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We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our

general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability,
and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately,
with nonzero transaction costs, the dimension of the state space is at least as large as the number of assets,
and the problem is very difficult to solve with more than one or two assets. In this paper, we consider several
easy-to-compute heuristic trading strategies that are based on optimizing simpler models. We complement these
heuristics with upper bounds on the performance with an optimal trading strategy. These bounds are based on
the dual approach developed in Brown et al. (Brown, D. B., J. E. Smith, P. Sun. 2009. Information relaxations
and duality in stochastic dynamic programs. Oper. Res. 58(4) 785-801). In this context, these bounds are given by
considering an investor who has access to perfect information about future returns but is penalized for using this
advance information. These heuristic strategies and bounds can be evaluated using Monte Carlo simulation. We
evaluate these heuristics and bounds in numerical experiments with a risk-free asset and 3 or 10 risky assets.

In many cases, the performance of the heuristic strategy is very close to the upper bound, indicating that the
heuristic strategies are very nearly optimal.
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1. Introduction

Dynamic portfolio theory—dating from the semi-
nal work of Mossin (1968), Samuelson (1969), and
Merton (1969, 1971)—provides a rigorous frame-
work for determining optimal investment strategies
in idealized environments that assume there are no
transaction costs. The solutions to these models rely
heavily on the absence of transaction costs. For exam-
ple, in some models, the optimal solutions recom-
mend holding constant fractions of the investor’s
wealth in different assets. To implement such a strat-
egy, an investor must continually buy and sell assets
in order to maintain the target fractions as asset prices
fluctuate. In practice, transactions are costly, and con-
tinual rebalancing can be quite expensive. If expected
returns vary over time, the situation may be even
worse as the investor continually trades to adjust to a
moving target.

Constantinides (1979) studied a general discrete-
time model of portfolio optimization with transaction
costs and obtained the strongest structural results in
the setting with power utility, proportional transac-
tion costs, and two assets. Specifically, he showed that
there is a two-dimensional convex cone of asset posi-
tions where it is optimal to not trade, and that when
the asset position is outside of this cone, it is optimal
to trade to bring the asset position to the boundary of
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the cone. Davis and Norman (1990) and Shreve and
Soner (1994) analyzed continuous-time versions of
this model with one risky and one risk-free asset and
established analogous results. Muthuraman (2007)
and others have developed numerical methods for the
case with a single risky asset.

Of course, practitioners must actually contend with
multiple risky assets and, unfortunately, this prob-
lem is much more difficult to solve. The portfo-
lio optimization problem is naturally formulated as
a stochastic dynamic program. With no transaction
costs, the optimal investments typically depend on
the investor’s wealth but not the investor’s asset posi-
tions. However, with transaction costs, the optimal
investments depend on the investor’s initial asset
positions, and the dimension of the state space is
at least as large as the number of assets consid-
ered. The resulting dynamic program suffers from the
“curse of dimensionality” and is very difficult to solve
with more than one or two risky assets.!

In this paper, we consider the problem of
dynamic portfolio optimization in a discrete-time,
finite-horizon setting. Our general model considers

! The special case with a quadratic utility and quadratic transac-
tion costs and no portfolio constraints can be formulated as a lin-
ear quadratic control problem that is straightforward to solve; see
Garleanu and Pedersen (2009).
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risk aversion (we maximize the expected utility of
terminal wealth), portfolio constraints (e.g., no short
positions), the possibility of predictable returns, and
convex transaction costs. We introduce several easy-
to-compute heuristic trading strategies that are based
on solving simpler optimization problems. The first
heuristic is a “cost-blind” strategy that follows the
trading strategy given by ignoring transaction costs;
this is considered primarily as a benchmark for eval-
uating the performance of the other heuristics and
bounds. The second heuristic is a “one-step” strat-
egy that can be viewed as approximating the dynamic
programming recursion by taking the continuation
value to be the value function for the model that
ignores transaction costs; transaction costs are con-
sidered in the current period only. Finally, we con-
sider a “rolling buy-and-hold” strategy where, in each
period, we solve an optimization problem with trans-
action costs with the simplifying assumption that
there will be no further opportunities to trade over a
fixed horizon; the continuation value at the end of the
horizon is again taken to be the value function for the
model that ignores transaction costs.

We complement these heuristics with upper bounds
on the performance with an optimal trading strat-
egy. These bounds are based on the dual approach
developed in Brown et al. (2009). In this context, the
bounds are given by considering an investor who
has access to perfect information about future returns
but is penalized for using this advance information.
The dual approach of Brown et al. (2009) general-
izes the dual approach developed for option pricing
problems by Rogers (2002), Haugh and Kogan (2004),
and Andersen and Broadie (2004) (see also related
earlier work by Davis and Karatzas 1994) to con-
sider general stochastic dynamic programs; this gen-
eralization is essential for the application to portfolio
optimization problems. In this paper, we generate
penalties using the approach for “good penalties”
suggested in Brown et al. (2009) and develop a
new gradient-based approach for generating penalties
that exploits the convex structure of the underlying
stochastic dynamic program. These heuristic strate-
gies and bounds can be simultaneously evaluated
using Monte Carlo simulation.

We evaluate these heuristics and bounds in numer-
ical experiments with a risk-free asset and 3 risky
assets (with predictable returns) or with 10 risky
assets (without predictability). The results are promis-
ing: the run times are reasonable and, in many cases,
the performance of the heuristic strategy is very close
to the upper bound, indicating that the heuristic
strategies are very nearly optimal.

Brandt (2010) provides a recent survey of research
in portfolio optimization and touches briefly on issues
related to transaction costs. Closer to this paper,

Akian et al. (1996), Leland (2000), Muthuraman and
Kumar (2006), and Lynch and Tan (2010) consider
portfolio choice problems with multiple risky assets
and transaction costs in various settings. These papers
develop analytic frameworks for the case with many
assets, but focus on numerical examples with two
risky assets; the numerical methods employed are
based on grid approximations of the state space and
do not scale well for problems with more risky assets.
Muthuraman and Zha (2008) describe a numerical
procedure that scales better: their procedure assumes
a particular form of trading strategy, estimates the
value function given this trading strategy using sim-
ulation, and then updates the trading strategy. The
computational effort required by this scheme scales
polynomially in the number of assets. Their exam-
ple with seven risky assets requires approximately
62 hours to compute a trading strategy; there is no
guarantee that the resulting strategy is optimal or any
indication of how much better one might do with an
optimal strategy. Chryssikou (1998) studies portfolio
optimization with quadratic transaction costs and no
constraints using a pair of heuristic strategies, one of
which is similar to our rolling buy-and-hold strategy.

We view our contributions to be (i) the study of
some easy-to-compute heuristic trading strategies that
may be useful in practice and (ii) the development of
a dual bounding approach that can be used to eval-
uate the quality of these and other heuristics. Both
the heuristics and dual bounds are fairly flexible and
can be adapted to problems with different forms of
utility functions, different forms of transaction costs
(provided they are convex), different forms of portfo-
lio constraints, and different models of returns.

There is also a recent literature that uses dual meth-
ods to evaluate portfolio strategies with portfolio con-
straints. For example, Haugh et al. (2006) and Haugh
and Jain (2011), following Cvitani¢ and Karatzas
(1992) and others, use Lagrange multiplier methods
to “dualize” portfolio constraints in continuous-time
portfolio allocation models; see Rogers (2003) for a
review and synthesis of related theory. In contrast, we
treat portfolio constraints directly and “dualize” the
nonanticipativity constraints that require the investor
to use only the information available at the time a
decision is made; our penalties can be viewed as
Lagrange multipliers associated with these nonantic-
ipativity constraints. This interpretation is discussed
in more detail in Brown et al. (2009).

In the next section, we describe our basic model
and note some structural properties of the model.
In §3, we describe our heuristics. In §4, we describe
our approach to dual bounds in general and discuss
the specific bounds we consider in our numerical
experiments. In §5, we describe our numerical exper-
iments and results. The online appendix (available at
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http://faculty.fuqua.duke.edu/~dbbrown/bio/papers/
brown_smith_2011_online_appendix.pdf) contains proofs
of the propositions in the paper as well as some
detailed assumptions and results for the numerical
experiments.

2. The Portfolio Optimization Model
Time is discrete and indexed as t =0,...,T, with
t =0 being the current period and T being the ter-
minal period. There are n risky assets and a risk-
free asset (cash). The risk-free rate r; is assumed to
be known and constant over time. The returns of
the risky assets are stochastic and denoted by r, =
(r,1,---,7, ,), where 1, ; > 0 is the (gross) return on
asset i from period f —1 to period t.

The monetary values of the risky asset holdings at
the beginning of period t are described by the vec-
tor x, = (x; 1, ..., x; ,); the cash position in period t is
denoted c,. We let the trade vector a, = (a; ¢, ..., 4; ,)
denote the amounts of risky assets bought (if a, ; > 0)
or sold (if a4, ; < 0) in period t. The transaction costs
associated with trade vector a, are given by «(a;). In
our general analysis and approach, we will assume
that «(a,) is a nonnegative and convex function of the
trades a, with «(0) = 0. In our numerical experiments,
we will focus on the special case of proportional trans-
action costs with

w(a) =) (87a;;—d;a,,), ey
i=1

where aii =max(a, ;,0) and a; ; = min(a, ;, 0) denote
the positive and negative components of the trades,
and 6} and §; >0 are the proportional costs for buy-
ing and selling, respectively, asset i. Alternatively, we
could use a quadratic function for transaction costs to
capture a “linear price impact,” where trades lead to
temporary linear changes in prices. Many other forms
are also possible.

Taking transaction costs into account, the asset
holdings and cash position evolve according to

X1 = T (Xt ay), 2)
1 = 1y(c — 1'a, — k(ay)). ®3)

Here the dot (-) denotes the componentwise product
of two vectors (so x;,; ; =1, ;(x; ;+4a;;)) and 1is an
n-vector of ones. The investor’s wealth w, in period t
is the sum of the total dollar holdings across the risky
assets and cash, i.e.,

w, =1%, +¢. 4)

The investor’s goal is to maximize the expected util-
ity of terminal wealth, E[U(w)], where U is a non-
decreasing and concave utility function. Note that in

this formulation, we define wealth in terms of the
market value of the portfolio. We could have instead
defined wealth in terms of the liquidation value of
the portfolio, including the transaction costs associ-
ated with liquidation. In this case, we would take
w, = 1'x, — k(—x;) + ¢;,. Our general approach works
in either case, although the numerical results would
obviously be somewhat different.

We will assume that the investor’s trades a,
in period t are restricted to a closed, convex set
A(x;, ¢;). In our numerical experiments, we will
focus on the case where the investor is not allowed to
have short positions in risky assets or cash, so given
an asset position (x;, ¢;), the allowed trades are

A (x;,¢;)={a,eR": x,+a,>0,c,—1a,—«k(a,)>0}. (5)

We will also consider numerical results for the case
where short positions are allowed, but there is a mar-
gin requirement that limits the total (long or short)
position in risky assets to be no more than / times
the investor’s posttrade wealth. In this case, the set of
allowed trades is also convex and can be written as

Ay (x, ¢;)

n
~{areR" Tl <1ax +o -] ©
i=1
In general, we consider sets of allowed trades
A, (x;, ¢;) defined in terms of a set H, of allowed final
positions (or holdings): a, € A,(x,, ¢;) if and only if
(x; + a;, ¢; — 1"a; — k(a;)) € H,. We assume that the
allowed set of final positions H; is closed, convex, and
nondecreasing in ¢, (if (x,,¢}) € H, and ¢} < ¢?, then
(x;, ¢?) € H,). This implies that A,(x,, ¢,) is convex for
each (x;, ¢;).

We will allow the possibility that returns exhibit
some degree of predictability. To model this, we let z,
denote a vector of observable market state variables
that provides information about the returns r,,; of
the risky assets. We will assume that z, follows a
Markov process. The returns r,,; may depend on z,
but, given z,, the returns are assumed to be condition-
ally independent of prior returns and earlier values
of the market state variable.

This portfolio optimization problem can be formu-
lated as a stochastic dynamic program with state vari-
ables consisting of the current positions in risky assets
and cash (x;, ¢;) and the market state variable (z;).
We take the terminal value function to be the utility
of terminal wealth, V. (x;, ¢, z;) = U(1'x; + ¢7), and
earlier value functions V, are given recursively as

Vi(xi,¢,2z,)= max W(a;, x;,¢,2,) (7)

a €A (x¢, ¢p)

Wi(a;, x;, ¢, 2;)

=E[Viq (B (6 +ay), 74 (e —1a,—«(a)),z,4)l2z,]. (8)
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In (8), expectations are taken over the random asset
returns t,,; and the next-period market state z,, ;. We
will assume that these expectations (and other expec-
tations in the paper) are well defined and that the
maxima in (7) are attained by some set of trades.

The following proposition states some key proper-
ties of this portfolio optimization model.

ProrosITION 2.1 (PROPERTIES OF THE PORTFOLIO
OrTiMIZATION MODEL). (1) For any market state z,,
Vi(x,, c;, z,) is nondecreasing in cash c, and jointly con-
cave in the asset position (x,, c,).

(2) For any market state z,, W,(a,, x,, c;, z,) is jointly
concave in the trades a, and asset position (x,, c,).

Thus, for any given market state z, and asset and
cash position (x,, ¢,), the optimization problem (7) is
convex: we are maximizing a concave function over a
convex set. Unfortunately, the dimension of the state
space makes the portfolio optimization problem very
difficult to solve, even with just a few risky assets. For
example, suppose the market state variable z, is one
dimensional. If we approximated the state space using
a grid with 20 points for this market state variable
and 100 points for each of the n + 1 asset positions,
the state space would consist of 20 x 100" states. To
determine the value function V,(x,, c;, z,) on this grid,
we would have to solve the optimization problem (7)
for each of these 20 x 100"*! states in each period.
In our numerical examples with n =3 risky assets
and predictability, the state space would include 20 x
100* = 2 billion elements. With n = 10 risky assets
and no predictability, the state space would include
100" = 10* elements. Moreover, each of these opti-
mization problems involves expectations (8) over the
(n+1)-dimensional space of (r, 4, z,,;) outcomes, and
we would have to somehow interpolate between grid
points when solving for the optimal trades.

If there are no transaction costs (k = 0), the portfo-
lio optimization problem can be greatly simplified by
taking the dynamic programming state variables to be
the current wealth (w,) and market state variable (z,);
we no longer need to consider the specific asset posi-
tions (x,, c;). In this simpler dynamic program, the
decision variables are the posttrade positions in risky
assets X, = x, +a,. Let X;(w,) denote the set of possible
posttrade positions in risky assets given initial wealth
w,; that is, X,(w,) = {X;: (X,;, w, —1'x,) € H,}. For exam-
ple, with no transaction costs, the case described by
(5), where the investor is not allowed to have short
positions, corresponds to a feasible set of posttrade
asset positions of the form

X,(w,) = &% € R": %, > 0, 1%, < w,}. )

We can then write the recursion for this “friction-
less model” as follows: The terminal value function is
V{f (wy, zp) = U(wy), and earlier value functions are

V/(w,2) = max W/ (x,w,z), (10)

X, €X; (wy)
W/ (%, w,, 2,) = E[V/ (1% + 1 (0, — 1%,), Z,01) | 24].
(1)

This frictionless model also has a convex structure
and its results can be related to those of the more
complicated model with transaction costs.

PRrOPOSITION 2.2 (PROPERTIES OF THE FRICTIONLESS
PorTFOLIO OPTIMIZATION MODEL). (1) For any mar-
ket state z,, th (w,, z,) is nondecreasing and concave in
wealth w,.

(2) For any market state z,, Wtf(fq, w,, z,) is jointly
concave in the posttrade asset positions X, and wealth w;.

(8) For any market state z, and asset position (x,, c;),
Vi, ¢, 2) < th(l/xt + ¢, 2y).

Thus, to solve the frictionless model, we need to
solve a convex optimization problem for each market
state z, and wealth w,. For example, if the market state
variable z, is one dimensional, we could solve this
dynamic program on a two-dimensional grid involv-
ing z, and w,. The expectations over (%,,;,Z,,) in
(11) will still be high dimensional if we have many
assets, but can be evaluated using various methods.
In our numerical experiments, we will approximate
these expectations using discrete approximations of
the underlying distributions; see §5.1 below.

If the investor has a power utility function, the fric-
tionless model simplifies further. Specifically, suppose

1 -
Uwr) = wr ", (12)

where y > 0 is the coefficient of relative risk aversion;
in the case where y =1, U(w;) = In(w;). We can then
write the value function as

1 -
Vi (w,2) = w0 " b(z), (13)
where ¢,(z;) is defined recursively with ¢;(z;) =1
and

1

m(bt(Zt)

1 . A A -
= o B 1 611 - 18)) 6 ) 2]
0,eX;(1) -

(14)

Here ét = (91, ey én) are the posttrade fractions of
wealth w, invested in the risky assets. In this case, the
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dimension of the state space is equal to the dimension
of the market state variable z,.

Note that if the next-period market state z, ; and
the returns ¥,,; are independent given z,, then Equa-
tion (14) factors and it is optimal to pursue a myopic
trading strategy that maximizes the expected utility
of next period’s wealth. However, if the next-period
market state z,,; and the returns t,,; are not inde-
pendent and the investor has a relative risk-aversion
coefficient y > 1 (as is considered to be typical), the
optimal trading strategies will include some degree
of hedging against unfavorable changes in the mar-
ket state variable: compared to the myopic strate-
gies, these strategies tend to have higher next-period
wealth in scenarios with poor future prospects (i.e.,
with high values of ¢, ,(Z;,,)) and lower next-period
wealth in scenarios with better future prospects (i.e.,
with low values of ¢,,(z,,,)).

3. Some Heuristic Trading Strategies
Given that the portfolio optimization model with
transaction costs is difficult to solve, it is natural to
consider heuristic trading strategies based on solu-
tions to approximate models that are simpler to solve.
We will consider several such heuristic strategies.

3.1. Cost-Blind Strategies

First, we consider cost-blind strategies that ignore trans-
action costs and simply follow the optimal trading
strategy recommended by the frictionless model. To
simulate such a strategy, we need to first solve the
dynamic program for the frictionless model (10) to
find the optimal posttrade asset positions X, or frac-
tions 0, = X,/w, for each period t, market state z,
and wealth level w,; we do this once and store the
results. In the body of the simulation, in each period,
we choose trades a, to move to the investor to the rec-
ommended fractions @, for the current market state
z,, and wealth level w,. Given this trade, we generate
random returns r, ; for the risky assets and calcu-
late next-period asset positions (x,,, ¢,,;) using Equa-
tions (2) and (3), deducting transaction costs from the
cash position. We then generate the next-period mar-
ket state z,,; and continue the simulation process for
the next period.

Although this cost-blind strategy may perform rea-
sonably well when the transaction costs are small or
when it is optimal to put all of the investor’s wealth in
a single asset, with larger transaction costs and more
balanced investments, we would expect this strategy
to trade too much in pursuit of marginal improve-
ments in asset positions that do not exceed the cost of
executing the trade.

3.2. One-Step Strategies

Second, we consider a heuristic strategy where the
investor uses the value function from the friction-
less model as an approximate continuation value, but
includes transaction costs in the current period. In this
case, in each period, the investor chooses trades a,
that solve

max  E[V/,(F,,(x+a) +74(c,~ 12, —&(a,)), Z1) | z,].

a €A (x, ct)

(15)

To simulate such a one-step strategy, we first solve the
dynamic program for the frictionless model (10) to
determine the value function th (w,, z,); we do this in
advance of the simulation and store the value func-
tion. In the body of the simulation, for each period in
each trial, we solve the optimization problem (15) to
find the recommended trade a, for the then-prevailing
(x;, c;, z,) scenario. We then generate random returns
1., for the risky assets, calculate next-period asset
positions (x,,;, ¢,,;) using Equations (2) and (3), gen-
erate a new market state z,,;, and continue to the
next period. Note that the objective function in (15)
is concave in the trades a, (this follows from the
assumption that the transaction cost function «(a,) is
convex and the fact that th (w,, z;) is nondecreasing
and concave in wealth w,; see Proposition 2.2), so (15)
is a convex optimization problem. The optimization
problem is, however, complicated by the presence of
the high-dimensional expectation in (15): these expec-
tations must be evaluated to calculate the objective
function for any candidate trade a,.

Whereas the cost-blind strategies are likely to trade
too much because they neglect the costs of trading, we
would expect these one-step strategies to trade too lit-
tle because they underestimate the benefits of moving
toward the optimal position without transaction costs.
Or, put another way, the frictionless model underes-
timates the cost of being out of the optimal position
because it assumes the investor can costlessly adjust
the position in the next period. If the optimal asset
positions change slowly over time, moving toward
the optimal position in one period may provide ben-
efits in future periods as well as the current one.

Although we would have to solve the full portfolio
optimization problem (7) to exactly capture the long-
term impacts of adjusting portfolio positions, we can
perhaps approximate this effect by reducing the trans-
action costs «k(a,) appearing in the objective function
in (15). There are a variety of ways we might mod-
ify these costs and we can experiment to find a good
modification. In our numerical experiments, we con-
sider monthly trades and focus on the case where we
adjust the transaction costs by dividing «(a,) by divid-
ing by a time-dependent constant. Specifically, we
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focus on the case where we divide by the smaller of 6
or the number of periods remaining (T —t). The intu-
itive interpretation of this adjustment is that the bene-
fit of adjusting the asset positions lasts approximately
six months. We will call these trading strategies modi-
fied one-step strategies and consider alternative divisors
in §5.4.

3.3. Rolling Buy-and-Hold Strategies

Finally, we consider a heuristic trading strategy
where, in each period, the investor chooses trades
to maximize the expected utility of wealth at some
horizon h periods into the future, taking transaction
costs into account, but assuming that there will be
no opportunities to adjust the portfolio over this time
horizon. As in the one-step strategy, the continuation
value at the horizon is approximated by the value
function for the frictionless model. That is, in period ¢,
the investor chooses trades a, that solve

max E[VS (G, ... -F.,)(x, +a
a el (xr, ¢)) [ t+h(( t+h H—l)( t t)

+ri(e —1a,— k@), Zy) | 2], (16)

with the understanding that we use the terminal util-
ity U(wy) in place of Vtih(wﬂh) whenever t+h > T.
Although this objective function assumes that there
are no future opportunities to adjust the portfolio over
this time horizon, when simulating or executing this
strategy, the investor solves the same problem in the
next period. As with the one-step strategies, the objec-
tive function in (16) is concave in a, and, when sim-
ulating with this strategy, we must solve the convex
optimization problem (16) once for each period of
each simulated trial.

As with the modification of the one-step strategies,
some degree of experimentation may be required to
identify a good horizon h for a particular problem.
In our numerical experiments with monthly trading,
we will focus on the case where the horizon h is
six months, but will consider alternatives in §5.4. We
will refer to these heuristic trading strategies as the
rolling buy-and-hold strategies. Chryssikou (1998) stud-
ies a similar heuristic, but with the horizon fixed at
the terminal period T, i.e., with terminal utility U (wy)
in place of Vtih(wﬂh) in (16).

4. Dual Bounds

We can evaluate the heuristic strategies of §3 using
simulation, and we can rerun these simulations with
variations of these strategies (e.g., adjusting the modi-
fication of transaction costs for the one-step strategies
or the horizon for the rolling buy-and-hold strategies)
in an attempt to improve their performance. When
doing these experiments, it would be helpful to know

how much better we could possibly do. The friction-
less model provides an upper bound on performance
(see Proposition 2.2), but when transaction costs are
substantial, this “no-transaction-cost bound” may be
rather weak.

In this section, we will derive upper bounds on
performance using the dual approach developed in
Brown et al. (2009). This dual approach consists of
two elements: (i) we relax the “nonanticipativity” con-
straints that require the trading decisions to depend
only on the information available at the time the deci-
sion is made, and (ii) we impose penalties that punish
violations of these nonanticipativity constraints. We
first describe this dual approach in general and then
describe the penalties we will use in our numerical
experiments. As we will see, these dual bounds are
typically tighter than the bound given by the model
that ignores transaction costs.

4.1. The Dual Approach

In our discussion of the dual bounds, it helps to
introduce notation to describe the full sequences of
market states z = (z,, ..., zy), returns r = (r;, ..., ¥7),
and trades a= (ay, ..., ar_;). Using this notation, we
write the pretrade asset and cash positions as x,(a, r)
and ¢,(a) and wealth as w;,(a, r); these are calculated
according to Equations (2)—(4) and are given by

t—1

x(@,1) =3 (1.1 y) a4 (1) X,
7=0

t—1
(@) =) 17 (—Ta, —k(a,)) +r4c
7=0

and w,(a, 1) = 1I'x,(a, 1) + c,(a). Similarly, we write
the set of feasible trade sequences a as A(r). Note
that for any given return sequence r, the position in
risky assets x,(a, r) is linear in the trade sequence
a, and with convex transaction costs, the cash posi-
tion ¢,(a) and wealth w,(a, r) are concave in the trade
sequence a.

A trading strategy can be viewed as a function
a(r, z) that maps from sequences of returns r and
market states z to a trade sequence a. A trading strat-
egy «a is feasible if (i) a(r,z) is in A(r) for each
(r, z), and (ii) a is nonanticipative in that the trade a,
selected in period t depends only on what is known
in period ¢; that is, a, depends on the market states
(zg, ...,2;) and the asset returns (r;, ..., r,), but not
the future market states or returns. We let s/ denote
this set of feasible strategies. In this notation, we can
rewrite the portfolio optimization problem (7) com-
pactly as

maxE[U(wr(a(t, 2), T))]- 17)
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Here the expectations are taken over sequences of
returns T and market states z, with trading strategy o
selecting trades in each (¥, z) scenario.

In deriving dual upper bounds for this problem,
we will focus on a “perfect information relaxation”
that assumes the investor knows all market states
z and all asset returns r before making any trad-
ing decisions. The penalties 7(a, r, z) depend on the
sequence of trades a, returns r, and market states z in
a given scenario; we say a penalty = is dual feasible if
E[7(a(¥, z), T, z)] <0 for any feasible trading strategy
a. We can then state the duality result as follows.

ProrosiTiON 4.1 (DuaL BouND). For any feasible
trading strateqy o and any dual feasible penalty ,

E[U(wr(a(¥, 2),1))]

§[E|:maz<{U(wT(a,f)) —m(a,zt, 2)}:| (18)
acA(r)

The problem on the right of (18) is perhaps easiest
to understand by considering how we estimate this
expression using simulation. In each trial of the simu-
lation, we generate a sequence of market states z and
asset returns r, drawing samples according to their
joint stochastic process. We then solve a deterministic
“inner problem” of the form

max{U(w(a, 1)) — 7(a, 1, z)} (19)

acA(r)
to find the sequence of trades a in A(r) that maxi-
mizes the penalized objective, U(wr(a, 1)) — 7 (a, 1, z),
assuming perfect foresight, i.e., assuming that the full
sequences of market states z and asset returns r are
known. We obtain an estimate of the dual bound
(18) by averaging the optimal values from these inner
problems across the trials of the simulation. Note
that because wealth w(a, r) is concave in the trade
sequence a and the utility function is increasing and
concave in wealth, the utility of final wealth is con-
cave in a for a given return sequence r. If we con-
sider penalties 7(a, r, z) that are convex in the trade
sequence a for given sequences of returns r and mar-
ket states z, the inner problem (19) will be a deter-
ministic convex optimization problem in a and will
not be difficult to solve.

It is not hard to see that inequality (18) holds with
any dual feasible penalty for any feasible strategy a.
To see this, note that

E[U(wr(a(¥, 2), T)]
<E[U(wr(a(f, 2), 1)) — 7(a(f, 2), T, )]

< [E[max{U(wT(a,f)) —(a,rt, 2)}:|. (20)

acA(#)

The first inequality follows from the assumption that
7 is dual feasible; because « is assumed to be a feasi-
ble trading strategy, this implies E[w(a(F, Z), T, z)] < 0.

The second inequality follows from the fact that the
value with perfect foresight must meet or exceed the
value of any feasible trading strategy a: The investor
with perfect foresight could choose the sequence of
trades that would be chosen by « in each scenario and
obtain the same value. However, the investor with
perfect foresight can usually do better by choosing a
different sequence of trades that maximizes the penal-
ized objective in the given scenario.

The bound (18) is a special case of the weak dual-
ity result from Brown et al. (2009). Brown et al. (2009)
also show that strong duality holds in this framework
in that there exists an optimal penalty 7* such that
the inequality in (18) will hold with equality with this
7* and an optimal strategy o*; “complementary slack-
ness” also holds in that an optimal penalty 7* will
lead to trades a in the dual problem that match those
of an optimal strategy.

Note that the penalty 7 =0 is trivially dual feasible.
In this case, the inner problem (19) amounts to finding
an optimal trading strategy given perfect knowledge
of all future returns, and the dual bound (18) is the
expected utility with perfect information. This inner
problem is straightforward to solve, but the bound
is typically quite weak. To obtain tighter bounds, we
need to choose a penalty that reduces the benefit pro-
vided by having advance knowledge of future market
states and returns. In addition, to ensure reasonable
computational times, the penalties should be easy to
compute and lead to an inner problem (19) that is
easy to solve. We will consider two types of penalties.
First we will consider penalties that are constructed
following the prescription for “good penalties” from
Brown et al. (2009). Second, we will consider a new
type of penalty that exploits the convex structure of
the primal problem.

4.2. Penalties Based on
Approximate Value Functions

Brown et al. (2009) suggest constructing penalties
by choosing a sequence of generating functions
(80, ---, 8r) that approximate the continuation value
functions for the dynamic programming model. In
this context, the generating functions g;(a, r, z) may
depend on the full sequences of returns r and market
states z, but depend only on trades up to period ¢,
(ag, --.,a;). The penalty is then taken to be

m(a,r,z)

=Y (g/(a,r,2)~E[g,a,F,2) 1), ..., 1,,2,...,2]). (21)

t=0

Brown et al. (2009) show that penalties constructed
this way are dual feasible. Moreover, if we take the
generating functions g,(a, r, z) to be the optimal con-
tinuation values V, (x,.;(a, 1), ¢, (a), 2z, ) for the
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original portfolio optimization program (7), the result-
ing “ideal penalty” is optimal: it provides a dual
bound equal to the optimal value for the primal, and
the optimal trades in the dual problem are feasible
and optimal for the primal problem.

We can approximate this ideal penalty using
approximations of the continuation values as gen-
erating functions. For example, consider the contin-
uation values for the one-step strategies; we could
approximate the continuation value using the con-
tinuation value from the frictionless model (10)
by taking the generating function g,(a,r,z) to be
Vt{rl(wt +1(a, 1), z4). Although this frictionless value
function is reasonably easy to compute, it leads
to an inner problem that is not easy to solve:

Vig(wi4(a, 1), 2,,,) is a concave function of the trades
a, but when used to generate a penalty 7 using (21),
V,’:rl enters into the objective for the inner problem
with both positive and negative signs, leading to an
objective function that is neither convex nor concave
and an inner problem that is generally not easy to
solve.

To overcome this difficulty, we will take g,(a, r, z)
to be a linear approximation of Vt{rl(wt (@, 1), z,)
based on a first-order Taylor series expansion in the
trades a around the trades a* given by some fixed
trading strategy. For example, in the case with pro-
portional transaction costs given by Equation (1), the
linear approximation of thrl yields a generating func-
tion of the form

gi(ar,z) = vtil(wm(a*,r>,zt+1>+14£’1<wt+1<a*,r>,zt+1>
t OWy 1

. at — @i a- 22

72—12( aa;r,i ( o )+ aaT,l ( ! T l)> ( )

where V,f+1 denotes the derlvatlve of V, .1 with respect
to wealth and 4/, a;;, 4", and a;%; denote the pos-
itive and negative components of a and a*. With a
power ut1hty function, Vt can be calculated analyti-
cally as Vt (w,,z,) =w; " ¢,(z;), where ¢,(z,) is deter-
mined when solving the frictionless model (14); in
other cases, Vt .1 may have to be estimated numeri-
cally. The partial derivatives in (22) are given by

t+1
awt+1 _

t+1-7 —+
[T rmi—r (1+67),
aar i T'=7+1 / l
3wt+1 = 11— -
=[] rni—r7(1-6)).
aa?’ i T'=7+1 / l

With a generating function of the form of (22), using
(21) we obtain a dual feasible penalty 7 that is linear
in the trades a (or, more precisely, linear in the posi-
tive and negative components of a), for any sequence
of returns r and market states z. The objective for the

inner problem (19) is then concave in a and the result-
ing inner problem is a deterministic convex optimiza-
tion problem that is not difficult to solve. Note that
there are high-dimensional expectations (over returns
r,,; and the market state z,,,) in the definition of the
penalty (21); however, these expectations only affect
the weights associated with the trades in this linear
penalty, and the weights need only be calculated once
when solving the inner problem in a simulated sce-
nario. In our numerical experiments, we will consider
bounds generated by penalties of this form, taking a*
to be the trades suggested by the modification of the
one-step heuristic strategy. We will call these bounds
the modified one-step bounds.

We can construct a similar penalty using a generat-
ing function based on the analogue of the continua-
tion value used to determine the rolling buy-and-hold
strategy,

E[V, +h((rt+h ~T0) X (@, 1)+ "}l_lctﬂ (@),Z44) | Z411]-

(23)

Note that this is a function of the period-t + 1 market
state z,,;, (by conditioning) and returns r,,; (through
X;,1), but does not depend on later market states or
returns because these are integrated out in the expec-
tations. Here too we will consider a generating func-
tion based on a first-order Taylor series expansion of
(23) in the trades a around the trades a* given by
some heuristic strategy; the details are provided in
the online appendix. As with the modified one-step
penalty, this leads to a dual feasible penalty 7 that is
linear in the positive and negative components of a
for any sequence of returns r and market states z. In
our numerical experiments, we will consider bounds
generated by penalties of this form, taking a* to be the
trades suggested by a rolling buy-and-hold strategy.
We will call these the rolling buy-and-hold dual bounds.

4.3. Gradient-Based Penalties

We will also consider gradient-based penalties that
exploit the convex structure of the primal optimiza-
tion problem. To understand the motivation for this
approach, assume (for the sake of this motivating dis-
cussion) that the utility of terminal wealth U(wr(a, 1))
is differentiable in the sequence of trades a and that an
optimal trading strategy o* for the portfolio optimiza-
tion problem with transaction costs is known. Then
suppose we take the penalty 7 (a, r, z) to be

a’(r, z)), (24)

where V,U(wr(a, 1)) is the gradient of terminal util-
ity with respect to the trade sequence a for a given
sequence of returns r. Note that this penalty is linear
in the trade sequence a.

7(a, r,z)=V,U(wr(a*(r,2), 1)) (a—
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We can view the primal problem (17) as a con-
vex optimization problem with the decision variables
being the trading strategy «; this will be formal-
ized in the proof of the proposition below. The first-
order conditions for this optimization problem can be
shown to imply that

E[7(a(t, z), ¥, Z)]
=E[V,U(wr (" (¥, 2), 1)) (a(¥, 2) — a*(F,2)] <0 (25)

for any feasible strategy «. This means the penalty
(24) is dual feasible.

Now consider the deterministic inner problem (19)
given by this penalty:

max{U(wr(a,r))— V,U(wr(a*(x,2z),1)) (a—a’(r,2))}.

acA(r)

(26)

Because the penalty is linear in the trade sequence a,
the inner problem (26) is a convex optimization prob-
lem, and its first-order conditions are necessary and
sufficient for an optimal solution. The gradient of the
objective function in (26) with respect to the trade
sequence a is

Vau(wT(a/ 1‘)) - VaU(wT(a*(r, Z)/ 1‘)) (27)

Now note that if we take the trade sequence to be
that selected by the optimal strategy, i.e., a = a*(r, z),
the gradient (27) is equal to zero. Because this a is
in A(r) and it sets the gradient equal to zero, this
a must be an optimal solution for the inner prob-
lem (26). Moreover, with a = a*(r, z), the penalty (24)
is zero and the objective for the inner problem (26)
reduces to U(wy(a*(r,z), 1)) and the dual bound is
E[U (wr(a* (T, Z), T))]. Thus, the penalty (24) is optimal:
it yields a dual trading strategy that is optimal for
the primal problem and a dual bound equal to the
optimal value for the primal.

Of course, in practice we do not know the optimal
strategy o* for the portfolio optimization problem and
cannot use the penalty (24). We can, however, approx-
imate the original problem and use similar penalties
based on the optimal solution to this approximate
problem. For example, we can approximate the orig-
inal problem by considering the frictionless model
(10). If we take Wr(a,r) to be the terminal wealth
without transaction costs and 5{ to be the set of fea-
sible trading strategies without transaction costs (and
let A(r) be the set of feasible trades in the approximate
model given returns r), we can then write the approx-
imate optimization problem based on the frictionless
model as

max E[U (@ (a(F, 2), T))]. (28)

aesd

Let a*(r,z) be an optimal trading strategy for this
approximating frictionless model and consider a
gradient-based penalty of the form of (24), but with
Wy in place of w; and &* in place of a*, ie.,

#(a, 1, z) = V,U(Dp (& (1, 2), 1)) (a— &*(r, 2)).  (29)

The argument leading to (25) requires the strategy to
be optimal for the chosen wealth function (i.e., for
(28)), but it does not require the strategy to be optimal
for the true wealth function with transaction costs.
If the set of feasible strategies for the approximate
model $ includes those for the real model i (i-e.,
A(r) € A(r) for all 1), then E[#(a(%, Z), T, 2)] will hold
for all @ in s, and this approximate penalty # will be
dual feasible for the original problem. However, the
inner problem with this approximate penalty,

max{U(wr(a, 1)) - V,U(wr(a"(r, 2),1)) (a—a"(x,2))},

acA(r)

(30)

will generally not be optimized by taking the trade
sequence to be a = a*(r,z). Nevertheless, because
the penalty is dual feasible, the dual problem with
this approximate penalty will provide a valid upper
bound on the performance of any feasible trading
strategy.

We can use this gradient-based approach with a
variety of approximations of the wealth function as
long as the approximate wealth function is concave
and we can identify an optimal strategy for the
approximate problem. The following proposition for-
malizes this gradient-based approach to penalties.

PRrOPOSITION 4.2 (GRADIENT-BASED PENALTIES). Let
a* be an optimal trading strategy for the portfolio choice
problem (28) with modified terminal wealth w(a,r),
assumed concave in a, and modified allowable trades Ar),
assumed convex and satisfying A(r) C A(r) for each return
sequence r. Consider the penalty r given by Equation (29):

(1) 7 is dual feasible.

(2) If wr(a, 1) = wr(a, r) and A(r) = A(r) for each
return sequence t, then the dual bound (18) holds with
equality with penalty .

(3) If wr(a, ) < @y (a, 1), then,

max{U(wy(a, 1)) —7(a, 1, z)}

< U(wr(a*(r, 2), 1)). (1)

The first two parts of the proposition formalize the
results discussed earlier. We will discuss the last part
of the proposition in a moment. Note that our defi-
nition of gradient-based penalties 7 in Equation (29)
implicitly assumes that U and @, are differentiable so
the necessary gradients exist and # corresponds to a
directional derivative. If the gradient does not exist,
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we can define 7 in terms of the directional derivative
instead; this directional derivative will exist whenever
U o Wy is concave. The use of the directional deriva-
tives is discussed in more detail in the proof of the
result in the online appendix.

In our numerical experiments, we will consider
two examples of gradient-based penalties. The first is
based on the frictionless model, as discussed above.
In this case, the approximate terminal wealth @ (a, r)
is given by taking the transaction costs to be zero,
and the allowable trade sequences A(r) are the same
as in the original model but without the transaction
costs: A(r) C A(r) then follows from our assumption
that the set of feasible asset positions H, is nonde-
creasing in cash. In this frictionless model, the gradi-
ent of the utility of terminal wealth is V,U(@(a, 1)) =
U'(wr(a, r))V,wr(a, r), where U’ is the derivative of
the utility function and V,@.(a, r) is a nT x 1 vector
with entries corresponding to trade a, given by

V,@r(@,1) = (tr-...o1py) —7f 'L

We will call the resulting penalty the frictionless
gradient-based penalty.

Note that with this approximation, the wealth with
transaction costs wy(a, r) is less than or equal to the
wealth without transaction costs @ (r, z) (for all r and
z), so the last part of Proposition 4.2 applies: the opti-
mal values for the inner problems with this penalty
(on the left side of (31)) will be less than or equal to
the utility of final wealth with no transaction costs (on
the right side of (31)) for every r and z. This implies
that the dual bounds using this frictionless gradient
penalty must be at least as tight as the no-transaction-
cost bound given by the value function for the fric-
tionless model.

Although the frictionless gradient penalty leads to
tighter bounds than the frictionless model, we can
perhaps do better if we somehow incorporate the
effects of transaction costs in the approximate model.
The key for the gradient penalty approach is to do
this in a way that still allows us to find the optimal
solution for the approximate model. One way to do
this is to consider a variation of the original model
where the transaction costs depend on the posttrade
asset positions rather than the trades. In this case, the
transaction costs are of the form k(X;), where X, =
x; + a, and the cash position evolves according to
€1 =1p(c, —1'a, —R(x, +a;)), rather than Equation (3).
In such a case, we can represent the portfolio prob-
lem as a dynamic program like that of the frictionless
model (10) with wealth w, and the market state z,
as state variables and posttrade asset positions X, as
decision variables, without considering the specifics
of the asset positions (x,, c;).

In our numerical experiments, we will consider a
modified gradient-based penalty where we take k(X,) to

be proportional to the posttrade asset positions X;.
Specifically, we will take the proportional fee for the
asset positions to be equal to the proportional fee for
trades divided by the number of periods (T) in the
model. More generally, we could consider &(x,) that
assume transaction costs are proportional to the dif-
ference between the posttrade position X, and some
reference position. For example, we might take this
reference position to be the asset allocation recom-
mended by the frictionless model for the same market
state or, alternatively, the initial (period 0) asset posi-
tion. Our modified gradient bound can be viewed as
an example of this general form where the reference
position is taken to be a zero position (i.e., with zero
investment in each risky asset), which is the assumed
initial position in the experiments. Of course, there are
a number of possible variations on these ideas, and
we could experiment to perhaps find better bounds.

5. Numerical Experiments

In this section, we describe the experiments that we
use to test the proposed trading strategies and dual
bounds. We first describe the details of the models
considered and then discuss the run times and numer-
ical results. We then consider variations on the heuris-
tics and bounds, as well as the constraints.

5.1. Model Details

We will test the heuristic strategies and dual bounds
by evaluating these heuristics and bounds in a series
of simulations with varying parameter values. In all
cases, we begin by solving the dynamic program for
the frictionless model (Equations (10) and (11)) for the
given parameter values; we also solve the analogous
dynamic program used to determine the modified
gradient penalty of §4.3. We then repeatedly gener-
ate random sequences of market states and returns.
For each sequence of market states and returns, we
“run” the heuristic strategies of §3, determining the
sequence of trades selected by the heuristic and the
corresponding terminal wealth and utility. We also
solve the inner problem for each of the dual bounds in
this same scenario. We repeat this simulation process
for a given number of trials.

In our experiments, we assume monthly time steps,
proportional transaction costs «(a;) = 6).i,la, |,
and power utilities. We will consider a variety of
parameters:

¢ time horizons T of 6, 12, 24, and 48 months;

e transaction cost rates 6 of 0.5%, 1.0%, and 2.0%;

¢ relative risk-aversion coefficients y of 1.5, 3.0, or
8.0, reflecting low, medium and high degrees of risk
aversion.

In §85.2-5.4, we will focus on the case with con-
straint (5) ruling out short positions; we consider lim-
ited leverage constraints of the form of (6) in §5.5. In
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all cases, we assume the investor starts with all wealth
invested in cash and normalize wealth to one, i.e., we
assume x, = 0 and ¢, = 1. We will consider 1,000 trials
in each simulation.

We consider two different models of returns. The
first highlights the role of predictability and the sec-
ond considers a larger number of risky assets.

5.1.1. Model with Three Risky Assets and Pre-
dictability. We first consider a model with three risky
assets and one market state variable, based on Lynch
(2001); Lynch studied the impact of predictability
on portfolio choices, without considering transaction
costs. Specifically, letting p, = Inr,, the model assumes
returns and market states evolve according to

|:Pt+1:| _ |:ar +brzt:| L |:et+1:| ’ (32)
Zi a,+b.z Vit

where the stochastic increments (e, ;v,,;) are multi-
variate normal with mean zero and covariance X,,,.
The three risky assets correspond to value-weighted
equity portfolios sorted by the size of the underly-
ing firms (i.e., small-, medium-, and large-cap stocks),
and the market state variable is a normalized index
reflecting the dividend yield (specifically, the contin-
uously compounded 12-month dividend yield on the
value-weighted New York Stock Exchange portfolio).
Lynch (2001) estimates this model using data from
1927 to 1996. The returns are inflation adjusted and
the risk-free rate r; is 1.00042. The other numerical
assumptions are discussed in the online appendix.

In this model, the market state variable has a sig-
nificant impact on expected returns. With no transac-
tion costs and medium risk aversion (y = 3.0), we find
that with high values of z, (i.e., with a large dividend
yield), the investor should invest heavily in a mix of
small- and medium-sized stocks and hold no cash.
With z, =0, the investor should invest in a mix of
all three assets, while holding substantial reserves in
cash. With negative values for z,, the investor should
invest most of his wealth in cash. In our numerical
experiments, we will assume that the initial market
state is neutral (i.e., z, =0).

We follow Lynch (2001) and use discrete approxi-
mations of the uncertainties to calculate expectations.
We approximate the market state variable using a
grid with 19 points. The idiosyncratic returns (e,
in Equation (32)) are approximated using a Gaussian
quadrature approach with three points per asset. This
Gaussian quadrature approximation exactly matches
the mean and covariance structure for log returns
p; and matches higher-order moments (3rd-5th) of
this joint distribution as well; see, e.g., Judd (1998)
for an introduction to Gaussian quadrature meth-
ods. Taken together, the joint distribution for returns
and the market state variable are approximated using

a four-dimensional grid with a total of 3° x 19 =
513 elements. This discrete approximation scheme is
used to calculate the expectations required to solve
the dynamic programming model for the friction-
less model, to evaluate the expectations in the opti-
mization problems for the heuristic trading strategies
(in §3), and to evaluate the expectations appearing
in the penalties based on approximate value func-
tions (in §4.2). For consistency, we also use this dis-
crete approximation in the simulations, i.e., we gen-
erate sample returns and market states from this
grid according to the probabilities of the discrete
approximation.

5.1.2. Model with 10 Risky Assets and No Pre-
dictability. We also consider examples with 10 risky
assets and no predictability. In this case, we assume
that the asset returns follow a discrete-time multivari-
ate geometric Brownian motion process, a special case
of (32) with p, = Inr, evolving according to p,,, =
a, + e,,;, where the stochastic increments e, ; are
multivariate normal with mean zero and covariance
3,. In this example, the 10 risky assets correspond
to five equity indices (S&P 500, Russell 2000 Value,
MSCI World Gross, Russell 1,000 Value Index, Russell
MidCap Index), three bond indices (Lehman Broth-
ers’ U.S. government and corporate bond indices and
Lehman Brothers” Fixed-Rate Mortgage-Backed Secu-
rities Index), a real estate index trust (NAREIT), and
a composite index of one- to five-year U.S. Treasuries.
The parameters were estimated using monthly return
data from 1981 to 2006 and are provided in the online
appendix. The risk-free rate r; = 1.0048 is the aver-
age return on three-month U.S. treasuries, estimated
from the same data set. These returns are not inflation
adjusted.

We also use discrete approximations of the uncer-
tainties to calculate expectations in this model. The
idiosyncratic returns (e,,;) are approximated using a
multidimensional quadrature (or cubature) formula in
Stroud (1971, p. 317) that includes 2" +2n points and
exactly matches the first five moments of the return
distribution. With 10 assets, the return distribution
is approximated using a 10-dimensional grid with a
total of 1,044 elements. There are a variety of dif-
ferent approaches we could use to calculate expecta-
tions in these models, and there is a trade-off between
the accuracy of the approximation and the amount
of work involved. Stroud (1971) provides a compre-
hensive review of multidimensional quadrature for-
mulas; one such formula matches three moments
of the underlying distribution and involves only 2n
points. Alternatively, we might consider evaluating
these expectations using Monte Carlo or quasi-Monte
Carlo methods; see, e.g., Judd (1998) or Glasserman
(2004) for discussions of these approaches.
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Table 1 Run Times (Seconds) Required to Evaluate Heuristic Strategies and Dual Bounds
Simple DP models Heuristic strategies Dual bounds
Modified Rolling Rolling Frictionless
Horizon  Notrans.  trans. cost Modified  buy-and- Zero Modified  buy-and- gradient Modified
(T) cost model Costblind ~ One-step  one-step hold penalty  one-step hold based gradient
Three-asset model with predictability
6 5.1 5.3 5.7 293.1 2911 285.2 9.1 12.0 13.6 9.0 10.8
12 10.1 10.4 10.2 622.3 591.9 583.9 12.2 17.0 21.3 12.0 14.7
24 20.0 20.8 20.0 1,214.8 1,180.9 1,215.4 21.6 33.0 41.8 22.2 29.9
48 39.9 41.8 40.9 2,482.6 2,363.9 2,558.7 722 80.0 105.1 62.4 89.8
Ten-asset model without predictability
6 0.8 0.8 9.5 743.0 839.0 870.2 10.3 14.8 20.6 12.4 13.1
12 1.5 1.5 16.9 1,485.5 1,643.7 1,784.9 20.4 25.5 34.4 21.3 22.2
24 2.8 3.1 34.0 3,020.5 3,243.0 3,354.9 55.4 60.3 77.8 57.7 62.9
48 5.6 6.3 66.6 6,150.6 6,742.6 7,238.9 269.0 221.4 2501 253.4 291.4

5.2. Run Times

Table 1 provides the run times for evaluating the
heuristics and dual bounds in a simulation with
1,000 trials for the two different return models and
four different time horizons (T). In all cases, we con-
sider the case with risk-aversion coefficient y =3 and
the transaction cost rate § = 0.01; changes in these two
parameters do not appreciably affect the run times.
These computations were run on a Dell personal com-
puter with a 2.55 GHz Intel Core 2 Quad CPU pro-
cessor and 3.25 GB of RAM, running Windows XP.
The calculations were done using Matlab with a sin-
gle processor; the run times were estimated using
Matlab’s Profiler utility. In our calculations, we used
the general purpose MOSEK optimization toolbox for
Matlab to solve the convex optimization problems.
We could almost certainly improve the run times by
developing more specialized code for the particular
forms of optimization problems that we consider.

The first two columns in Table 1 report the time
required to solve the dynamic program for the fric-
tionless model. We also show the time required to
solve the dynamic program with modified transac-
tion costs that is used to calculate the modified gradi-
ent bound. These models must be solved once, before
running the simulation. As expected, the run times
for these two models are quite similar and grow lin-
early with the number of periods in the model. The
models without predictability take less time to solve:
although they have more assets (10 rather 3), they do
not involve a market state variable, and there is only
one scenario to evaluate in each period, as opposed
to the 19 market states considered in the model with
predictability.

Most of the time in the simulation is spent evaluat-
ing the heuristic strategies. The cost-blind heuristic is
quite easy to evaluate, because we simply move to the
posttrade asset allocations recommended by the fric-
tionless model. The other heuristics require solving a

convex optimization problem in each period to deter-
mine the trades that optimize the heuristic’s objec-
tive in that scenario. The run times thus grow linearly
with the number of periods and the number of trials.
The complexity of each of these convex optimization
problems grows more than linearly in the number of
assets (in theory no worse than polynomially), but
this depends on the details of the optimization meth-
ods used.

The dual bounds take less time to calculate. Here
we solve one deterministic inner problem for each
trial; the number of decision variables is the number
of assets n times the number of periods T or 2nT
when we decompose the trades into their positive and
negative components. The run times grow linearly in
the number of trials, and the complexity of the con-
vex optimization problem grows more than linearly
in the number of decision variables involved (nT or
2nT); this polynomial growth is evident in the run
times in Table 1 for the dual problems with increas-
ing horizon T. The run times required to evaluate the
heuristic strategies are longer than the run times for
the dual problems because the optimization problems
for the heuristic strategies involve high-dimensional
expectations (over returns and market states) to cal-
culate objective function values for each setting of the
decision variables.

Finally, remember that the run times in Table 1
are the times required to evaluate the quality of the
heuristic strategies and dual bounds. In practice, if
we want to use the modified one-step or rolling buy-
and-hold heuristics to recommend a trade, we need
only solve the corresponding optimization problems
once for the current state and period. Dividing the
run times in Table 1 by the 1,000 trials in the simu-
lation and the number of periods considered (T), we
see that trades recommended by these heuristic strate-
gies can be determined in a fraction of a second on a
desktop PC.
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5.3. Results
In each simulation, for each heuristic and dual bound,
we calculate

¢ the average utility of final wealth or value for the
dual bound; and

¢ the mean “turnover,” defined as the average vol-
ume of trade in each period, (1/T) ¥/ >0, |a, -
To simplify the interpretation of the results, we will
convert the utilities and bounds to annualized cer-
tainty equivalent returns. Given a time horizon of T
months and a mean utility calculated in a simula-
tion of fi, the annualized certainty equivalent return
is defined as the constant annual return 7 that yields
utility g, i.e., the 7 that solves

fu=U(w, ") (33)

where w, is the initial wealth. We estimate mean stan-
dard errors for these certainty equivalent returns and
the duality gaps (the differences between upper and
lower bounds on optimal returns) using the “delta
method” (see, e.g., Casella and Berger 2002, p. 240)
based on a first-order Taylor series expansion of the
certainty equivalent formula (i.e., the inverse of Equa-
tion (33)).

To reduce the variance in our estimates of the
expected utilities, we use a simple control variate
technique (see, e.g., Glasserman 2004, p. 185) using
the utilities for the frictionless model as a control
variate. Specifically, for a given strategy «, we esti-
mate its expected utility as

/l = % Z{u(wT(a(rsr Zs)r rs))

+BIV (wy, 29) — U(w) (e (., z), 1)1}, (34)

where S is the number of trials, r, and z, are the
sequences of returns and market states in trial s,
a(r,, z,) and &/ (r,, z,) are the trades for the chosen
strategy and frictionless strategy in trial s, and w; and
w§ are the terminal wealths with and without trans-
action costs. Here Vof (wy, zy) is the expected utility for
the frictionless model in the initial state; this is com-
puted before we begin the simulation. The term inside
the parentheses in (34) has zero mean, so adjusting
the estimate of expected utility by adding this term
does not bias the estimate. The regression coefficient
B in (34) is given as (o, /0,)p,, where o, is the stan-
dard deviation of U(w{(af (t,, 2,), 1)), 0, is the stan-
dard deviation of U(wr(a(r;, z,),1,)), and p,, is the
correlation between these quantities. The estimates for
the gradient-based dual bounds of §4.3 are similarly
adjusted using control variates.

Table 2 shows the simulation results for the 3-asset
model with predictability for a time horizon (T) of

12 months; results for the other time horizons are
shown in Table A3 in the online appendix. Figure 1
summarizes the results for all time horizons, transac-
tion costs, and risk-aversion levels, showing the cer-
tainty equivalent returns for the best heuristic policy
(the bottom end of the error bars) and the best dual
bound (the upper end of the error bar); the length
of the error bar thus represents the duality gap for
a particular set of parameters. In these results, the
annualized certainty returns are stated in percentage
terms. For example, in the first row of Table 2, we see
that in the case with risk-aversion coefficient y =1.5
and transaction cost rate § = 0.5%, the modified one-
step heuristic has an annualized certainty equivalent
return quoted as 6.57%; this corresponds to an esti-
mated value of 7 in Equation (33) of 1.0657. The mean
standard errors are also quoted in percentage terms;
the 95% confidence interval on 7 for the modified one-
step strategy in this case is 1.0657 £1.96 x 0.0013. The
turnover means that an investor following the modi-
fied one-step strategy would execute trades averaging
9.5% of his initial wealth in each period.

In Table 2, we see that the modified one-step
and rolling buy-and-hold heuristic strategies perform
similarly, and consistently outperform the cost-blind
strategy and the (unmodified) one-step strategy. The
rolling buy-and-hold strategy “wins” in most cases,
but its performance is typically only slightly better
than the modified one-step strategies. In most of these
cases, the cost-blind strategies perform substantially
worse than these two heuristic strategies, with larger
differences occurring when the transaction costs are
larger and when the investor is less risk averse (has a
low value of y). Looking at the turnover, we see that,
as expected, the modified one-step and rolling buy-
and-hold strategies trade less than the cost-blind strat-
egy, but more than the (unmodified) one-step strategy.

Examining the dual bounds, we see that the zero-
penalty bound performs very poorly, as expected:
an investor with perfect foresight can achieve high
returns, even with transaction costs. The bounds
with penalties are much better and are also substan-
tially better than the simple no-transaction-cost bound
given by using the value function for the friction-
less model. There is no consistent winner among the
dual bounds: the modified one-step, modified gra-
dient, and rolling buy-and-hold bounds all perform
best in some cases. The modified gradient bounds win
more often with higher levels of risk aversion (higher
values of vy); this may be because the quality of the
first-order Taylor series approximation underlying the
modified one-step and rolling buy-and-hold bounds
degrades with higher levels of risk aversion. The
frictionless gradient-based bound consistently outper-
forms the no-transaction-cost bound (as it must, based
on Proposition 4.2(3)), but is never the best of the
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Bounds on Optimal Returns in the 3-Asset Example
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dual bounds. Examining the mean standard errors,
we see that the dual bounds with penalties are quite
precisely estimated; the mean standard errors are typ-
ically much smaller than the mean standard errors
associated with the modified one-step and rolling
buy-and-hold heuristic strategies.

The duality gaps—the difference between certainty
equivalent returns for the best bound and best
strategy—are often quite small. In these case, there is
relatively little room for improvement on the heuris-
tic strategies. In Table 2, the gaps range from 0.09% to
0.29% and average 0.19%. The results are somewhat
better for shorter time horizons and somewhat worse
for the longer time horizons. With T =48 months, the
gaps for the 3-asset case average 0.32%. The duality
gaps also appear to increase with higher transaction
costs and with lower risk aversion. The worst gap
for all of the 3-asset cases is 0.62% for the low risk
aversion, large transaction cost case (y =1.5; 6 =0.02)
with the long time horizon (T = 48). The mean stan-
dard errors for the duality gaps are close to the mean
standard errors for the heuristic strategies because the
mean standard errors for the heuristic strategies dom-
inate those of the dual bound.

Table 3 shows the simulation results for the 10-
asset model without predictability for a time horizon
(T) of 12 months; results for the other time horizons
are shown in Table A4 in the online appendix. These
results are summarized in Figure 2. Here we find that
the cost-blind strategy performs much better, because
with no predictability, the cost-blind strategies trade
much less: there is some rebalancing of the portfolio
in response to idiosyncratic gains or losses on par-
ticular assets but no large-scale changes in the asset
positions in response to changes in the market state
variable. For example, in the low risk-aversion cases
(y =1.5), the cost-blind strategy calls for placing all
wealth in two assets, rebalancing these positions over

time in response to idiosyncratic gains or losses. The
modified one-step and rolling buy-and-hold heuris-
tics place all of their wealth in these same two assets,
but do not rebalance in subsequent periods. In many
cases, the duality gap is very close to zero, suggesting
the heuristic strategies are nearly optimal.?

5.4. Tuning the Heuristics

In general, we find the results of §5.3 encouraging,
particularly given how little effort has been made to
fine-tune the heuristics and penalties used. In many
cases, the duality gaps are quite small, and the heuris-
tic strategies are probably good enough for most prac-
tical applications. Where the duality gaps are larger,
we may be able to improve performance by varying
the heuristics and/or tightening the bounds by vary-
ing the penalties. For example, in the modified one-
step strategy we reduced the transaction costs in the
optimization problem (15) by dividing the costs by
the smaller of 6 and the number of periods remain-
ing. This rule apparently performs reasonably well in
most cases considered here, but we could perhaps do
better with different scaling rules. Similarly, we took
the horizon & in the rolling buy-and-hold objective
(16) to be 6; again, we could perhaps do better with a
different horizon.

In Table 4, we report results with varying divisors
and horizons for two cases where the duality gaps
were largest; the bold entries in each row of the table
correspond to the best heuristic and dual bound in
each case. In the case with the largest duality gap for
the 3-asset model (y =1.5; § =0.02, T =48), we can
cut the gap of 0.62% to 0.47% by considering a longer
horizon or larger divisor. Similarly, for the case with
the largest gap in Table 3 (y =8.0; § =0.02, T =12)
with a gap of 0.52%, we can improve the performance
of the heuristics and reduce the gap to 0.03%. In this
case, it appears that a rolling buy-and-hold strategy
with a longer time horizon is nearly optimal.

5.5. Results with Short Sales and Borrowing

In the numerical experiments presented thus far, we
have focused exclusively on the case where short
positions and borrowing are not allowed. Alterna-
tively, we can consider cases where borrowing and
short positions are allowed and the investor faces a
constraint on the total leverage allowed, i.e., a con-
straint of the form of (6) for a given leverage limit /.
The set of feasible trades is larger in this case (and
grows larger as | increases), and one might wonder
how the heuristics and dual bounds perform with
leverage.

2There are a few cases where the estimated duality gap is slightly
negative. In these cases, the estimated gaps are small compared
to their mean standard errors. In these cases, we believe the true
gap is very close to zero and the negative estimate is a result of
sampling error.
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Figure 2 Bounds on Optimal Returns in the 10-Asset Example
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To investigate this, we conducted a series of numer-
ical experiments where we consider leverage con-
straints with varying limits. We focus on the 10-
asset model without predictability and the case with
T =12, y=3, and 6 = 1.0% and consider leverage lim-
its | varying from 1 to 5. In this study, we varied the
divisors and horizons for the modified one-step and
rolling buy-and-hold heuristics and dual bounds (as
in §5.4), considering values of 6, 9, and 12. The results
are presented in Table 5.

In Table 5, we see that the certainty equivalent
returns for the dual bounds and no-transaction-cost
bounds are all increasing with the leverage limit,

Table 4 Certainty Equivalent Returns (%) with Varying Parameters for

Heuristics

Horizon (h) or divisor 3 6 9 12 15 18 21 24

Three assets with predictability
T=48,y=15,8=0.02
Heuristic
Modified one-step 577 6.33 6.42 6.43 6.40 6.37 6.34 6.32
Rolling buy-and-hold 5.76 6.31 6.42 6.45 6.45 6.44 6.42 6.40
Bounds
Modified one-step 7.33 7.04 6.99 6.93 6.92 6.92 6.93 6.93
Rolling buy-and-hold 7.29 6.97 7.13 7.57 8.14 8.69 9.21 9.66

Gaps
Mean 152 0.64 056 0.48 0.47 0.49 0.51 0.52
Std. error 0.13 0.11 0.10 0.09 0.08 0.08 0.08 0.09
Ten assets without predictability
T=12,y=8,6=0.02
Heuristic

Modified one-step 6.26 7.15 7.54 7.61

Rolling buy-and-hold  6.27 7.14 7.54 7.61
Bounds

Modified one-step 11.63 8.64 7.93 7.83

Rolling buy-and-hold 11.71 8.60 7.86 7.64

Gaps
Mean 5.36 1.45 0.32 0.03
Std. error 0.08 0.08 0.05 0.03

reflecting the larger set of feasible trades.’ The zero-
penalty bound in particular increases greatly with
higher leverage limits as the larger feasible sets allow
the investor with advance knowledge of asset returns
to more effectively exploit the arbitrage opportuni-
ties provided by such information. The performance
of the modified one-step and rolling buy-and-hold
heuristic strategies need not improve with larger fea-
sible sets; the larger feasible sets lead to higher values
for the heuristics” objective function (in (15) and (16)),
but this may not actually lead to better performance.

Overall, the duality gaps widen with higher lever-
age limits; the worst case is with a leverage limit [ =
5.0, which has a gap of 0.47%. Although we could
perhaps do better with more sophisticated heuris-
tics and bounds, we note that in this worst case, the
modified one-step and rolling buy-and-hold heuristics
(with certainty equivalent returns of approximately
13.15%) greatly outperform the cost-blind strategy
(return of 9.72%), and the dual bounds with penal-
ties (13.61%) are much tighter than the no-transaction-
cost bound (18.33%). Thus, these heuristics and dual
bounds greatly outperform strategies and bounds that
simply ignore transactions costs.

6. Conclusion

In this paper, we have studied some easy-to-compute
heuristics for managing portfolios with transaction
costs and developed a dual approach for examining
the quality of these heuristics. The approach is general
in that we can consider a variety of utility functions,
a variety of forms for transaction costs (provided they
are convex functions), and a variety of constraint sets
(provided they are convex), as well as a variety of dif-
ferent models for returns. Our numerical experiments
are promising: the run times, even without using cus-
tomized optimization software, are reasonable, and in
many cases, the performance of the heuristic strategy
is very close to the upper bound, indicating that the
heuristic strategies are very nearly optimal.

Frankly, we were surprised that these heuristics
performed so well. At a high level, the key issue is to
manage the trade-off between improving asset posi-
tions and minimizing transaction costs. These heuris-
tics capture this trade-off in a relatively crude but
apparently effective manner. In studying these heuris-
tics, we find the dual upper bounds particularly help-
ful: When the bounds tell us that the performance of
these heuristics is nearly optimal, we know that there

% Note that with power utility and a return model with log-normal
returns, it is never optimal to borrow or take short positions
because these positions lead to a positive probability of an infinite
negative utility. However, with our discrete approximations of the
return distribution, it is optimal to borrow and take short positions
in this numerical example.
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is little to be gained by considering more complicated
heuristics. Given the complexity of the full dynamic
programming model with transaction costs, we find
this quite reassuring.
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