ≤ T and
obtain a bound of the form

L̄λ
∗

1 (x;T) − V̄π̃
1 (x;T) ≤ (r̄ − r) ∑T′

t�1
βt(T′) ̅̅̅

N
√ + δT

′

1 − δ
S

( )
.

(25)

This follows from the argument underlying Proposi-
tion 5. We then choose T′ to provide a good bound in
Equation (25). Intuitively, we want to choose the
horizon T′ to balance two objectives: we want short
horizons to keep the finite-horizon performance gap
(
∑T′

t�1 βt(T′) ̅̅̅
N

√
) small, but we want longer horizons

to reduce the effect of considering a finite rather than
an infinite horizon (represented by δT

′
S(1 − δ)). By

choosing the horizon T′ to (approximately) minimize
the bound of Equation (25), we have the following
infinite-horizon analog of Proposition 5.

Proposition 6. Let L̄λ
∗

1 (x;T) and V̄π̃
1 (x;T) be defined as in

Equation (24) and let �z� denote the largest integer less than
or equal to z. For any T ≥ �log2 S̅

N̅
√ �,

L̄λ
∗

1 (x;T) − V̄π̃
1 (x;T) ≤ γ(r̄ − r)S

̅̅̅
N

√
S

( )
log2

1
δ

, (26)

where γ is a positive constant that depends only on δ.

Although we would intuitively expect larger T to
result in better heuristics and bounds, the bound of
Equation (26) does not improve if we increase T be-
yond T ≥ �log2 S̅

N̅
√ �. Like Proposition 5, this bound

assumes the maximum possible loss in rewards

when the Lagrangian relaxation and Lagrangian index
polices are in different states and assumes the maxi-
mumpossible cascading of differences in states through
horizon T′. The bound also makes no assumptions
about the performance of the heuristic or Lagrangian
after period T′, again assuming the maximum pos-
sible difference in rewards.
Proposition 6 leads to the following asymptotic

optimality result that is analogous to Corollary 1.

Corollary 2 (Infinite-HorizonAsymptoticOptimality). Consider
a growing sequence of infinite-horizon dynamic selection
problems (indexed by S) and let T(S) ≥ �log2 S̅

N̅
√ �. Let

L̄λ
∗

1 (x;S) � L̄λ
∗

1 (x;T(S)) and V̄π̃
1 (x; S) � V̄π̃

1 (x;T(S)), as de-

fined in Equation (24). If the optimal value functions V∗
1(x; S)

are positive and satisfy

V∗
1(x;S) ≥ κS, (27)

for some constant κ> 0, then

lim
S→∞

L̄λ
∗

1 (x;S) − V̄π̃
1 (x;S)

V∗
1(x;S)

� 0. (28)

Since the optimal value function V∗
1(x;S) lies between

V̄π̃
1 (x; S) and L̄λ

∗
1 (x; S), this result implies asymptotic

optimality of the sequence of finite-horizon Lagrang-
ian index policies when normalized by the optimal
value. As discussed following Corollary 1, we could
also normalize in other ways. The growth condition
on the optimal value function (27) is stronger than
that in Corollary 1, as we require V∗

1(x;S) to scale in
proportion with S (versus simply faster than

̅̅̅̅̅̅̅
N(S)√

).
For example, this stronger condition would hold if
N(S) scales in fixed proportion with S (i.e., N(S) � αS
for some α ∈ (0, 1)), the reward for not selecting is
nonnegative, and the expected reward associated
with selecting an item is bounded away from zero.
Though the asymptotic result of Corollary 2 sug-

gests that the optimal Lagrangian index policies
will perform well in problems with many items, pro-
vided we take the horizon T in the Lagrangian model
to be sufficiently large. However, the guaranteed
convergence rate is much slower in the infinite-
horizon setting than the finite-horizon setting. For
example, if N(S) � αS, in the infinite-horizon setting

lim
S→∞

L̄λ
∗

1 (x;S) − V̄π̃
1 (x;S)

S
,

converges to zero at rate ( ̅̅̅̅̅
1/S

√ )log2(1/δ) (if we increase
T with S accordingly), which is much slower than
the

̅̅̅̅̅
1/S

√
rate that we found in the finite-horizon

setting. In particular, log2(1/δ) approaches 0 as δ
approaches 1, implying slow convergence for large
discount factors.
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The slow convergence in the infinite-horizon result
is primarily caused by the exponential growth in the
βt terms with the horizon T, reflecting the maximum
possible cascading of differences in states visited
by the Lagrangian relaxation and Lagrangian index
polices. If the problem has a structure where the item
states are (in some sense) recurrent, these differ-
ences may not cascade in this way and may no longer
have such an exponential effect. Perhaps thenwewould
again obtain

̅̅̅̅̅
1/S

√
convergence for large problems.We

leave this as a topic for future research.

8. Conclusions
The numerical and theoretical results of this paper
suggest that the optimal Lagrangian index policies
are the most appropriate heuristic policies for use in
dynamic selection problems, particularly for prob-
lems with many items. The optimal Lagrangian index
policies are both easier to compute and perform better
than the popular Whittle index policies. The logic of
the Lagrangian index policy is intuitive. First, find a
set of prices for the constrained resources (Lagrange
multipliers λ∗) that lead to the required usage of the
resource on average. For large problems, the devia-
tions from these averages will tend to be small in
relative terms and policies that are based on these
prices will tend to perform well. There are, however,
some important subtleties that must be addressed,
both in theory and in implementation. Notably, op-
timal prices often induce ties where the DM will be
indifferent to selecting or not selecting some items
and optimal performance requires careful coordina-
tion of the selection decisions across items when
breaking ties.

A natural next step in this line of research would be
to consider weakly coupled DPs with more general
decision variables and resource constraints. For ex-
ample, one might consider problems where items
have multiple possible actions (rather than just select
or not) with multidimensional budget constraints.
The analysis of the Lagrangian in Section 3 would
seem to generalize directly to this more complex
setting, but it is not immediately clear how to gen-
eralize the Lagrangian index policies or the perfor-
mance analysis of Section 5.
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Appendix. Cutting-PlaneMethod for Solving theLagrangian
Dual Problem
In the cutting-plane method, we proceed iteratively through
a series of trial points λk, calculating the item-specific value
functions Vs(λk) and a subgradient ∇s,k ∈ ∂Vs(λk) at these
points. As discussed in Proposition 4, these subgradients
correspond to selection probabilities for an optimal policy
for the given λk. By Equation (9), we know Vs(λ) ≥ Vs(λk) +
∇�
s,k(λ − λk) for each k, that is, the subgradients provide a

linear approximation of Vs(λ) from below. We then ap-
proximate the Lagrangian L(λ) � N�λ +∑S

s�1 Vs(λ) as

N�λ +∑S
s�1

Vs(λis ) + ∇�
s,is (λ − λis ), (A.1)

where we use the value and subgradient from iteration is,
is ∈ {1, . . . , k}, to approximate Vs(λ). Taking the upper en-
velope of these linear approximations, we have the cutting-
plane model

�k(λ) ≡ max
i1 ,...,iS∈{1,...,k}

N�λ +∑S
s�1

Vs(λis ) + ∇�
s,is (λ − λis )

( ){ }
.

(A.2)

Since theVs(λ) are approximated from below,we know that
�k(λ) ≤ L(λ), for all λ.9

The cutting-plane method proceeds by taking the next
trial point λk+1 to be the point that minimizes the cutting-
plane model �k(λ), that is,

λk+1 � argmin
λ≥0

�k(λ). (A.3)

We then calculate the item-specific value functions Vs(λk+1)
and subgradients ∇s,k+1 ∈ ∂Vs(λk+1) for this new point, as
well as the Lagrangian L(λk+1) � N�λk+1 +∑S

s�1 Vs(λk+1). The
process continues until �k(λk+1) � L(λk+1). In this terminal
case, since λk+1 minimizes �k(λ) and �k(λ) ≤ L(λ) for allλ ≥ 0,
we know that λk+1 is an optimal solution for the Lagrangian
dual problem (7). If �k(λk+1)< L(λk+1), we add the newly
calculated valuesVs(λk+1) and gradients∇s,k+1 to form a new
cutting-plane model �k+1(λ). Note that in this case, we will
haveanewcuttingplaneforL (corresponding to a newoptimal
policy for at least one item) since the new subgradient will
support L at λk+1, whereas minλ≥0 �k(λ) � �k(λk+1)< L(λk+1).
Since L(λ) is piecewise linear with a finite number of pieces,
the cutting-plane method will converge to the optimal
solution in a finite number of iterations.

The cutting-plane optimization problem (A.3) can be
formulated as a linear program as

min
λ,vs

N�λ +∑S
s�1

vs

s.t. vs ≥ Vs(λi) + ∇�
s,i(λ − λi) ∀i ∈ {1, . . . , k},

∀s ∈ {1, . . . , S},
λ ≥ 0.

(A.4)

As we proceed iteratively in the cutting-plane method, we
add additional constraints for the new values Vs(λk+1) and
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subgradients ∇s,k+1 at the new trial value λk+1. We solve
linear program (A.4) using the dual simplex method, using
the optimal dual basis from one iteration as an initial dual
basis for the next iteration.

We can write the dual of the linear program (A.4) as

max
γs,i

∑S
s�1

∑k
i�1

(Vs(λi) − ∇�
s,iλi)γs,i

s.t. −∑S
s�1

∑k
i�1

γs,i∇s,i ≤ N

∑k
i�1

γs,i � 1 ∀s ∈ {1, . . . , S},
γs,i ≥ 0 ∀i ∈ {1, . . . , k},∀s ∈ {1, . . . , S}.

(A.5)

In the final step of the cutting-plane method where �k(λk+1) �
L(λ∗), the optimal dual variablesγs,i will correspond tomixing
weights satisfying the conditions of Proposition 4(c). Counting
constraints,we see that in a basic solution for Equation (A.5) at
most S + T of these mixing weights γs,i will be positive and
these will correspond to the item-specific policies ψs,i that
are optimal given λi and also optimal given λ∗.

If some or all items are identical, the cutting-planemethod
can be simplified as the DP and its gradients need only be
evaluated once for the identical items; the linear programs
(A.4) and (A.5) similarly simplify. If we let S′ denote the
number of distinct items, the simplified version of the linear
program (A.4) will have S′ + T decision variables and k × S′
constraints. The basic solutions for the simplified version of
the dual linear program (A.5) will have at most S′ + T
positive mixing weights, corresponding to item-specific poli-
cies ψs,i that are optimal given λ∗. In our numerical exam-
ples, we have found that optimal solutions typically have
exactly S′ + T positive mixing weights when the linking
constraints (1) are binding.

In our numerical examples, the computational bottle-
neck when solving the Lagrangian dual problems using the
cutting-plane method is calculating the item-specific value
functions (6) and their subgradients. The linear programs
(A.4) are typically easy to solve, even if the item-specific
DPs have large state spaces.

Endnotes
1During the review process for this paper, we became aware of a
working paper, Hu and Frazier (2017), that studies the use of La-
grangian relaxations for finite-horizon restless bandit problems. The
model studied in Hu and Frazier (2017) is a special case of a dynamic
selection problem where all items are a priori identical and state
transition probabilities and resource constraints are constant over
time.Hu and Frazier (2017) consider an index policy based on varying
the Lagrange multiplier for the current time period, keeping all fu-
ture Lagrange multipliers fixed. This policy appears to be equivalent
to our optimal Lagrangian index policy where policies are mixed
according to Markov policies (see Section 4.4). Hu and Frazier (2017)
provide a proof of asymptotic optimality of this policy based on the
convergence of occupation measures of the index policy to that of
the Lagrangian relaxation. Our proof of asymptotic optimality is
based on explicit bounds on the suboptimality of the Lagrangian in-
dex policy. These bounds provide a rate of convergence for the La-
grangian index policies and provide additional insight into the nature

of this convergence that is helpful, for example, when considering the
infinite-horizon extension of Section 7.2.
2 In our numerical examples, we truncate the demand distributions
at d̄ � 150 (thereby including 99.9999% of the possible demand
outcomes). In period t, there are

∑t−1
τ�0((τ − 1)d̄ + 1)) possible states,

representing the values of (m, α) that could be obtained under some
policy.
3 If theDMmust select exactlyNt items in each period (rather than less
than or equal to Nt items), we drop the nonnegativity constraint on λ

in the dual problem (7) and the optimality conditions require the
linking constraint to hold with equality in expectation for all t, re-
gardless of the sign of the optimal λ∗

t .
4 In the mean field limit, the system state evolves deterministically
with the fractions of items making a given state transition matching
the transition probability under the selected control policy. As the
number of items S increases, the fraction of items in a given state
will converge to themean field limit; see, for example, Le Boudec et al.
(2007).
5 If the DM must select exactly Nt items, we select the Nt items with
the largest indices.
6Note that the definition of the modified Whittle indices implicitly
assumes that the state space for the items is constant or growing over
time: when calculating the index mt,s(xs), we reference indices
(mt+1,s(xs), . . . ,mT,s(xs)) for future periods for this same state xs. This
assumption is true in all of the examples that we consider.
7The result of Proposition 5 also applies in the case where the DM
must select exactly Nt items, but we take N̄t � Nt regardless of the
sign of λ∗

t . Theorem 1 and Corollary 1 then follow with no additional
changes.
8Detailed specifications for the computer: 64-bit Intel Xeon E5-2697
v4 (2.30 GHz) CPU; 64.0 GB of RAM; running Windows 10 Enter-
prise, Matlab R2016b. We used MOSEK (Version 7.1.0.60) within
Matlab to solve the linear program (A.4) in the cutting-plane method
when calculating Lagrangian indices.
9The standard cutting-plane method takes the maximum in Equa-
tion (A.2) using values and subgradients of the objective func-
tion, here L(λ), at each stage. Effectively, this requires using the
values and gradients from the same iteration is for all items in
Equation (A.2) rather than allowing the use of results from different
iterations for different items. The flexibility to choose different
approximations for each item improves the bound given by the
cutting-plane model (Equation (A.2)) and thereby accelerates
convergence of the algorithm. This is particularly important when
reoptimizing (as in Section 6.4) or calculating information relaxation
bounds (Section EC4) where the items will necessarily be distinct.
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