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Abstract. We consider dynamic selection problems, where a decision maker repeatedly
selects a set of items from a larger collection of available items. A classic example is the
dynamic assortment problem with demand learning, where a retailer chooses items to offer
for sale subject to a display space constraint. The retailer may adjust the assortment over
time in response to the observed demand. These dynamic selection problems are naturally
formulated as stochastic dynamic programs (DPs) but are difficult to solve because the
optimal selection decisions depend on the states of all items. In this paper, we study
heuristic policies for dynamic selection problems and provide upper bounds on the
performance of an optimal policy that can be used to assess the performance of a heuristic
policy. The policies and bounds that we consider are based on a Lagrangian relaxation of
the DP that relaxes the constraint limiting the number of items that may be selected. We
characterize the performance of the Lagrangian index policy and bound and show that,
under mild conditions, these policies and bounds are asymptotically optimal for problems
with many items; mixed policies and tiebreaking play an essential role in the analysis of
these index policies and can have a surprising impact on performance. We demonstrate
these policies and bounds in two large scale examples: a dynamic assortment problem with

demand learning and an applicant screening problem.
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1. Introduction

In this paper, we consider dynamic selection problems,
where a decision maker repeatedly selects a set of items
from a larger collection of available items. A classic ex-
ample is the dynamic assortment problem with demand
learning, where a decision maker (DM)—prototypically
aretailer—chooses products to offer for sale, selecting
from many possible products, but is limited by dis-
play space. In this problem, product demand rates are
uncertain, and the retailer may want to update the
assortment over the course of the selling season in
response to demands observed in previous periods.
Similar problems arise in Internet advertising (which
ads should be displayed on a news site?), in yield
trials for experimental crop varieties (which experi-
mental varieties should be planted in a trial?), and in
hiring or admissions decisions (which applicants
should be interviewed, hired, or admitted?).

These dynamic selection problems are naturally
formulated as stochastic dynamic programs (DPs) but
are difficult to solve to optimality. Even when the
reward processes are independent across items, the
competition for limited resources (e.g., display space)
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links the selection decisions: the selection decision
for one item will depend on the states of the other
available items. In this paper, we study heuristic
policies for dynamic selection problems and provide
upper bounds on the performance of an optimal
policy. We focus on problems with a finite horizon,
but also consider an extension to an infinite-horizon
setting with discounting.

Our methods and analysis are based on a Lagrangian
relaxation of the DP that relaxes the constraint limit-
ing the number of items that can be selected. This
Lagrangian relaxation decomposes into item-specific
DPs that are not difficult to solve and the value of the
Lagrangian provides an upper bound on the value
of an optimal policy. We can solve the Lagrangian
dual problem (a convex optimization problem) to
find Lagrange multipliers that give the best possible
Lagrangian bound. This optimal Lagrangian can
also be used to generate a heuristic policy that
performs well and, if we mix policies and break ties
appropriately, isasymptotically optimal: under mild
conditions, as we increase the number of items avail-
able and the number that can be selected, the relative
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performance of the heuristic approaches the Lagrangian
upper bound.

We illustrate these results with two example pro-
blems. The first is based on the dynamic assortment
model with demand learning from Caro and Gallien
(2007). The second is an applicant screening problem
where a DM must decide which applicants (e.g., for
a college or job) should be screened (e.g., reviewed
or interviewed) and which applicants should be ad-
mitted or hired.

1.1. Literature Review
Our paper builds on and contributes to two related
streams of literature. First, the dynamic selection
problem can be viewed as a special case of a weakly
coupled DP. For example, Hawkins (2003), Adelman
and Mersereau (2008), and Bertsimas and Misi¢ (2016)
study DPs that are linked through global resource
constraints. The dynamic selection problem can be
viewed as a weakly coupled DP where the linking
constraint is a cardinality constraint that limits the
number of items that can be selected in a period.
Hawkins (2003), Adelman and Mersereau (2008), and
Bertsimas and Misi¢ (2016) all consider Lagrangian
relaxations of weakly coupled DPs, similar to the
Lagrangian relaxation in Section 3. Lagrangian re-
laxations of DPs have been used in a number of ap-
plications including network revenue management
(e.g., Topaloglu 2009) and marketing (e.g., Bertsimas
and Mersereau 2007 as well as Caro and Gallien 2007).
The dynamic selection problem can also be viewed
as a finite-horizon, nonstationary version of the
restless bandit problem introduced in Whittle (1988).
The restless bandit problem is an extension of the
classical multiarmed bandit problem where (i) the
DM may select multiple items in any given period
and (ii) items may change states when not selected.
Whittle (1988) introduced an index policy where items
are prioritized for selection according to an index that
is essentially equivalent to the Gittins index. Whittle
(1988) motivates this policy through a Lagrangian
analysis, viewing the index as a breakeven Lagrange
multiplier (see Section 4.2) and conjectured that in the
infinite-horizon average reward setting these policies
are asymptotically optimal for problems with many
items. Weber and Weiss (1990) showed that this
conjecture is true under certain conditions but need
notbe true in general. Caro and Gallien (2007) studied
Whittle indices in the dynamic assortment problem.
Bertsimas and Nifio-Mora (2000) study restless bandit
problems with discounted rewards over an infinite
horizon and develop performance bounds based on
a hierarchy of linear programming (LP) relaxations.
They show that the first-order LP relaxation corre-
sponds to the Lagrangian relaxation studied by Whittle
(1988) and they use this relaxation to generate an

index policy. Hodge and Glazebrook (2015) develop
and analyze an index policy for an extension of the
restless bandit model where each item can be activated at
different levels. For a comprehensive discussion of the
restless bandit problem, see Gittins et al. (2011).

1.2. Contributions and Outline

Our main contributions are (i) a detailed analysis of
the Lagrangian relaxation of the dynamic selection
problem and, building on this, (ii) the development of
an optimal Lagrangian index policy that performs
well in examples and is proven to be asymptotically
optimal. Specifically, we consider limits where we
increase both the number of items available (S) and
the number of items that may be selected (N) with a
growth condition (for example, N is a fixed fraction of
S). We show that the performance gap (the difference
between the Lagrangian bound and the performance
of the heuristic policy) grows with the same rate as
VN for the optimal Lagrangian index, whereas the
gaps for Whittle index policy (Whittle 1988) grow
linearly with N. Mixed policies and tiebreaking play
a surprising and important role in the analysis and
in the numerical results. For example, a Lagrangian
index policy that breaks ties randomly may also ex-
hibit linear growth in the performance gap.

We begin in Section 2 by defining the dynamic
selection problem and introducing the dynamic as-
sortment and applicant screening problems. In Sec-
tion 3, we describe the Lagrangian relaxation and
discuss its theoretical properties. We describe a
cutting-plane method for efficiently solving the La-
grangian dual optimization problem in the appendix.
In Section 4, we define a number of heuristic policies
including the Whittle index policy and the optimal
Lagrangian index policy. In Section 5, we characterize
the performance of the optimal Lagrangian index
policy and present results on the asymptotic opti-
mality of this policy. In Section 6, we simulate the
heuristic policies of Section 4 in the context of the
two example problems and evaluate their perfor-
mance. In Section 7, we discuss the applicability of
these methods in problems with long time horizons,
considering the conjecture of Whittle (1988) on the
asymptotic optimality of the Whittle index policy and
the counterexample of Weber and Weiss (1990). We
also present an extension of the asymptotic optimality
of the Lagrangian index policy to an infinite-horizon
setting with discounting. In the electronic companion
(EC) in Section EC4, we describe information re-
laxation performance bounds (see, e.g., Brown et al.
2010) based on the Lagrangian relaxation and show
how they improve on the standard Lagrangian bounds.
These bounds are illustrated in the numerical exam-
ples of Section 6. Most proofs and some other detailed
discussions are also provided in the EC.
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2. The Dynamic Selection Problem

We first describe the general dynamic selection pro-
blem and then discuss the dynamic assortment and
applicant screening problems as examples of this
general framework.

2.1. General Model
We consider a finite horizon with periodst =1,...,T.
In period t, the DM can select a maximum of N; items
out of S available. The DM’s state of information about
item s is summarized by a state variable x,. To avoid
measurability and other technical issues, we will assume
that the state variables x, can take on a finite number of
values. We define a binary decision variable 1; where
1(0) indicates item sis (is not) selected. In each period,
item s generates a reward r;(x;, ) that depends on
the state x;, the selection decision us, and the period t.
Between periods, the state variables x; transition to a
random new state Xts(xs, us) with transitions depend-
ing on the current state, the selection decision, and
period. We let x = (x1,...,xs) denote a vector of item
states, u = (11, ...,us) a vector of selection decisions,
and xi(x,u) = (X1,1(x1,11), ..., X1,5(xs, us)) the corre-
sponding random vector of next-period item states.
The DM selects items with the goal of maximizing
the expected total reward earned over the given ho-
rizon. Though a policy for making these selections can
depend on the whole history of states and actions and
could be randomized, standard DP arguments (e.g.,
Puterman 1994) imply there is an optimal policy that
is deterministic and Markovian, that is, of the form
n = (1m1,...,7r), where m,(x) specifies a vector of se-
lection decisions u given state vector x, where u# must
be in

WU; = {u €{0,1}°: zsj Us < Nt}. (1)
s=1

Taking the terminal value Vi ,(x) =0, we can write
the optimal value function for earlier periods as

Vi(x) = r,fé%f({rt(x’ ) +E[Vi xw)]}, @)

where the total reward for a given period is the sum of
item-specific rewards r(x, ) = 25521 Tt 5(Xs, Us). We will
also consider variations of the problem where the
DM must select exactly N; items in period ¢, that is,
where the inequality constraint in Equation (1) is
replaced by an equality constraint.

For an arbitrary policy ©, we can write the corre-
sponding value function V[ (x) recursively as

Vi) = nix, m(x) + B[V, (Ke(x, ()], (3)

where the terminal case is Vf,;(x) =0 for all x. A
policy m is optimal for initial state x if it always sat-
isfies the linking constraint (1) and V{(x) = V;(x).

As mentioned in the introduction, the dynamic se-
lection problem can be viewed as a nonstationary, finite-
horizon version of the restless bandit problem of Whittle
(1988). Whittle mentions a number of potential ap-
plications of restless bandits including clinical trials,
aircraft surveillance, and worker scheduling. Bertsimas
and Nifio-Mora (2000) mentions applications of rest-
less bandits in controlling drug markets and in con-
trolling a make-to-stock production facility. We will
illustrate our general framework by considering two
specific applications that we describe next.

2.2. Dynamic Assortment Problem with
Demand Learning

Following Caro and Gallien (2007), in the dynamic
assortment problem with demand learning, we con-
sider a retailer who repeatedly chooses products (items)
to display (select) from a set of S products available,
subject to a shelf space constraint that requires the
number of products displayed in a period to be less
than or equal to N;. The demand rate for products is
unknown and the DM updates beliefs about these
rates over time using Bayes’ rule. The retailer’s goal
is to maximize the expected total profit earned. As
in Caro and Gallien (2007), we assume the demand
for product s follows a Poisson distribution with an
unknown product-specific rate y;. The demand rates
are assumed to be independent across products and
have a gamma prior with shape parameter m, and
inverse scale parameter as (ms, as>0), which im-
plies the mean and variance of y; are /a5 and m;/ az.
The state variable x; for product s is the vector (s, as)
of parameters for its demand rate distribution. If
a product is displayed, its reward for that period
is assumed to be proportional to the mean de-
mand m;/as; if a product is not displayed, its reward
is zero.

The assumed distributions are convenient because
they lead to nice forms for the demand distribution
and Bayesian updating is easy. If a product is dis-
played, the observed demand in that period has a
negative-binomial distribution (also known as the
gamma-Poisson mixture). Then, after observing demand
d,, the posterior distribution for the demand rate is a
gamma distribution with parameters (m; + d;, a5 + 1),
representing the new state for the product. If a
product is not displayed, its state is unchanged.

In our numerical examples, we will consider pa-
rameters similar to those in Caro and Gallien (2007).
We consider horizons T = 8, 20, and 40. We assume
that all products are a priori identical with gamma
distribution parameters (m;, as) = (1.0,0.1) (so the
mean and standard deviation for the demand rate are
both 10) and rewards are equal to the mean demand
ms/as (i.e., the profit margin is $1 per unit).” We will
vary the number of products available S and assume
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that the DM can display 25% of the products available
in each period, that is, N; = 0.25S.

Caro and Gallien (2007) considered several exten-
sions of this basic model that also fit within the
framework of dynamic selection problems. One such
extension introduced a lag of | periods between the time
a display decision is made and when the products are
available for sale. In this extension, the item-specific
state variable x; is augmented to keep track of
the display decisions in the previous [ periods. Caro
and Gallien (2007) also considered an extension with
switching costs, which requires keeping track of whether
a product is currently displayed.

Of course, there are many variations on the assort-
ment problem (see Kok et al. 2008 for a review) that do
not fit within the framework of dynamic selection
problems. Although Caro and Gallien (2007) modeled
aggregate demand for a retailer over the course of a
fixed time period (say, a week), recent work on dynamic
assortment problems have modeled the arrivals of in-
dividual customers, for example, to a web page. For
example, Rusmevichientong et al. (2010) consider a
dynamic assortment model with capacity constraints
(like constraint (1)) but where demands are modeled
using a multinomial logit choice model with un-
known customer preferences. Bernstein et al. (2015)
consider a dynamic assortment problem with de-
mand modeled using a multinomial logit choice
model where products have limited inventories. The
multinomial choice model used in these two papers
captures substitution effects and the rewards cannot be
decomposed into the sum of item-specific rewards as
required in the dynamic selection model.

2.3. Applicant Screening Problem

In this example, we consider a set of S applicants seeking
admission at a competitive college or applying for a
prestigiousjob. The DM’s goal is to identify and admit
(or hire) the best possible set of applicants. Each
applicant has an unknown quality level g, € [0,1],
with uncertainty given by a beta distribution with
parameters x5 = (as,fs), where as, fs>0; the mean
quality is then equal to a;/(as + fs).

In the first T — 1 periods, the DM can screen up to
N; applicants. Screening an applicant yields a signal
about the applicant’s quality. The signals are drawn
from a binomial distribution with # trials and prob-
ability of success g; on each trial. The number of
trials nin the binomial distribution can be interpreted
as a measure of the informativeness of the signals. For
example, a binomial signal withn = 5 provides as much
information as five signals from a Bernoulli signal
(a binomial with n = 1). After screening an applicant
and observing a signal d;, the applicant’s state is
updated using Bayes’ rule to (as +ds, s + 1 —d;). In
the Bernoulli case, we can think of the signal as being

a “thumbs up” or “thumbs down” indicating whether
the screener thought the applicant should be admitted
(or hired) or not. An applicant’s state does not change
when not screened. The rewards are assumed to be zero
during the screening periods. In the final period, the DM
can admit up to Nt applicants. The reward for ad-
mitted applicants is their mean quality (as/(as + Bs))
and the reward for those not admitted is zero.

In our numerical examples, we will focus on exam-
ples with T = 5 and a priori identical applicants with
(a0s, Bs) = (1,1). We will vary the number of applicants
S and assume 25% of the applicants can be admitted
and 25% can be screened in each of the four screening
periods (i.e., N; = 0.255). We will also vary the in-
formativeness of the signals, taking n =1 or 5 in the
binomial distribution for the signal process. We will
also consider an example case with Bernoulli signals
(n=1) and a longer time horizon (T = 51) where a
smaller fraction of applicants can be screened in
each period (N; = 0.02S) and just 2% can be admitted.
In all of these examples, the DM needs to strike a
balance between a desire to screen each applicant at
least once (which is feasible) and the desire to identify
and admit the best applicants, a process which typ-
ically requires multiple screenings. With the chosen
parameters, the DM can screen applicants more than once
only if some other applicants are not screened at all.

3. Lagrangian Relaxations

The DP (2) is difficult to solve because the constraint (1)
limiting the number of items selected links decisions
across items: the selection decision for one item de-
pends on the states of the other items. In this section,
we consider Lagrangian relaxations of this problem
where we relax this linking constraint and decompose
the value functions into computationally manageable
subproblems. This Lagrangian relaxation can then be
used to generate a heuristic selection policy (as de-
scribed in Section 4) as well as an upper bound on the
performance of an optimal policy. Propositions 1-3 are
fairly standard in the literature on Lagrangian relaxations
of DPs (e.g., Hawkins 2003, Caro and Gallien 2007, and
Adelman and Mersereau 2008). Proposition 4 pro-
vides a detailed analysis of the gradient structure of
the Lagrangian that is important in later analysis.

3.1. The Lagrangian DP

Though one could in principle consider Lagrange mul-
tipliers that are state dependent, to decompose the
DP we focus on Lagrange multipliers A = (Ay,..., A7) >
0 that depend on time but not states. As we will see
in Proposition 4, the assumption that the Lagrange
multipliers are constant across states means that an
optimal set of Lagrange multipliers requires the linking
constraint (1) to hold “on average” (or in expectation)
rather than in each state. Taking L%, (x) =0, the
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Lagrangian (dual) DP has period-t value function that
is given recursively as

M@an%4Mmm+ﬂ@dﬁumﬂ

}. (4)

Compared with the DP (2), we have made two changes.
First, we have incorporated the linking constraint into
the objective by adding A(N; — X3_; us); with A; >0,
this term is nonnegative for all policies satisfying the
linking constraint. Second, we have relaxed the
linking constraint, allowing the DM to select as many
items as desired (we require u € {0,1}° rather than
u € U;). Both of these changes can only increase the
optimal value so the Lagrangian value function
provides an upper bound on the true value function.

s=1

S
+/\t(Nt—ZM5

Proposition 1 (Weak Duality). For all x, t, and A >0,
Vi(x) < LMx).

Thus, for any A >0, LMx) can be used as a perfor-
mance bound to assess the quality of a feasible policy.

The advantage of the Lagrangian relaxation is that,
for any fixed A, we can decompose the Lagrangian
dual function into a sum of item-specific problems
that can be solved independently.

Proposition 2 (Decomposition). For all x, t, and A > 0,
A 0 S
L}x) = D AN + > V(%) (5)
T=t s=1

where V}\,(x;) is the value function for an item-specific DP:
V3,1,(xs) = 0and

Vés(xs) = max {rt,s(xS/ 1) - /\t + E[Vﬁi—l,s(%t,s(xm 1))]/
s, 0) + B[V, (Fasie, DI} - (6)

The first term in the maximization of Equation (6) is
the value if the item is selected and the second term
is the value if the item is not selected. Intuitively,
the period-t Lagrange multiplier A; can be interpreted
as a charge for using the constrained resource in
period t. We will let ¢ denote an optimal deterministic
(Markovian) policy for the Lagrangian relaxation
(Equation (4)) and ¢; denote an optimal deterministic
policy for the item-specific problem (6); we reserve n
for policies that respect the linking constraints (1).

3.2. The Lagrangian Dual Problem

As discussed after Proposition 1, the Lagrangian DP
can be used as an upper bound to assess the perfor-
mance of heuristic policies. Although any A provides
a bound, we want to choose A to provide the best

possible bound. We can write this Lagrangian dual
problem as

min L (x). @)

To say more about this Lagrangian dual problem (7),
we will consider a fixed initial state x and focus on
properties of L}(x) and V{,(x,) with varying A. Ac-
cordingly, for the remainder of this section, we will let
Vi(A) = V{\,s(xs) and L(A) = Li\(x)-

First, we note that the item-specific value functions
are convex functions of the Lagrange multipliers so
the Lagrangian dual problem is a convex optimiza-
tion problem.

Proposition 3 (Convexity). Forallx,t,and A > 0, L(A) and
Vs(A) are piecewise linear and convex in A.

Proof. See Section EC1.1. O

In Equation (6) we see that the Lagrange multipliers
A appear as costs paid whenever an item is selected;
thus the gradients of V,(A) and L(A) will be related
to the probability of selecting items under an opti-
mal policy for the item-specific DPs (6) for the given A.
These selection probabilities are not difficult to
compute when solving the DP. Since a convex func-
tion is differentiable almost everywhere, for most A
these gradients will be unique. However, as piece-
wise linear functions, there will be places where
Vs(A) and L(A) are not differentiable and the optimal
solution for the Lagrangian dual (7) will typically be
at such a “kink.” These kinks correspond to values
of A where there are multiple optimal solutions for
the item-specific DPs. The following proposition
describes the sets of subgradients for the Lagrangian
and their relationships to optimal policies for the
item-specific DPs.

Proposition 4 (Subgradients). Let p;s(s) be the proba-
bility of selecting item s in period t when following a
policy s for the item-specific DP (6) and let W:(A) be the
set of deterministic policies that are optimal for the item-
specific DP (6) in the initial state with Lagrange multi-
pliers A.

(i) Subgradients for item-specific problems: For
any Ps € Wi(A),

Vs(ths) = =(p1s(@s), .., prs(¥s) ®)

is a subgradient of V at A; that is,
Vi(A') = Vi(A) + Vs(s) (X = A) forall . (9)
The subdifferential (the set of all subgradients) of Vs at Ais
IV(A) = conv{Vi(s) : s € WiV}, (10)

where convA denotes the convex hull of the set A.
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(ii) Subgradients for the Lagrangian. The subdifferential
of Lat Ais

JL(A) =N + i dVs(A)
s=1
=N + conv - {Zsl Vs(@s) : s € J(A) Vs}, (11)
s=1

where the sums are setwise (i.e., Minkowski) sums
and N = (Nl,. . .,NT).

(iii) Optimality conditions. The Lagrange multiplier
vector A is an optimal solution for the Lagrangian dual
problem (7) if and only if, for each s, there is a set of policies

{s}iy with s € WiX) (ng <T+1) and mixing
weights {ysi}i) (with ys;>0and 37, ys; = 1) such that

S Vs,i Prs(Psi) = Ny for all t such that A} >0 and
1

1

&

Mo 1M

»
1l
—_

Vsi Prs(Psi) < Ny for all t such that A} = 0.
i=1

Proof. See Section EC1.1. O

We can interpret the result of Proposition 4(iii) as
saying that the optimal policies for the Lagrangian DP
must satisfy the linking constraints (1) “on average”
for a mixed policy ¥ = (P1,...,Ps) where the item-
specific mixed policies §s are independently gener-
ated as a mixture of deterministic policies 1;; with
probabilities given by the mixing weights y,,. Here,
when we say the linking constraints must hold on
average (or in expectation), this average includes the
uncertainty in the state evolution when following a
given item-specific policy 15, (this determines p;s(s,))
and the probability ys; of following policy 5.’

Although the result of Proposition 4(iii) suggests
a mixture of policies where the DM randomly selects
a deterministic policy 1; for each item in advance
(i.e., before period 1) and follows that policy through-
out, we could use the policies and mixing weights of
the proposition to construct item-specific Markov
random policies that randomly decide whether to
select an item in each period, with state-dependent
selection probabilities; see Section EC1.2. In both
representations, we randomize independently across items.

In the special case where all items are a priori
identical (i.e., identical item-specific DPs (6) with
the same initial state), the Lagrangian computations
simplify because we no longer need to consider dis-
tinct item-specific value functions. In this case, we can
drop the subscript s indicating a specific item and
the optimality condition of Proposition 4(iii) reduces
to A" is an optimal solution for the Lagrangian dual
problem (7) if and only if there is a set of policies

{1/11-};;1 with; € W*(X) (n < T + 1) and mixing weights
{y:}, such that

S Z vi pi(1i) =N, for all f such that A} >0 and
i=1

SZ% pi(1;) <Ny forall t such that A} =0. (12)
i=1

Here we can interpret the mixing weights y; as the
probability of assigning an item to policy 1; or we can
view it as the fraction of the population of items that
are assigned to this policy. Alternatively, as discussed
earlier, we can assign all items a Markov random pol-
icy that selects according to state-contingent selection
probabilities. If some, but not all, items are identical, we
get partial simplifications of this form.

Given the piecewise linear, convex nature of the
Lagrangian and the fact that subgradients are readily
available, it is natural to use cutting-plane methods
(see, e.g., Bertsekas etal. 2003) to solve the Lagrangian
dual problem (7). Alternatively, one could use sub-
gradient methods (as in, e.g., Topaloglu 2009 and
Brown and Smith 2014), a Nelder-Mead method (as in
Caro and Gallien 2007), or an LP formulation (as in
Hawkins 2003, Adelman and Mersereau 2008, and
Bertsimas and Misi¢ 2016). We discuss the LP for-
mulation in more detail in Section EC1.3. In the ap-
pendix, we describe a cutting-plane method that
exploits the structure of the subgradients described in
Proposition 4 and exploits the separabi