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EC1. Selected Proofs and Details for §3

EC1.1. Proofs for §3: Lagrangian Relaxations

Proof of Proposition 3. We can write the item-specific DP (6) as a maximization over item-specific poli-
cies ψs:

Vs(λ) = max
ψs

T∑
t=1

E[ rt,s(x̃t,s(x1,s;ψs), ψt,s(x̃t,s(x1,s;ψs))− λt ψt,s(x̃t,s(x1,s;ψs)) ] (EC-1)

where x̃t,s(x1,s;ψs) is the random state for item s in period t when starting in state x1,s and following policy
ψs. For a fixed policy ψs, the objective in (EC-1) is linear in λ. The pointwise maximum over these linear
functions yields a piecewise linear and convex function. The Lagrangian L(λ), as a finite sum of piecewise
linear convex functions Vs(λ) (plus additional linear terms), is also piecewise linear and convex.

Proof of Proposition 4. (i): Consider the representation of the item-specific DP given in equation (EC-1)
in the proof of Proposition 3. There, for a fixed policy ψs, the objective in (EC-1) is linear in λ and the
tth element of the gradient ∇s(ψs) with policy ψs is −E[ψt,s(x̃t,s(x1,s;ψs)) ], which is −pt,s(ψs). The
subdifferential result (10) then follows from Danskin’s Theorem (see, e.g., Bertsekas et al. 2003 Proposition
4.5.1, p. 245). This subdifferential result implies ∇s(ψs) is a subgradient of Vs at λ for any ψs ∈ Ψ∗s(λ).

(ii) The first equality follows from the fact the subdifferential of a sum of convex functions is the sum of the
subdifferentials for the component functions (see, e.g., Bertsekas et al. 2003, Proposition 4.2.4, p. 232). The
second equality follows from (i) and the fact that the Minkowski sum of the convex hulls of a collection of
sets is equal to the convex hull of the sum of the sets.

(iii) A necessary and sufficient condition for λ∗ to be optimal for the Lagrangian dual problem (7) is

0 ∈ ∂L(λ∗) +N{λ≥0}(λ∗)

where N{λ≥0}(λ∗) is the normal cone of {λ ≥ 0} at λ∗ (see, e.g., Bertsekas et al. 2003 Proposition 4.7.2,
p. 257). The result then follows from (11) and the form of this normal cone: the normal cone terms are
zero when λt > 0 and negative when λt = 0. The specific mixture representation here reflects the first
representation of ∂L(λ) in (11); we could obtain a different form of mixture using the second representation
in (11). The limit on the number of points involved in the mixtures (ns ≤ T +1) follows from Caratheodory’s
theorem.

EC1.2. Constructing a Markov Random Policy

Here we describe how to use the simple mixed policy representation of Proposition 4(iii) to construct a
corresponding Markov random policy that makes selection decisions with state-contingent selection proba-
bilities. First, let ρt,s(xs, ψs) denote the probability of item s occupying state xs at time t when following
a deterministic policy ψs; these probabilities are straightforward to compute. The probability of selecting
item s in state xs at time t with policy ψs is then ρt,s(xs, ψs)ψt,s(xs) and the probability of not selecting is
ρt,s(xs, ψs)(1− ψt,s(xs)).

Let ψ̃ denote a simple mixed policy representation of Proposition 4(iii) where γs,i is the mixing weight
associated with a deterministic policy ψs,i. Let νt,s(xs, us; ψ̃) denote the probability of item s being in state
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xs and choosing action us with the simple mixed policy ψ̃. This is given by:

νt,s(xs, 1; ψ̃) =

ns∑
i=1

γs,i ρt,s(xs, ψs,i) ψt,s,i(xs)

νt,s(xs, 0; ψ̃) =

ns∑
i=1

γs,i ρt,s(xs, ψs,i) (1− ψt,s,i(xs))

Thus the probability of being in state xs with this mixed policy is νt,s(xs, 0; ψ̃) + νt,s(xs, 1; ψ̃). If ψ̃ is
an optimal mixed policy for the Lagrangian dual problem, νt,s(xs, us; ψ̃) is an optimal solution for the LP
(EC-5).

For a Markov random policy that corresponds to the mixed distribution ψ̃, we can take the probability
of selecting an item s in state xs in period t to be:

νt,s(xs, 1; ψ̃)

νt,s(xs, 0; ψ̃) + νt,s(xs, 1; ψ̃)
(EC-2)

By construction, this will generate the same state-action probabilities as ψ̃, will select the same number
of items on average in each period as ψ̃, and will have the same expected total reward as ψ̃. Note that
these selection probabilities will be undefined when the probability of being in state xs in period t (in the
denominator of (EC-2)) is zero. These undefined selection probabilities are irrelevant for evaluating policies
for the Lagrangian relaxation, but may be relevant when we use the policy for the Lagrangian relaxation as
a tiebreaker for the optimal Lagrangian index policy (as discussed in §4.4P. In our numerical examples, we
take these undefined probabilities to be 0.5.

EC1.3. Linear Programming Formulation of the Lagrangian Dual Problem

We can also formulate the Lagrangian dual problem (7) as an LP; Hawkins (2003), Adelman and Mersereau
(2008), and Bertsimas and Mǐsić (2016) considered similar LP formulations. First, following the standard
LP formulation of a DP, we can write the item-specific DP (6) for item s with Lagrange multipliers λ as

min
V λt,s(xs)

V λs,1(x0
s)

s.t. V λt,s(xs) ≥ rt,s(xs, us)− λtus +
∑
χ̃t,s

pt(χ̃t,s |xs, us) V λt+1,s(χ̃t,s) ∀ t, xs, us ,
(EC-3)

where x0
s is the initial state of item s and pt(χ̃t,s |xs, us) is the conditional probability of state χ̃t,s occurring

when starting in state xs and taking action us (with us ∈ {0, 1}). The decision variables in this LP are the
values V λt,s(xs) for each period t and state xs and the constraints represent the Bellman equations (6). (We

assume V λT+1,s(xs) = 0.) The value function constraints will be binding for optimal actions in states that
are visited when following the optimal policy, but need not be binding for any action in states that are not
visited by the optimal policy.

Building on this LP representation of the item-specific DPs, we can write the Lagrangian dual problem as
an LP by combining these item-specific DPs and including the Lagrange multipliers λ as decision variables:

min
λ, V λt,s(xs)

T∑
t=1

λtNt +

S∑
s=1

V λ1,s(x
0
s)

s.t. V λt,s(xs) ≥ rt,s(xs, us)− λtus +
∑
χ̃t,s

pt(χ̃t,s |xs, us) V λt+1,s(χ̃t,s) ∀ s, t, xs, us , (EC-4)

λt ≥ 0 ∀ t .

If we let |Xs| be the size of the state space for item s, this LP has T ×
(

1 +
∑S
s=1|Xs|

)
decision variables

and 2 × T ×
∑S
s=1|Xs| constraints. (If some or all of the items are identical, this LP can be simplified.)

Though this LP formulation delivers optimal values for λ and the initial values V λ1,s(x
0
s) for the item-specific
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DPs, it does not provide a full optimal value function for all periods and states because values for states that
are not visited under the optimal policy do not affect the objective function. The Lagrangian index policy
defined in §4 requires a full value function. To calculate these value functions using this LP formulation, we
need to fix λ at the optimal value from (EC-4) and solve LPs like (EC-3) with an objective function that
includes positive weights on the values V λt,s(xs) for all items, states, and periods.

Taking νt,s(xs, us) to be the dual variables for the constraints in (EC-4), we can write the dual of (EC-4)
as:

max
νt,s(xs,us)

∑
t

∑
s

∑
xs

∑
us

rt,s(xs, us)νt,s(xs, us)

s.t.
∑
us

ν1,s(x
0
s, us) = 1 ∀ s , (EC-5)∑

us

νt,s(χ̃t,s, us) =
∑
xs

∑
us

pt(χ̃t,s |xs, us) νt−1,s(xs, us) ∀ s, t > 1, χ̃t,s ,∑
s

∑
xs

νt,s(xs, 1) ≤ Nt ∀ t ,

νt,s(xs, us) ≥ 0 ∀ s, t, xs, us .

The dual variables here have a natural interpretation as flows: νt,s(xs, us) can be interpreted as the proba-
bility of being in state xs at time t and choosing action us. The objective in (EC-5) is the expected total
reward. The first two constraints are flow conservation conditions: the total flow in the initial state x0

s for
each item (

∑
us
ν1,s(x

0
s, us)) is equal to 1 and the total flow into a later state χ̃t,s must have come from

a transition from some previous state. The third constraint requires the linking constraint to hold “on
average” and complementary slackness ensures that this linking constraint holds with equality in period t
whenever λt > 0. This average linking constraint is thus equivalent to the necessary and sufficient conditions
for optimality in the Lagrangian dual given in Proposition 4(iii). Complementary slackness also implies that
if the optimal flow νt,s(xs, us) is positive, the corresponding value function inequality in (EC-4) holds with
equality: that is, the action us is optimal in state xs in period t. The optimal flows νt,s(xs, us) given by the
LP (EC-5) can also be calculated from the policies ψs,i and mixing weights γs,i given by the cutting-plane
method of Appendix A; see Appendix EC1.2.

The Fluid Heuristic: Given this LP formulation, we can now describe the fluid heuristic that was
discussed in §6.4. Bertsimas and Mǐsić (2016) considered problems were the state dynamics are independent
across items, but the actions need not decompose across items. In dynamic selection problems these actions
would be vectors of decision variables u = (u1, . . . , uS) satisfying the linking constraint (1), i.e., u ∈ Ut. This
is not a practical way to formulate large dynamic selection problems as there are

(
S
N

)
+
(

S
N−1

)
+ · · · +

(
S
0

)
different actions to be considered.

In our numerical examples of §6.4, we consider a decomposed version of the fluid heuristic where we solve
the Lagrangian dual problem (EC-5) in each period and select items to maximize the total flow,

u ∈ arg max
u∈Ut

∑
s

νt,s(xs, us),

where the νt,s(xs, us) are the optimal flows for the given period and state given by the solution to (EC-5).
Any ties are broken randomly. As noted after (EC-5), complementary slackness implies that if the optimal
flow νt,s(xs, us) in the LP is positive, the action us is optimal in state xs in period t. The heuristic chooses
items to maximize this flow.

An issue with this heuristic is that in the applicant screening examples is that in the first period, the
flow is maximized by not screening any applicants: because just 25% of the applicants can be screened and
all applicants are in the same initial state, the optimal flows in this first period are ν1,s(xs, 1) = 0.25 (select)
and ν1,s(xs, 0) = 0.75 (don’t select) for all applicants s in the initial (unscreened) state xs. Similar problems
arise in other periods. We address this issue by requiring the choice of exactly Nt applicants in each period,
rather than less than or equal to Nt applicants.
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EC2. Notes on Whittle Indices

EC2.1. Calculating Whittle Indices

Our procedure for calculating Whittle indices assumes the model is “indexable” – that is, the set of periods
and states (t, xs) where no selection is optimal is monotonically increasing from the empty set to all periods
and states as w increases from –∞ to +∞. Given this, if we want to calculate Whittle indices for all periods
and states for item s, we can proceed as follows:

(i) Start with a small w such that it is optimal to select in all periods and all states. Set ψt,s(xs;w) = 1
for all t, and xs, indicating that it is optimal to select in all time periods and states at the initial w.

(ii) For all t and xs, calculate V w1
t,s (xs) (by solving the DP (6)) and ηwt,s(xs) = ∂V w1

t,s (xs)/∂w. These partial
derivatives can be evaluated using backward recursion given the policy ψs, starting with ηwT,s(xs) = −1
for all xs such that ψT,s(xs;w) = 1 and ηwT,s(xs) = 0 otherwise. In addition, for all t and xs such that
ψt,s(xs;w) = 1, calculate

∆w
t,s(xs) =

(
rt,s(xs, 1) + E

[
V w1

t+1,s(χ̃t,s(xs, 1))
])
−
(
rt,s(xs, 0) + E

[
V w1

t+1,s(χ̃t,s(xs, 0))
])

σwt,s(xs) = E
[
ηwt+1,s(χ̃t,s(xs, 1))

]
− E

[
ηwt+1,s(χ̃t,s(xs, 0))

]
.

Here ∆w
t,s(xs) is the difference on the right side of (15) and σwt,s(xs) is the partial derivative of ∆w

t,s(xs)
with respect to w.

(iii) We next find a new value of w that sets ∆w
t,s(xs) = 0 for a new period and state. Calculate

δ? = min
t,xs

{
∆w
t,s(xs)− w

1− σwt,s(xs)
: ψt,s(xs;w) = 1

}
. (EC-6)

For all periods t and states xs achieving this minimum, the Whittle index w∗t,s(xs) is w + δ?. (We
explain this calculation after the description of the algorithm.)

(iv) Set w to w + δ? and ψt,s(xs;w) = 0 for all periods t and states xs achieving the minimum in (iii).

(v) If there are no states for which selection is optimal, we are done. Otherwise, go to (ii).

The breakpoint calculation in (EC-6) can be understood as follows: for any states and periods satisfying
ψt,s(xs;w) = 1, selection is strictly optimal at the current w, and hence ∆w

t,s(xs) > w in such states. Since
σwt,s(xs) represents the partial derivative of ∆w

t,s(xs) with respect to w, we seek a value δ such that w + δ is
a new Whittle index, i.e., δ satisfies

∆w
t,s(xs) + σwt,s(xs) · δ = w + δ .

The ratio in (EC-6) represents the largest increase to w such that the policy ψs remains optimal. For times
and states attaining this value in (EC-6), we are indifferent between selecting and not selecting the item at
w + δ?.

The efficiency of this procedure is improved by noting some properties of the value functions and deriva-
tives when updating in step (ii), i.e., as w is replaced with w′ = w+ δ?. First, we need only update ηw

′

t,s(xs)

and σw
′

t,s(xs) in time periods up to t?, where t? is the earliest time period attaining the minimum in (iv). The
partial derivatives for later periods are unchanged because no decisions change after period t?. Second, we
can update the differences as ∆w′

t,s(xs) = ∆w
t,s(xs) + σwt,s(xs) · δ?. This follows from the fact that the policy

ψs is optimal from w to w + δ? and thus the value functions are linear functions of w in this range.
Even with these improvements to efficiency, the procedure can be time consuming when there are many

states, because we have to repeatedly update the system of partial derivatives in step (ii), potentially once
for each period and state in the problem.

EC2.2. Whittle Indices for the Applicant Screening Example

Here we show that in the applicant screening example, the Whittle indices have a particularly simple form.
We let µ(xs) denote an applicant’s mean quality in state xs, which we assume to be positive. For example,
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with a beta prior µ(xs) = αs/(αs + βs). The item-specific DP (6) with λ = w1 is given recursively as
V w1
T,s (xs) = max{µ(xs)− w, 0} and, for t < T ,

V w1
t,s (xs) = max{−w + E

[
V w1
t+1,s(χ̃t,s(xs, 1))

]
, V w1

t+1,s(xs)} . (EC-7)

A Whittle index for state xs in period t is a w that equates the screen and do not screen options in this DP:

−w + µ(xs) = 0 for t = T, and

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= V w1

t+1,s(xs) for t < T.
(EC-8)

We show the following.

Proposition EC1. In the applicant screening example, for all s, t, and xs, the Whittle index is unique.
(i) In the final period (t = T ), the Whittle index is µ(xs).
(ii) In screening periods (t < T ), the Whittle index is zero.

In the proof, we will use the facts that µ(xs) > 0 in all states xs and that E[µ(χ̃t,s(xs, 1)) ] = µ(xs), i.e., the
expected posterior quality after screening is equal to the prior expected quality.

Proof. (i) For t = T , the result follows directly from the definition of the Whittle index.

(ii) We first show that w = 0 is a Whittle index for t < T . In this case, V w1
T,s (xs) = µ(xs), since

µ(xs) > 0. By induction and using the fact that the posterior mean is equal to the prior mean, for t < T ,
we have V w1

t,s (xs) = E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= E[µ(χ̃t,s(xs, 1)) ] = µ(xs). Thus (EC-8) holds for w = 0.

We next rule out w < 0 and w > 0 as possible Whittle indices. Suppose w < 0. In this case, we claim that
is strictly optimal to screen and collect the “reward” −w in every period and V w1

t,s (xs) = µ(xs)−(T −t+1)w.
Given this as an induction hypothesis for period t+1, in period t screening yields

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= −w + E[µ(χ̃t,s(xs, 1)) + (T − t)w ] = µ(xs)− (T − t+ 1)w

where the first inequality follows from the induction hypothesis and the second from the fact that the
expected posterior mean is equal to the prior mean. This is clearly true in the final period as all applicants
would be admitted. From the induction hypothesis, not screening in period t yields

V w1
t+1,s(xs) = µ(xs)− (T − t)w

which, since w < 0 is strictly less than screening. Thus screening strictly dominates not screening in every
period and w < 0 cannot be a Whittle index.

Now suppose w > 0. In the final period, V w1
T,s (xs) = max{µ(xs) − w, 0}. We claim that not screening

strictly dominates screening in all screening periods; if this is true, then V w1
t,s (xs) = max{µ(xs) − w, 0} for

t ≤ T . For the induction hypothesis, assume this is true for period t + 1. Then for period t, not screening
yields

V w1
t+1,s(xs) = max{µ(xs)− w, 0}

and screening yields:

−w + E
[
V w1
t+1,s(χ̃t,s(xs, 1))

]
= −w + E[ max{µ(χ̃t,s(xs, 1))− w, 0} ]

< −w + E[µ(χ̃t,s(xs, 1)) ]

= −w + µ(xs)

≤ max{µ(xs)− w, 0}

The first equality follows from the induction hypothesis. The inequality follows from observing that, since
w > 0, we have max{x−w, 0} < x for all x > 0; this implies the strict inequality above, since µ(χ̃t,s(xs, 1)) >
0 for all χ̃t,s(xs, 1). The next equality follows from the fact that the posterior mean is equal to the prior
mean. The final inequality is straightforward. Notice this last term is equal to the value of not screening.
Thus, if w > 0, not screening strictly dominates screening and w > 0 cannot be a Whittle index.
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EC3. Proofs for §5: Analysis of the Optimal Lagrangian Index Policy

EC3.1. Proof of Proposition 5

The proof of Proposition 5 relies on three key steps which we state in Lemmas EC1, EC3, and EC4 below.
Lemma EC2 supports Lemma EC3. In this discussion, we let n(ut) =

∑S
s=1 ut,s denote the number of items

selected with action vector ut.

Lemma EC1. For any λ ≥ 0 and initial state x, let ψ be an optimal policy for the Lagrangian (5), and let
x̃t denote the state transition process generated by ψ. Then, for any policy π,

Lλ1 (x)− V π1 (x) =

T∑
t=1

E[ dt(x̃t, ψt(x̃t), πt(x̃t)) ] (EC-9)

where
dt(xt,u

ψ
t ,u

π
t ) = λt

(
Nt − n(uψt )

)
+ rt(xt,u

ψ
t )− rt(xt,uπt )

+ E
[
V πt+1(χ̃t(xt,u

ψ
t ))
]
− E

[
V πt+1(χ̃t(xt,u

π
t ))
]
.

(EC-10)

Here the dt terms are the differences in total rewards with actions uψt and uπt in period t, reflecting the
differences in immediate rewards as well the differences in expected continuation values under π. The
difference in total values, Lλ1 (x)− V π1 (x), is the expected total of these period-specific differences.

Proof. Since ψ is an optimal policy for the Lagrangian Lλt starting in state x, we have

Lλ1 (x) =

T∑
t=1

E
[
λt
(
Nt − n(ψt(x̃t))

)
+ rt(x̃t, ψt(x̃t))

]
. (EC-11)

We also have

V π1 (x) = V π1 (x) +

T∑
t=2

E[V πt (x̃t) ]−
T∑
t=2

E[V πt (x̃t) ]

=

T∑
t=1

E[V πt (x̃t) ]−
T∑
t=1

E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
=

T∑
t=1

E
[
rt(x̃t, πt(x̃t)) + V πt+1(χ̃t(x̃t, πt(x̃t)))− V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
.

The second equality uses the fact that V πT+1 = 0 and the definition of x̃t as the state process under policy
ψ, so x̃t+1 = χ̃t(x̃t, ψt(x̃t))). The last line uses the definition of the heuristic value function V πt given in
(3) and the law of iterated expectations. The result of the lemma then follows by taking the difference
Lλ1 (x)− V π1 (x) using these expressions.

The next lemma provides a bound on the differences in heuristic values V πt (x) as a function of the number
of states xs that differ. This bound is valid for any index policy, i.e., any policy that ranks items based on
item-specific indices and selects up to Nt of these items.

Lemma EC2. Let π be an index policy and suppose states x′ and x′′ differ for m or fewer items. Then,
for any t, there exists a nonnegative constant kt (that depends only on t and T ) such that:∣∣V πt (x′)− V πt (x′′)

∣∣ ≤ kt · (r̄ −
¯
r) m .

Proof. We prove this result using an induction argument on t. For the terminal case with t = T + 1, we have
V πT+1(x′)− V πT+1(x′′) = 0 since V πT+1(x) = 0 for all x. Thus we can take kT+1 = 0.
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We then assume the result is true for t+ 1 and show that it holds for period t. We have:∣∣V πt (x′)− V πt (x′′)
∣∣ =

∣∣rt(x′, π(x′))− rt(x′′, π(x′′)) + E
[
V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣

≤
∣∣rt(x′, π(x′))− rt(x′′, π(x′′))

∣∣+
∣∣E[V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣

≤ 2(r̄ −
¯
r)m + 2kt+1(r̄ −

¯
r)m (EC-12)

The first inequality above follows from the triangle inequality. The second inequality follows from the
following observations. First note that if states x′ and x′′ differ for m items, then with an index policy π,
the actions for at most 2m items will differ. (In the worst case, the differences lead all m items to change from
not selected to selected (or vice versa) and m other items make the reverse change.) Thus the item-specific
rewards differ for at most 2m items and∣∣rt(x′, π(x′))− rt(x′′, π(x′′))

∣∣ ≤ 2(r̄ −
¯
r)m .

With differences for at most 2m item decisions and state transitions that are independent across items, the
random continuation states χ̃t(x

′, π(x′)) and χ̃t(x
′′, π(x′′)) will differ for at most 2m items. (Here we are

assuming that items in the same state in x′ and x′′ make the same stochastic transitions.) Then, using the
induction hypothesis, we have∣∣E[V πt+1(χ̃t(x

′, π(x′)))
]
− E

[
V πt+1(χ̃t(x

′′, π(x′′)))
]∣∣ ≤ 2kt+1(r̄ −

¯
r)m ,

completing the proof of the inequality (EC-12). Then taking kt = 2(1 + kt+1) = 2T−t+2 − 2, we obtain the
result of the lemma.

We next use the previous lemma to establish an upper bound on the differences in Lemma EC1 in the
case where the policy π is a Lagrangian index policy with a tiebreaker that is an optimal policy ψ for the
Lagrangian for any λ. The key observation in the proof is to note that though ψ and π may select different
numbers of items in a given state, the choices will differ for at most

∣∣n(ψt(xt))−Nt
∣∣ items.

Lemma EC3. For any λ ≥ 0 and initial state x, let ψ be an optimal policy for the Lagrangian (5), and let
π be the Lagrangian index policy for λ with ψ as a tiebreaker. For each t, there exists a nonnegative constant
ct (depending only on t and T ), such that for all x̃t that may be realized when following policy ψ,

dt(x̃t, ψt(x̃t), πt(x̃t)) ≤ λt
(
Nt − n(ψt(x̃t))

)
+ ct(r̄ −

¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣ . (EC-13)

If λt = 0, we have a tighter bound:

dt(x̃t, ψt(x̃t), πt(x̃t)) ≤ ct(r̄ −
¯
r) max{n(ψt(x̃t))−Nt, 0} .

Proof. Fix period t and state x̃t. First note that since the policy ψ is optimal for the Lagrangian, it will
select all items that have priority indices it,s(xt,s) such that it,s(xt,s) > λt and perhaps some items such
that it,s(xt,s) = λt. (It is important that x̃t be a state that may be visited under the policy ψ. An optimal
policy ψ need not satisfy this condition in states that are not visited when using ψ.)

We consider two cases. Case (i): Suppose the Lagrangian policy ψ selects n(ψt(x̃t)) < Nt items. Those
items selected by ψ with it,s(xt,s) > λt will be included in the top Nt items as ranked by the priority index
and will thus also be selected by the heuristic π. The tiebreaking rules ensure that any other items selected
by ψ with it,s(xt,s) = λt will also be selected by π. π may also select up to Nt − n(ψt(x̃t)) additional items
with nonnegative priority indices that were not selected by ψ. (We note for future reference that if λt = 0,
then in this case ψ and π will select exactly the same items.)

Case (ii): If the Lagrangian policy ψ selects n(ψt(x̃t)) ≥ Nt items, these items selected by ψ will all have
nonnegative priority indices and the heuristic π will select Nt of these items: the tiebreaking rules ensure
that the Nt selected by π will be a subset of those selected by ψ. Thus, in both cases (i) and (ii), ψ and π
will select no more than

∣∣n(ψt(x̃t))−Nt
∣∣ different items in period t and state x̃t.
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The desired result (EC-13) can now be established as follows:

dt(x̃t, ψt(x̃t), πt(x̃t)) = λt
(
Nt − n(ψt(x̃t))

)︸ ︷︷ ︸
(a)

+ rt(x̃t, ψt(x̃t))− rt(x̃t, πt(x̃t))︸ ︷︷ ︸
(b)

+ E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
− E

[
V πt+1(χ̃t(x̃t, πt(x̃t)))

]︸ ︷︷ ︸
(c)

≤ λt(Nt − n(ψt(x̃t)))︸ ︷︷ ︸
(a)

+ (r̄ −
¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣︸ ︷︷ ︸
(b′)

+ 2(r̄ −
¯
r)kt+1

∣∣n(ψt(x̃t))−Nt
∣∣︸ ︷︷ ︸

(c′)

= λt
(
Nt − n(ψt(x̃t))

)
+ (r̄ −

¯
r)(1 + 2kt+1)

∣∣n(ψt(x̃t))−Nt
∣∣

The inequality above follows term by term, using the terms identified above.

� The (a) term is unchanged.

� (b) ≤ (b′): Because ψ and π will select no more than
∣∣n(ψt(x̃t))−Nt

∣∣ different items, we have

rt(x̃t, ψt(x̃t))− rt(x̃t, πt(x̃t)) ≤ (r̄ −
¯
r)
∣∣n(ψt(x̃t))−Nt

∣∣ .
� (c) ≤ (c′): Because ψ and π will select no more than

∣∣n(ψt(x̃t))−Nt
∣∣ different items and state tran-

sitions are independent across items, the random continuation states χ̃t(x̃
′, π(x̃′)) and χ̃t(x̃

′′, π(x̃′′))
will differ for at most

∣∣n(ψt(x̃t))−Nt
∣∣ items. Lemma EC2 then implies

E
[
V πt+1(χ̃t(x̃t, ψt(x̃t)))

]
− E

[
V πt+1(χ̃t(x̃t, πt(x̃t)))

]
≤ (r̄ −

¯
r)kt+1

∣∣n(ψt(x̃t))−Nt
∣∣

where kt is as defined in Lemma EC2.
The desired result then follows by taking ct = (1 + kt+1).

In the case where λt = 0, as discussed above in Case (i), ψ and π will select the same items, so combining
Cases (i) and (ii), ψ and π will select no more than max{n(ψt(x̃t))−Nt, 0} different items. The proof then
proceeds as before.

The final lemma provides a bound on the expectations of the
∣∣n(ψt(x̃t))−Nt

∣∣ terms appearing in
Lemma EC3 by calculating the variance of these quantities.

Lemma EC4. Let λ∗ denote an optimal solution for the Lagrangian dual problem (7) with initial state x
and let ψ̃ denote an optimal mixed policy. Let ñt(ψ̃) = n(ψ̃t(x̃t(x, ψ̃))).

(i) If λt > 0, then

E
[ ∣∣ñt(ψ̃)−Nt

∣∣ ] ≤√Nt(1−Nt/S) . (EC-14)

(ii) If λt = 0, then

E[ max{ñt(ψ̃)−Nt, 0} ] ≤
√
N̄t(1− N̄t/S) , (EC-15)

where N̄t = E[ ñt(ψ̃) ] ≤ Nt.

Proof. We first characterize the variance of ñt(ψ̃). Since the state transitions are independent across items
and the policy mixing is also independent across items,ñt(ψ̃) is the sum of S independent Bernoulli trials
with probabilities of success pt,s = E[ pt,s(ψ̃s) ] where, as in Proposition 4, pt,s(ψs) is the probability of

selecting item s in period t when following a policy ψs. We then have E[ ñt(ψ̃) ] =
∑S
s=1 pt,s and

Var[ ñt(ψ̃) ] =

S∑
s=1

pt,s(1− pt,s)
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=

S∑
s=1

pt,s −
S∑
s=1

p2
t,s

= E[ ñt(ψ̃) ]−
S∑
s=1

p2
t,s

≤ E[ ñt(ψ̃) ]− E[ ñt(ψ̃) ]
2
/S

= E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

The inequality follows from choosing pt,s to minimize
∑S
s=1 p

2
t,s subject to the constraint that

∑S
s=1 pt,s =

E[ ñt(ψ̃) ]. The minimum is obtained when pt,s = E[ ñt(ψ̃) ]/S for all s.
We then apply this inequality for the two different cases for λt. Case (i): If λt > 0, by Proposition 4(iii),

we know that E[ ñt(ψ̃) ] = Nt. Then we have

E
[ ∣∣ñt(ψ̃)−Nt

∣∣ ]2 ≤ Var[ ñt(ψ̃)−Nt ]

= Var[ ñt(ψ̃) ]

≤ E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

= Nt(1−Nt/S)

The first inequality follows from Jensen’s inequality and the fact that E[ ñt(ψ̃) ] = Nt.
Case (ii): If λt = 0, by Proposition 4(iii), we know that N̄t ≡ E[ ñt(ψ̃) ] ≤ Nt. Then, following the same

logic as in the λt > 0 case after two preliminary steps:

E[ max{ñt(ψ̃)−Nt, 0} ]
2 ≤ E

[
max

{
ñt(ψ̃)− N̄t, 0

} ]2
≤ E

[ ∣∣ñt(ψ̃)− N̄t
∣∣ ]2

≤ Var
[
ñt(ψ̃)− N̄t

]
= Var[ ñt(ψ̃) ]

≤ E[ ñt(ψ̃) ](1− E[ ñt(ψ̃) ]/S)

= N̄t(1− N̄t/S)

Finally, we can assemble these results and prove Proposition 5.

Proof of Proposition 5. Using the notation of Lemmas EC1, EC3, and EC4 and applying these results
in that order, we have:

Lλ
∗

1 (x)− V π̃1 (x) =

T∑
t=1

E[ dt(x̃t, ψ̃, π̃) ]

≤
T∑
t=1

{
λ∗t E[Nt − n(ψ̃(x̃t)) ] + ct(r̄ −

¯
r)E
[ ∣∣n(ψ̃(x̃t))−Nt

∣∣ ] if λ∗t > 0

ct(r̄ −
¯
r)E[ max{n(ψt(xt))−Nt, 0} ] if λ∗t = 0

}

≤
T∑
t=1

ct(r̄ −
¯
r)
√
N̄t(1− N̄t/S)

where N̄t = Nt if λ∗t > 0 and N̄t = E[ ñt(ψ̃) ] ≤ Nt if λ∗t = 0. In the final step above, we also use the fact that
E[Nt − n(ψ̃(x̃t)) ] = 0 when λ∗t > 0; see Proposition 4(iii). When considering expectations involving the
mixed policies, we assume that the realizations of ψ̃ and π̃ are coordinated so the realized π is the Lagrangian
index policy with the realized ψ as tiebreaker: this is necessary when applying Lemma EC3 in the second
line above. Taking βt = ct = 2T−t+1 − 1, we obtain the result of the proposition.

The final inequality in (18) then follows from the fact that
√
N̄t(1− N̄t/S) ≤

√
N̄t ≤

√
N .
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Proof of Corollary 1. Theorem 1 implies

0 ≤ Lλ
∗

1 (x;S)− V π̃1 (x;S)

V ∗1 (x;S)

≤ (r̄ −
¯
r)

T∑
t=1

βt
√
N̄t(S)(1− N̄t(S)/S)

V ∗1 (x;S)

≤ (r̄ −
¯
r)

T∑
t=1

βt

√
N(S)

V ∗1 (x;S)
.

The growth assumption implies limS→∞
√
N(S)/V ∗1 (x;S) = 0, which gives the desired result (21).

EC3.2. Example Showing the Lagrangian Performance Gap of
√
N is Tight

We consider an example with T = 2 and assume the number of items S is divisible by 4. The DM can select
N1 = N2 = N = S/2 items in each period. There are three types of items:

(i) S/2 items are a priori identical and yield rewards rt,s(x
0
s, 1) = 1 in their initial state x0

s. If selected
in period one, in period two these items transition to state x with probability 1/2 and to state x with
probability 1/2, with r2,s(x, 1) = 2 and r2,s(x, 1) = 0. If not selected, these items do not change state.
Let S1 denote this set of items.

(ii) S/4 items are identical and yield deterministic rewards rt,s(x
0
s, 1) = 1/2 if selected in either period,

and never transition from their initial state x0
s, whether selected or not. Let S2 denote this set of items.

(iii) The remaining S/4 items are identical and yield deterministic rewards rt,s(x
0
s, 1) = 1/4 if selected in

either period, and never transition from their initial state x0
s, whether selected or not. Let S3 denote

this set of items.
All items yield zero reward when not selected.

Solution of the Lagrangian Dual. First, we claim that the Lagrange multipliers λ∗ = (λ∗1, λ
∗
2) = (1/2, 1/4)

are optimal for the Lagrangian dual (7) for this example. To see this, note that with this choice of λ∗, we
have the following optimal Lagrangian value functions and policies:

(i) For s ∈ S1: In period two, V λ
∗

2,s(x) = 7/4, V λ
∗

2,s(x) = 0, E
[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
= 7/8, and it is strictly

optimal to select in state x and not select in state x. In period 1, it is strictly optimal to select: the
value of selecting is r1,s(x

0
s, 1) − λ∗1 + E

[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
= 11/8 and the value of not selecting is

0 + V λ
∗

2,s(x
0
s) = 1− λ∗2 = 3/4. Thus, for s ∈ S1, there is a single optimal policy ψs for s ∈ S1.

(ii) For s ∈ S2: In period two, V λ
∗

2,s(x
0
s) = 1/4 and it is strictly optimal to select. In period one, selecting

or not selecting are both optimal: the value for selecting is r1,s(x
0
s, 1) − λ∗1 + V λ

∗

2,s(x
0
s) = 1/4 and the

value for not selecting is V λ
∗

2,s(x
0
s) = 1/4. For all s ∈ S2, we take ψs to be the optimal policy that does

not select these items in period one.
(iii) For s ∈ S3: In period two, V λ

∗

2,s(x
0
s) = 0 and selecting and not selecting are both optimal. In period

one, not selecting is strictly optimal. For all s ∈ S3, we take ψs to be the optimal policy that does not
select these items in period two.

With these optimal policies, we select exactly N = S/2 items (all items in S1) in period one. In period two,
we select those items in S1 that transition to x (expected number equal to S/4) and select all S/4 items in
S2, for a total of S/2 items in expectation. By Proposition 4(iii), this implies that λ∗ = (1/2, 1/4) is optimal.

Total Reward with the Optimal Policy for the Lagrangian Relaxation. In the Lagrangian re-
laxation, it is optimal to select all items in S1 in the first period. We let Y denote the random variable
corresponding to the number of items in S1 that transition to x in period two. The distribution of Y is
binomial with S/2 trials and probability 1/2.

The first period rewards are simply S/2, as exactly N = S/2 items with reward 1 are selected. In the
second period, all Y items in S1 are selected and yield reward 2, and all S/4 items in S2, each yielding reward
1/2, are selected. The Lagrangian penalty in period two is λ∗2(S/2− Y − S/4) = S/16− Y/4. Putting this
together, the total reward in the Lagrangian relaxation given Y is (7/4)Y + (11/16)S.
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Total Reward with the Optimal Lagrangian Index Policy. In the first period, the priority index
values are:

s ∈ S1 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + E

[
V λ
∗

2,s(χ̃1,s(x
0
s, 1))

]
)− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1 + 7/8)− (0 + 3/4) = 9/8,

s ∈ S2 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + V λ

∗

2,s(x
0
s))− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1/2 + 1/4)− (0 + 1/4) = 1/2,

s ∈ S3 : i1,s(x
0
s) = (r1,s(x

0
s, 1) + V λ

∗

2,s(x
0
s))− (r1,s(x

0
s, 0) + V λ

∗

2,s(x
0
s)) = (1/4 + 0)− (0 + 0) = 1/4,

and thus all items in S1 are selected in the first period by the optimal Lagrangian index policy.
In the second period, the selection indices in the optimal Lagrangian index policy equal the item’s rewards

in their current state. Thus, in period two, the optimal Lagrangian index policy selects all Y items in S1

that yield reward 2, possibly in addition to some other items, which differ in two cases:
(a) If Y < S/4, then all S/4 items in S2 are also selected, each yielding reward 1/2, as well as S/2− (Y +

S/4) = S/4−Y items in S3 are selected, each yielding reward 1/4. The total reward (including period
one) in this case is (7/4)Y + (11/16)S, equal to the Lagrangian relaxation value.

(b) If Y ≥ S/4, then S/2 − Y ≤ S/4 items from S2 are also selected, yielding a total reward (including
period one) of (3/2)Y + (3/4)S.

Difference in Total Rewards. It follows that the difference between the Lagrangian relaxation value
Lλ
∗

1 (x) and optimal Lagrangian index policy V π̃1 (x) is

Lλ
∗

1 (x)− V π̃1 (x) = E
[
1{Y ≥ S/4}

(
7

4
Y +

11

16
S − 3

2
Y − 3

4
S

)]
= E

[
1{Y ≥ S/4}

(
Y

4
− S

16

)]
=

1

4
E
[
1{Y ≥ S/4}

(
Y − S

4

)]
=

1

4
E

[(
Y − S

4

)+
]
.

Y follows a binomial distribution with S/2 trials and probability 1/2 so, as S → ∞, Y − S/4 approaches
a normal distribution with mean zero and variance S/8. Then in the limit as S → ∞,

∣∣Y − S/4∣∣ follows a
half-normal distribution generated by a normal random variable with variance S/8; thus, as S →∞,

Lλ
∗

1 (x;S)− V π̃1 (x;S) =
1

4
E
[

(Y − S/4)+
]

=
1

8
E
[ ∣∣Y − S/4∣∣ ] =

√
2S

8
√

8π
=

√
N

8
√

2π
.
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EC4. Information Relaxation Bounds

As discussed briefly in §6.3, in the numerical examples of §6 the gaps between the optimal Lagrangian index
policy and Lagrangian bound were very small (in relative terms) for large S, but were more substantial for
small S. One might wonder whether these gaps are due to the policies being suboptimal or due to slack in
the Lagrangian bound. In this section, we develop information relaxation bounds to provide tighter bounds.
Here we follow the general approach developed in Brown, Smith and Sun (2010, BSS hereafter) but the
application to dynamic selection problems poses some problem-specific challenges which we address here.

BSS (2010) generalized earlier applications of information relaxations for valuing American options (see,
e.g., Haugh and Kogan 2004 and Rogers 2002). Our application to dynamic selection problems can be
viewed as a new application in a growing list of applications of information relaxation methods. In addition
to the many applications to valuing options and other derivative securities, recent applications of information
relaxations include managing natural gas storage (Lai et al. 2010 and Lai et al. 2011), dynamic portfolio
optimization with transaction costs or taxes (Brown and Smith 2011 and Haugh et al. 2016), and inventory
and pricing models with lead time and backorders (Brown and Smith 2014 and Bernstein et al. 2015). Our
application of information relaxations to the dynamic selection problem combines information relaxations
and Lagrangian relaxations. Information relaxations and Lagrangian relaxations were similarly combined in
a network revenue management problem in Brown and Smith (2014), in a multiclass queueing problem in
Brown and Haugh (2017), and in Ye et al. (2018).

In this section, we first briefly and informally review the theory of information relaxation bounds as
developed in BSS (2010), discuss the application to our examples, and the discuss numerical results for the
examples considered in §6.

EC4.1. Information Relaxation Bounds

The key idea of information relaxation bounds is to consider models that relax the nonanticipativity con-
straints that require the DM to make decisions based only on information that is available at the time the
decision is made. For instance in the dynamic assortment problem, in the real model, the DM observes
demands for products that are displayed, when they are displayed, and uses this information to guide future
display decisions. We will consider a relaxed model where the DM knows the demands for all products in
all periods in advance, before making any display decisions.

The basic results on information relaxations are easiest to state if we take a high-level view of policies.
If we let ΠF denote the set of policies that respect the nonanticipativity constraints (as well as the linking
constraints) in the original problem, we can write the DP (2) as

V ∗1 (x) = max
π∈ΠF

E[ r(π) ]

where r(π) denotes the random total reward under policy π, i.e., r(π) =
∑
t rt(x̃t(π), πt(x̃t(π))) where x̃t(π)

represents the random state-evolution process when starting in state x and following policy π and πt(x) is
the period-t vector of selection decisions in state x when using policy π.

If we let ΠG denote a larger set of policies (ΠF ⊆ ΠG) that can use additional information,EC1 we can
solve a relaxed version of the DP to obtain an upper bound on the primal DP:

V ∗1 (x) = max
π∈ΠF

E[ r(π) ] ≤ max
π∈ΠG

E[ r(π) ] . (EC-16)

Unfortunately, the bounds given by (EC-16) will be weak if the extra information provided in the relaxation is
valuable. To counter this, we incorporate a penalty that “punishes” the DM for using information that would
not actually be available when making decisions. The penalty z(π) is a policy-dependent random variable,
like the rewards, i.e., z(π) =

∑
t zt(x̃t(π), πt(x̃t(π))) for some set of period-t penalty terms zt(xt, ut). A

penalty z(π) is dual feasible if E[ z(π) ] ≤ 0 for all π ∈ ΠF; that is, if the expected penalty is nonpositive for
all nonanticipative policies.

EC1To formalize the definitions of these sets of policies, a policy can be defined as a mapping from the underlying outcome
space to selection decisions (u1, . . . ,uT ) for each product and each period (with ut ∈ Ut). Policies in the DP (2) that
make selections as a function of the current state of the system can be viewed as imposing measurability restrictions on
this more general set of policies. The relaxed model imposes a weaker set of measurability restrictions. See BSS (2010) for
more discussion.
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The following weak duality result from BSS (2010) is the key tool for generating performance bounds
using information relaxations.

Proposition EC2 (Weak duality). Suppose ΠF ⊆ ΠG. If policy π is nonanticipative (i.e., π ∈ ΠF) and
penalty z is dual feasible then

E[ r(π) ] ≤ max
π′∈ΠG

E[ r(π′)− z(π′) ] . (EC-17)

Proof. We have:
E[ r(π) ] ≤ E[ r(π)− z(π) ] ≤ max

π′∈ΠG
E[ r(π′)− z(π′)) ] .

Given π ∈ ΠF, the first inequality follows from the definition of dual feasibility (E[ z(π) ] ≤ 0) and the second
inequality follows from the fact that ΠF ⊆ ΠG.

BSS (2010) provide a strong duality result that shows that there is a penalty such that the value for the
relaxed model is exactly equal to the optimal value for the original, but these penalties require knowledge
of the optimal value function (more on this in the next subsection).

We also note that if we can restrict attention to a subset of the available policies ΠF in the original
problem without loss of optimality, we can impose these same restrictions on the policies ΠG for the relaxed
model. For example, if all items are initially identical in the dynamic assortment or applicant screening
examples, we can restrict the policies to a set of policies that select the first (in label index order) Nt
items in the initial period (i.e., s ≤ Nt), without loss of optimality. More generally, we can restrict the
DM to policies to selecting items with s ≤

∑t
τ=1Nτ in period t. In our numerical examples, we will impose

these restrictions on selections in the relaxed model. Enforcing these constraints can improve the information
relaxation bound (i.e., lead to a lower value) because the information revealed in a particular sample scenario
may favor selecting some items outside this restricted set.

EC4.2. Information Relaxation Bounds for the Dynamic Assortment Problem

The challenge is to find penalties and information relaxations that make the bound on right side of (EC-17)
easy to compute and lead to reasonably tight bounds. For specificity, we will focus our discussion on the
dynamic assortment example, though the ideas also apply in the applicant screening example and other
dynamic selection problems. In the dynamic assortment example, the underlying uncertainties are the
unknown (Poisson) demand rates for each product and the demand realizations for each item, in each period.
In the original model, the demands are revealed for products when (and if) the products are selected; the
demand rates are never revealed. We can consider a number of different relaxations, including:

(i) Known rates: The DM knows the demand rates for all products in advance, but demands are revealed
sequentially only when the products are selected, as in the original model.

(ii) Known demands: The DM knows all demands for all products in all periods, in advance before making
any selection decisions (i.e., the DM knows what demand would be if a product were to be selected);
demands rates are never revealed.

(iii) Perfect information: The DM knows both demands and rates in advance.
(iv) Uncensored demand : Demands for all products are revealed sequentially (regardless of whether they

are selected or not); demand rates are never revealed.
In the applicant screening example, we can consider analogous relaxations, where the applicants’ quality
and/or the signals are known in advance in the relaxed model.

In our discussion and numerical examples, we will focus on the known demands relaxation and consider
a penalty based on the Lagrangian Lλt+1(x). Although we can use any λ ≥ 0, in our numerical examples
we will take these to be optimal Lagrange multipliers λ∗ given by solving the Lagrangian dual (7). We can
estimate the known demands bound, maxπ′∈ΠG E[ r(π′)− z(π′) ], by repeatedly:

(i) Drawing a demand rate γs for product s from the appropriate gamma distribution and then drawing
demands for this product from a Poisson distribution with this rate. Let d = (d1, . . . ,dT ) where
dt = (dt,1, . . . , dt,S) denotes the randomly generated vector of product demands in period t.

(ii) Solving a deterministic inner DP (to be described shortly) to find the optimal value V̂1(x1;d) given
these demand realizations, incorporating the Lagrangian penalty.

We estimate the known demands bound by averaging the V̂1(x1;d) for the different demand realizations d.
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Given a demand scenario d, we can write the inner DP for this demand scenario as follows. Let
V̂T+1(x;d) = 0 and, for earlier t, we recursively define

V̂t(x;d) = max
u∈Ut

{
rt(x,u)− zt(x,u;dt) + V̂t+1(χt(x,u;dt);d)

}
(EC-18)

where
zt(x,u;dt) = Lλt+1(χt(x,u;dt))− E

[
Lλt+1(χ̃t(x,u))

]
. (EC-19)

Here the last term in (EC-18) and the first term in (EC-19) involve deterministic state transitions because
the DM knows the demands: χt(x,u;dt) = (χt,1(x1, u1; dt,1), . . . , χt,S(xS , uS ; dt,S)) represents the state
transitions with the given product demands for period t. The expectation in (EC-19) is calculated using the
same state-dependent negative-binomial distributions used in the original DP.

Using the law of iterated expectations, we know that E[ zt(x̃t(π), πt(x̃t(π))) ] = 0 for any nonanticipative
policy π. Thus the penalty z(π) =

∑
t zt(x̃t(π), πt(x̃t(π))) is dual feasible and the known demands bound

provides a performance bound, as in Proposition EC2. This is an example of the general method for creating
“good” dual feasible penalties described in BSS (2010). As discussed there, if we replace the Lagrangian
Lλt+1 in (EC-19) with the optimal value function V ∗t+1, the information relaxation bound will be exactly equal
to the optimal value. With this ideal penalty, the DM is exactly punished for using extra information: the
benefit gained is exactly canceled by the penalty. With a penalty based on an approximate value function
(such as the Lagrangian), the penalty approximately cancels this benefit. In general, to obtain good bounds,
we want to choose generating functions that approximate the optimal value function well.

We now consider the DP (EC-18) in more detail. First, note that that the penalty terms involving the
Lagrangian Lλt+1 decompose into the sum of item-specific values, as in (5). However, the inner DP (EC-18)
does not decompose into item-specific subproblems because the constraint on the total number of products
selected (u ∈ Ut where Ut is defined in (1)) links the decisions across items, as it did in the original DP (2).
Thus, the inner DP – though deterministic – is still difficult to solve in problems with many items.

To decouple the inner DP (EC-18), we relax the linking constraint in the same way that we relaxed the
original DP (2). Consider Lagrange multipliers µ = (µ1, . . . , µT ) ≥ 0 and let L̂µT+1(x;d) = 0. The period-t
inner Lagrangian with demand realization d is then given recursively as

L̂µt (x;d) = max
u∈{0,1}S

{
rt(x,u)− zt(x,u;dt) + L̂µt+1(χt(x,u;dt);d) + µt

(
Nt −

S∑
s=1

us

)}
.

This can be decomposed into item-specific DPs as

L̂µt (x;d) = Nt

T∑
τ=t

µτ +

S∑
s=1

V̂ µt,s(xs;ds)

where ds = (d1,s, . . . , dT,s) is the demand sequence for product s and V̂ µt,s(xs;ds) is an inner item-specific

value function with V̂ µT+1,s(xs;ds) = 0 and

V̂ µt,s(xs;ds) = max

{
rt,s(xs, 1)− µt − V λs,t+1(χt,s(xs, 1, dt,s)) + E

[
V λs,t+1(χ̃t,s(xs, 1))

]
+ V̂ µt+1,s(χt,s(xs, 1, dt,s)),

rt,s(xs, 0) + V̂ µt+1,s(χt,s(xs, 0, dt,s))

}
. (EC-20)

where V λt,s is the value-function for the item-specific DP (6). Note that in the dynamic assortment model,
the penalty term (EC-19) is zero if a product is not selected because its state does not change.

These inner item-specific DPs and the Lagrangian satisfy properties like those of Propositions 1-4. In
particular, the Lagrangian is an upper bound on the inner DP: V̂t(x;d) ≤ L̂µt (x;d) for all x, t, d and µ ≥ 0.
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To ensure we have the best possible bound for a given d and x, we can solve the inner dual problem,

min
µ≥0

L̂µ1 (x;d) , (EC-21)

for an optimal µ∗(x,d). This is a convex optimization problem and can be solved using the cutting-
plane method discussed in §A. Moreover, if we take the inner Lagrange multipliers µ to be equal to the
“outer” Lagrange multipliers λ used to define the penalty, we can use an induction argument to show that
L̂λt (x;d) = Lλt (x) for all t and d.EC2 Thus, since λ is feasible but not necessarily optimal for the inner
Lagrangian dual problem (EC-21), we have

V̂1(x;d) ≤ L̂µ
∗(x,d)

1 (x;d) ≤ Lλ1 (x) .

Thus, for every demand scenario d, the information relaxation bound V̂1(x;d) and its computable upper

bound L̂
µ∗(x,d)
1 (x;d) will be at least as good as the Lagrangian bound Lλ1 (x).

We can also relate these bounds to the performance of a heuristic policy π in the same demand scenario.
We focus on deterministic Markovian heuristic policies where the period-t selection decision πt is chosen
based on the current state x. (When we are considering mixed policies, as in the optimal Lagrangian policy,
let π be a particular realization of the mixed policy.) We assume that the actions selected by the heuristic
are feasible, i.e., πt(x) ∈ Ut. To facilitate comparison with those of the information relaxation, we will adjust
the rewards using the penalty (EC-19) as a control variate. Let V̂ πt (x;d) denote the value generated when
following policy π, starting in state x, given demand realization d, adjusted by the control variate. We can
write this value recursively in a form parallel to (EC-18): let V̂ πT+1(x;d) = 0 and, for earlier t, we define

V̂ πt (x;d) =

{
rt(x, πt(x))− zt(x, πt(x);dt) + V̂ πt+1(χ̃t(x, πt(x);dt);d)

}
. (EC-22)

Here this form exactly mimics the DP recursion (EC-18), except the actions are chosen in accordance to
the policy π rather than optimized. Thus we know that V̂ πt (x;d) ≤ V̂t(x;d) for all t, x, and d. Moreover,
because the penalty terms zt have mean zero for all feasible policies, we know that the expected total reward
when following policy π is V π1 (x) = E[ V̂ π1 (x; d̃) ], where the expectations are taken over the random demand
scenarios. These control variates are helpful in reducing sampling error when estimating the expected values
associated with a given policy and were used in the simulations of §6.2.

Combining these observations, we can say the following.

Theorem EC1 (Ordered bounds). Consider any feasible and nonanticipative policy π, Lagrange multipliers
λ ≥ 0 and initial state x.

(i) For any demand realization d, we have

V̂ π1 (x;d) ≤ V̂1(x;d) ≤ L̂
µ∗(x,d)
1 (x;d) ≤ Lλ1 (x) . (EC-23)

(ii) Taking expectations over random demand realizations d̃, we have

V π1 (x) = E
[
V̂ π1 (x; d̃)

]
≤ V ∗1 (x) ≤ E

[
V̂1(x; d̃)

]
≤ E

[
L̂
µ∗(x,d̃)
1 (x; d̃)

]
≤ Lλ1 (x) . (EC-24)

Working from the left in (EC-24), we have the expected value with heuristic policy π (V π1 (x)) is equal to the
expected reward for this policy with the control variate included (E[ V̂ π1 (x; d̃) ]). This value is less than or
equal to the value with an optimal policy (V ∗1 (x)), which is typically impossible to compute. This, in turn,
is less than or equal to the known demands relaxation bound (E[ V̂1(x; d̃) ]) which is also typically impossible
to compute. However, the known demands bound is less than or equal to the Lagrangian relaxation of
the known demands information relaxation bound with optimized Lagrange multipliers (E[ L̂

µ∗(x,d̃)
1 (x; d̃) ]),

which is computable. Finally, all of these bounds are less than the ordinary Lagrangian bound (Lλ1 (x)). The

EC2Note that the V λ
s,t+1(·) and V̂ µ

t+1,s(·) terms in (EC-20) cancel if µ = λ and we have the induction hypothesis that V λ
s,t+1(·) =

V̂ λ
s,t+1(·). Then (EC-20) reduces to the the definition of V λ

s,t+1(·) in (6).
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bounds in (EC-23) show that the demand-dependent terms in (EC-24) are ordered in every demand scenario
d and less than or equal to the Lagrangian bound.

Though we have focused on the known demands relaxation in the dynamic assortment example, we can
use the same approach and derive similar results with other relaxations and in other problems. In the
applicant screening example, the information relaxation where all applicant signals are known in advance
is exactly analogous to the known demands relaxation and we obtain the same results. If we consider the
known rates relaxation instead of the known demands realization in the dynamic assortment example, we
arrive at an inner DP similar to (EC-18), but the deterministic demand transitions are replaced with Poisson
distributions with (randomly drawn) known demand rates. This inner DP is also linked and we can use an
inner Lagrangian relaxation to derive results analogous to those of Theorem EC1.

EC4.3. Numerical Examples

The (a) panels of Figures 2-5 show information relaxation bounds for the dynamic assortment and applicant
screening examples using the known demands and known signals relaxations. These bounds were evaluated
with S equal to 4, 8, 16, 32, and 64 in the same 1000 sample scenarios (i.e., same demand and signal
sequences) that were used to evaluate the heuristics. In all cases, we use penalties based on an optimal
solution λ∗ for the outer Lagrangian dual problem (7) and impose the policy restrictions discussed at the
end of §EC4.1. These figures also show 95% confidence intervals for the estimated bounds; these confidence
intervals are quite narrow, particularly for larger values of S.

In the results, we see that the information relaxation bounds improve on the Lagrangian dual, particularly
when S is small. The improvement is greatest in the dynamic assortment example with T = 8 and S = 4. In
this case, the Lagrangian bound ensures that the Lagrangian index policy is within (approximately) $0.88
per product displayed of the value given by an optimal solution. The information relaxation bound tells us
that the Lagrangian index policy is in fact within $0.16 per product displayed of an optimal solution. The
improvements in bounds are less significant in the applicant screening example, particularly in the case with
Bernoulli signals. Our intuition suggests that these information bounds are less effective when tiebreaking
plays an important role: intuitively, the Lagrangian penalties “punish” the DM for using additional infor-
mation in the selection decisions but do not punish for using this extra information to optimize tiebreaking.
In all problems, the information relaxation bounds do not improve on the Lagrangian bound with large S:
in these cases, the Lagrangian index policies are so close to the Lagrangian bound that there is very little
room for the information relaxation bounds to improve upon the Lagrangian bound.

Dynamic Applicant
assortment screening

example example
S T = 8 T = 20 n = 1 n = 5

4 9.9 143 2.7 3.3
8 15.1 208 4.4 5.6
16 23.9 301 7.5 9.1
32 42.1 471 13.3 16.0
64 75.0 750 24.4 29.1

Table EC-1: Run times (seconds) for information relaxation bound calculations

The run times are reported in Table EC-1. As discussed above, calculating these bounds requires solving
the inner Lagrangian dual problems for each simulated demand (signal) sequence, for each product (appli-
cant). This can be time consuming because the products (applicants) are not identical as each has its own
demand (signal) sequence. We use the cutting-plane method in each case and start with µ = λ∗, which yields
the Lagrangian dual bound. If we cannot improve on this value, the cutting-plane algorithm typically stops
after a few iterations. The run times grow roughly linearly with S, as one might expect, but not exactly
because these no-improvement scenarios are more common with large S.
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EC5. Numerical Results with Longer Horizons
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Figure EC-1: Results for the dynamic assortment examples with horizon T=40
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Figure EC-2: Results for the applicant screening examples with T=51 and Bernoulli signals (n = 1)
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EC6. Additional Details on Weber and Weiss’s Counterexample

Weber and Weiss (1990)’s example is useful for understanding dynamic selection problems with long or
infinite horizons. Though Weber and Weiss considered a continuous-time, average-reward setting, their
example can be adapted to discrete time with a long, but finite horizon. The example considers identical
items, each having four states; the transition matrices and rewards are constant over time and are shown
in Table EC-2. In each period, the DM must select exactly 83.5% of the items available. We assume that
the system starts with 16%, 9%, 35% and 40% of the items in states one through four, respectively. We
will consider a horizon T equal to 20,000 periods and focus on the dynamics of the Whittle and Lagrangian
index policies in the deterministic mean field limit as the number of items S approaches infinity. The plots
in Figure EC-3 show results for the first 3,000 of 20,000 periods; truncating these time series in this way
makes the patterns easier to see.

Probability Transition Matrices Rewards
Selected Not Selected Not

State 1 2 3 4 1 2 3 4 Selected Selected

1 0.9625 0.0075 0.0150 0.0150 0.9625 0.0075 0.0150 0.0150 0 10
2 0.0000375 0.9957625 0.0042 0.0000 0.0075 0.1525 0.8400 0.0000 10 10
3 0.0000 0.0000 0.9700 0.0300 0.0000 0.0000 0.9700 0.0300 10 1
4 0.0150 0.0000 0.0150 0.9700 0.0150 0.0000 0.0150 0.9700 10 0

Table EC-2: Assumptions for Weber and Weiss (1990)’s example

First we consider the Whittle index policy. The Whittle indices may be calculated analytically and
depend on an item’s state (as usual) but not the period (a feature of this example). The Whittle indices are
−10, 0, 9, and 10 for states one through four.EC3 The ingenious feature of Weber and Weiss’s example is
that the fractions of items in each state cycles under the Whittle index policy. For example, Figure EC-3a
shows the fraction of items in state one when following the Whittle index policy. The fraction of items in
state one starts at 16%, rises to 17%, and ultimately settles into a cyclical pattern with fractions varying
between 16.2% and 16.6%. The fractions in other states also vary cyclicly. In this example, the DM must
select 83.5% of the items, so whenever the fraction in state one exceeds 16.5% (indicated with a dashed
line in Figure EC-3a), the DM must select some items that are in state one. In periods where the Whittle
index policy selects items in states two, three and four only, the policy generates a reward of 10. In periods
where the policy selects some items in state one, the reward is less than 10, reflecting the zero reward when
selecting items in state one.

Now consider the Lagrangian relaxation with a full set of T Lagrange multipliers. The optimal Lagrange
multipliers λ∗ (solving the dual problem (7)) are shown in Figure EC-3b and the state one fractions for the
corresponding optimal Lagrangian index policy are shown in Figure EC-3a.EC4 In Figure EC-3b we see that
the optimal Lagrange multipliers λ∗t cycle initially with dampening amplitude, approaching a steady state
value of zero. The oscillations in the state fractions are less than those for the Whittle index policy and
the fraction in state one remains at or below 16.5% in all periods, hitting 16.5% in period 56. How do the
Lagrangian index and Whittle index policies differ? In the very early periods (1-6), the Lagrangian index
policy prioritizes items in higher states, like the Whittle index policy. But in periods 8-31, the Lagrangian
index policy prioritizes items in state two over state three, leaving some items in state three unselected.
(Items in states two and three have the same index values in periods 7 and 32 and tiebreaking plays a
role.) In most of the remaining periods, the Lagrangian index policy prioritizes items in the same way as
the Whittle index. However, there is one later period (period 73) where the Lagrangian index policy is
indifferent between selecting items in states one and two and the optimal Lagrangian index policy breaks
ties so some items in state one are selected, earning zero reward. In this period, λ∗t is −10 and the fraction
of items in state one is strictly less than 16.5% so the DM is not forced to select items in state one in this
period.

EC3For items in states one, three and four, the transition probabilities are identical in the active and passive states and the
continuation values cancel in (15); it is easy to verify that (15) is satisfied with these index values. It is not hard to see
with λt = 0 for all t, in every state the optimal value function is 10 times the number of periods remaining; (15) is thus
satisfied in state two with λt = 0.

EC4This example took about 30 minutes to solve using an LP formulation of the Lagrangian dual (7).
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Figure EC-3: Selected results for the Weber and Weiss example

These differences between the Whittle and Lagrangian index policies dampen the early oscillations seen
in Figure EC-3a and guide the Lagrangian index policy to an equilibrium where the fraction of items in
state one is approximately 16.4%; the fractions in other states also stabilize. In this equilibrium, the optimal
Lagrange multipliers are zero and the Lagrangian and Whittle priority indices are equal: all items in states
three and four are selected and approximately 99.0% of those in state two are selected. The rewards are 10
per period in this equilibrium. The optimal Lagrangian bound for the example, which is equal to the reward
of the Lagrangian index policy, is slightly below 10 per period, reflecting the selection of some items in state
one in period 73. The Whittle index policy performs worse because it regularly selects items in state one.

These numerical results depend on the initial fractions of items in each state, but the results are typical.
For most initial conditions, the state fractions for the Whittle index policy settle into cycles as seen in
Figure EC-3a where items in state one are routinely selected and the average reward is strictly less than 10.
Similarly, for most initial conditions, the optimal Lagrange multipliers and state fractions for the Lagrangian
index policy cycle initially, but approach an equilibrium distribution where the period reward is always 10.
The exception to this typical behavior is that if we start the problem with initial conditions exactly equal
to the equilibrium distribution, λ = 0 is optimal for the Lagrangian dual problem and the Lagrangian
and Whittle policies are equivalent and remain at this equilibrium distribution; however, this equilibrium is
unstable and small deviations in initial conditions will lead the state distributions for Whittle index policies
to oscillate.
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EC7. Proofs for the Infinite-Horizon Extension

We begin our analysis of the infinite-horizon case by first considering how the result of Proposition 5 changes
if we incorporate a discount factor δ ∈ [0, 1) in the finite-horizon model of §2. We first briefly remark on how
the results of the technical lemmas of §EC3 are affected by discounting and then consider Proposition 5.

Lemma EC1: Here the result is

Lλ1 (x)− V π1 (x) =

T∑
t=1

δt−1E[ dt(x̃t, ψt(x̃t), πt(x̃t)) ]

where
dt(xt,u

ψ
t ,u

π
t ) = λt

(
N − n(uψt )

)
+ r(xt,u

ψ
t )− r(xt,uπt )

+ δE
[
V̄ πt+1(χ̃(xt,u

ψ
t ))
]
− δE

[
V̄ πt+1(χ̃(xt,u

π
t ))
]
.

The proof is analogous to the proof of Lemma EC1.

Lemma EC2: The result is exactly the same but discounting plays a role in the constants kt. The inequality
(EC-12) is now ∣∣V πt (x′)− V πt (x′′)

∣∣ ≤ 2(r̄ −
¯
r)m + 2δkt+1(r̄ −

¯
r)m

and we wind up with kt = 2(1 + δkt+1) = 2
2δ−1

(
(2δ)T−t+1 − 1

)
.

Lemma EC3: The result is the same but now ct = 1 + δkt+1 = 1/2kt = 1
2δ−1

(
(2δ)T−t+1 − 1

)
.

Lemma EC4: The result and proof are unchanged.

Proposition 5: Using the analogs of Lemmas EC1, EC3, and EC4 in the same way as before, we have:

Lλ
∗

1 (x)− V π̃1 (x) =

T∑
t=1

δt−1E[ dt(x̃t, ψ̃, π̃) ]

≤
T∑
t=1

δt−1ct(r̄ −
¯
r)
√
N̄t(1− N̄t/S) .

Taking βt(T ) (as claimed in equation (23)) to be

βt(T ) = δt−1ct =
δt−1

2δ − 1

(
(2δ)T−t+1 − 1

)
,

we obtain the result of Proposition 5. For future reference, we note that

T∑
t=0

βt(T ) =
1

2δ − 1

[
2δT (2T − 1)− 1− δT

1− δ

]
. (EC-25)

In preparation for the proof of Proposition 6, we note that the result of Proposition 5 can be extended
to consider partial sums of cash flows, as claimed in (25). Specifically, consider two time horizons T and
T ′ where T ′ ≤ T . Now suppose we define the optimal Lagrangian policy ψ̃ and the corresponding optimal
Lagrangian index policy π̃ in the usual way for the longer time horizon T , with λ∗ denoting the optimal
Lagrange multipliers. Now consider the sum of the discounted expected cash flows for ψ̃ and and π̃ over the
shorter horizon T ′:

L̂λ
∗

1 (x;T ′, T ) ≡
T ′∑
t=1

δt−1E
[
λt
(
Nt − n(ψt(x̃t))

)
+ rt(x̃t, ψt(x̃t))

]
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V̂ ψ̃1 (x;T ′, T ) ≡
T ′∑
t=1

δt−1E[ rt(x̃t, πt(x̃t)) ]

Applying the argument of Proposition 5, but considering only the first T ′ periods, we obtain

L̂λ
∗

1 (x;T ′, T )− V̂ ψ̃1 (x;T ′, T ) ≤
T ′∑
t=1

βt(T
′)(r̄ −

¯
r)
√
N̄t(1− N̄t/S) ≤

T ′∑
t=1

βt(T
′)(r̄ −

¯
r)
√
N . (EC-26)

where βt(T
′) is given by (23). This then implies the result of (25).

Proof of Proposition 6. Consider two time horizons T and T ′ where T ′ ≤ T and the optimal Lagrangian
policy ψ̃ and the corresponding optimal Lagrangian index policy π̃ are based on the longer time horizon T .
From (25) and (EC-25), we have

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ (r̄ −
¯
r)

 T ′∑
t=1

βt(T
′)
√
N +

δT
′

1− δ
S


= (r̄ −

¯
r)

[
1

2δ − 1

(
2δT

′
(2T

′
− 1)− 1− δT ′

1− δ

)
√
N +

δT
′

1− δ
S

]
(EC-27)

Since we have assumed δ > 1/2, (2δ−1) > 0 and we can simplify the bracketed term in (EC-27) by dropping
terms:

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ (r̄ −
¯
r)

[
2(2δ)

T ′

2δ − 1

√
N +

δT
′

1− δ
S

]
. (EC-28)

Now consider the choice T ′ = blog2
S√
N
c. With this T ′, we have

δT
′

= δ
blog2

S√
N
c ≤ 1

δ
· δlog2

S√
N =

1

δ
·
(
2log2 δ

)log2
S√
N =

1

δ
·

(√
N

S

)log2
1
δ

, (EC-29)

where the inequality uses the fact that δ < 1. Using the fact that δ > 1/2 and hence 2δ > 1, we have

(2δ)T
′

= (2δ)
blog2

S√
N
c ≤ (2δ)

log2
S√
N =

S√
N
·

(√
N

S

)log2
1
δ

. (EC-30)

Using (EC-29) and (EC-30), the bracketed term in (EC-28) satisfies

2(2δ)
T ′

2δ − 1

√
N +

δT
′

1− δ
S ≤ 2

2δ − 1

√
N ·

(
S√
N

)
·

(√
N

S

)log2
1
δ

+
1

δ(1− δ)
· S ·

(√
N

S

)log2
1
δ

=

(
2

2δ − 1
+

1

δ(1− δ)

)
· S ·

(√
N

S

)log2
1
δ

,

and the result of Proposition 6 then follows with γ = 2
2δ−1 + 1

δ(1−δ) . This choice of T ′ = blog2
S√
N
c

can be viewed as approximately minimizing the bound in (EC-28). Specifically, this selection of T ′ differs
from the minimizing T ′ by rounding down and dropping a constant term that complicates the resulting
expressions.
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Proposition 6 when δ ∈ [0, 1/2]: When δ < 1/2, following a similar analysis, we obtain

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤
(

1

(1− δ)(1− 2δ)
+

2

1− δ

)√
N .

Thus, in this case, we have
√
N convergence as in the finite-horizon setting. When δ = 1/2, we obtain

L̄λ
∗

1 (x;T )− V̄ π̃1 (x;T ) ≤ 2

1− δ
√
N + 2 log2

(
S√
N

)√
N .

This convergence is worse than
√
N but not as slow as the case where δ > 1/2.

Proof of Corollary 2. Using Proposition 6 and (27), we have

lim
S→∞

Lλ
∗
(x;S)− V π̃(x;S)

V ∗(x;S)
≤ (r̄ −

¯
r) lim
S→∞

γS

(√
N(S)

S

)log2
1
δ

V ∗(x;S)

≤ (r̄ −
¯
r) lim
S→∞

γS

(√
N(S)

S

)log2
1
δ

κS

≤ (r̄ −
¯
r) lim
S→∞

γ

κ

(√
N(S)

S

)log2
1
δ

= 0 .
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