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Abstract 

This paper presents an extension of the Fisher Separation Theorem applicable in 
multiperiod, "partially complete" markets where some, but not all, risks may be hedged by 
trading securities.  Given necessary and sufficient conditions on preferences, an investor 
contemplating investments in productive opportunities (or projects) and financial securities can 
decompose this problem into production and portfolio-consumption problems that may be solved 
sequentially.  In the production problem, the investor evaluates alternative production plans using 
a dynamic programming-like procedure that integrates contingent-claims techniques and the 
recursive utility approach developed by Kreps and Porteus, using market prices to value market 
risks and the investor's beliefs and preferences to value private risks.  In the portfolio-
consumption problem, the investor can ignore the project details and choose a trading strategy to 
maximize his expected utility of consumption, given an initial wealth reflecting the maximal 
project value.  The valuation procedure can be used to generate bounds on project values when 
the preference assumptions are not exactly satisfied and can be used with aggregate investor 
beliefs and preferences in the case of multiple investors sharing a project. 
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The Fisher Separation Theorem (Fisher 1930) stands as one of the cornerstones of modern 

corporate finance, providing a justification for both the "NPV rule" and the separation of ownership and 

management.  Originally stated for a deterministic world with perfect markets, the separation theorem 

says that an investor considering both productive opportunities (called projects) and market opportunities 

for borrowing and lending can decompose this grand consumption-portfolio-production problem into 

simpler production and portfolio-consumption problems that may be solved sequentially.  In the 

production problem, the investor chooses among alternative production plans to maximize the present 

value of the income generated.  In the portfolio-consumption problem, the investor chooses a borrowing 

and lending strategy that maximizes his utility for consumption given that his initial wealth has been 

increased by the maximal project value.    

A key feature of this separation result is that the solution to the production problem depends only 

on objective information (the project's cash flows and the market rate for borrowing and lending) and can 

be determined independently of the investor's subjective preferences for consumption.  Thus investors 

with diverse preferences may cooperate in projects and delegate production decisions to a manager who 

need not know anything about the preferences of the investors.  The manager's task is to maximize the 

present value of the project and all investors will agree on the appropriate course of action. 

This separation theorem generalizes perfectly to the case of uncertainty provided markets are 

complete in that every project risk can be perfectly hedged by trading existing securities.  This was noted 

in the classic works of Arrow (1964) and Debreu (1959) and developed more fully by Hirshleifer (1965) 

and Drèze and Modigliani (1972).  In this setting, the present certainty-equivalent value plays the role of 

present value in the deterministic case and is given by the current market value of a portfolio of securities 

that exactly matches the project's value at all times and in all states.  The solution of the production 

problem is again independent of the investor's beliefs and preferences and production decisions may still 

be delegated to managers with no loss. 

The assumption of complete markets required for this separation theorem is quite strong and 

limiting in many contexts.  While there exist well-organized and efficient markets for some risks, "once it 

is realized how unimaginably numerous is the set of all distinguishable states of the world, and that 

markets cannot be provided without cost, we are forced to the conclusion that in the real world markets 
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will necessarily be incomplete" (Hirshleifer 1970, pg. 273).  Having recognized the failure of separation 

in incomplete markets in general, many researchers have identified special cases where separation holds 

in incomplete market settings.  For example, Diamond (1967) develops a two-period model with a risk-

neutral firm whose production function can be decomposed into the product of its input and some 

uncertain risk that can be hedged by trading securities; he finds that the firm's production decisions are 

entirely determined by market prices.  Similarly, Baron (1976) develops a two-period model of firms 

facing exchange rate risks.  Here, though markets are incomplete, each producer's risks can be perfectly 

hedged using the available futures contracts and, consequently, firms wind up bearing no residual risks 

and production decisions depend only on market prices.  Like these two examples, most of the literature 

in this vein has focused on identifying assumptions about the production technology that lead to 

separation and/or the case where the securities market spans the production uncertainties.  DeAngelo 

(1981) and Drèze (1982) provide syntheses of the early literature in this area and Kamara (1993) 

provides some more recent references. 

The goal of this paper is to present a generalization of the Fisher Separation Theorem applicable in 

the case where the investor winds up holding some residual risks.  Though we make no specific 

assumptions about project or security returns, we find that we must place some restrictions on the 

investor's preferences and on the form of incompleteness in the market.  First, we must assume that the 

investor's preferences for consumption can be captured by a time-additive, exponential utility function.  

Second, we must assume that the market is "partially complete" in that there exists an efficient, complete 

securities market embedded in a richer model that includes unhedgable "private" as well as hedgable 

"market" risks; the private risks need not be independent of market risks.  Given these assumptions, the 

investor considering both projects and market opportunities for trading securities can decompose this 

grand problem into simpler production and portfolio-consumption problems that may be solved 

sequentially in exactly the same way as in the deterministic and complete markets cases.   

With incomplete markets, it is impossible to determine unique project values independent of the 

investor's beliefs and preferences with incomplete markets.  However, in this framework the investor's 

choice of production plans depends on his beliefs about private risks and his risk preferences, but, as in 

complete markets, the solution is independent of his beliefs about market risks and his time preferences.  

The solution to the portfolio-consumption problem depends on the investor's beliefs about market risks 
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and his time preferences, but does not depend on the details of the project beyond its present certainty 

equivalent value.  The investor's grand strategy for investing in securities is given by the sum of a 

speculative strategy found in the portfolio-consumption problem and ex ante and ex post risk 

management strategies identified as a byproducts of solving the production problem.  The ex ante risk 

management strategy is for optimally reducing project risks before the uncertainties are resolved and the 

ex post strategy is for optimally managing or "rebalancing" the trading strategy after resolution of the 

unhedgable private uncertainties.  

The valuation procedure associated with this separation theorem is a natural extension of the 

contingent-claims procedures used in complete markets.  In one approach, we determine project values 

using a generalization of the replicating arguments used in complete markets.  In this approach, we use 

the investor's subjective beliefs and preferences to calculate market-state-contingent project values – 

essentially projecting them onto a complete markets subspace – and then construct a portfolio and trading 

strategy that matches these values in every market state.  Alternatively and equivalently, we can value 

projects using an extension of "risk-neutral" pricing methods (Cox and Ross 1978, Harrison and Kreps 

1979).  In this approach, we value market risks by taking expectations using risk-neutral probabilities and 

value private risks using the investor's probabilities and utilities.  From this perspective, the valuation 

procedure may also be seen as an extension of the recursive utility (or temporal von-Neumann-

Morgenstern) procedure developed in Kreps and Porteus (1978, 1979a).  In the case where the only 

security available is the risk-free security, the valuation procedure reduces to a special form of the Kreps-

Porteus procedure.  More generally, the valuation procedure can be viewed as an extension of the Kreps-

Porteus procedure that uses market information (in the form of risk-neutral probabilities) to value market 

risks. 

The idea of valuing projects or cash flows in incomplete markets by projecting them onto the 

marketed subspace is fairly standard, playing a central role in Merton (1998) and discussed in detail in 

Magill and Quinzi (1996).  The method described here requires the consideration of the investor's risk-

preferences to determine how the project cash flows are projected onto the market subspace.  Merton's 

projection minimizes the squared error in the hedge portfolio and he assumes risk-neutrality towards the 

unhedged, residual risk.  Magill and Quinzi's projections are sensitive to investors' risk preferences but 

produce values corresponding to an infinitesimal or marginal investment in the income stream generated 
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by the project (Magill and Quinzi 1996; pg 152).  Luenberger (1996) calls these values "zero-level 

prices" since they describe the price such the investor would neither want to buy or sell a share of the 

project.  Here the values correspond to the purchase or sale of the entire project (i.e., present certainty 

equivalent values) and, unlike these other situations, the projection used here is not linear or additive.  

These different notions of value coincide in the limiting case of a risk-neutral investor. 

The motivation for this paper comes from the study of alternative methods for solving real options 

problems.  Traditionally, in solving these problems, one either assumes that projects are spanned by the 

securities market and uses contingent-claims methods or, alternatively, uses dynamic programming 

methods without explicitly modeling any related trading decisions and using an exogenously specified 

discount rate (see Dixit and Pindyck 1994 and Smith and Nau 1995).  Yet, in most real options problems 

encountered in practice, some, but not all, project risks can be hedged by trading existing securities.  For 

example when evaluating an oil property, price risks can be hedged (at least in part) using oil futures 

contracts, but project-specific risks like production rates or drilling costs cannot be hedged by trading 

existing securities.  In problems like these, it is inappropriate to assume spanning but difficult to 

explicitly model all of the relevant beliefs, preferences, and trading decisions in the dynamic 

programming framework.  The valuation procedure developed here is like the contingent-claims 

procedure in that it implicitly takes into account market opportunities to trade without complicating the 

model, but, unlike the standard contingent-claims procedure, it does not require complete markets.  Smith 

and McCardle (1998) use this valuation procedure to evaluate an oil field where the investor may 

accelerate production or abandon the property at any time; oil prices and production rates are both 

stochastic and prices can be hedged by trading futures contracts. 

The analysis of this paper is carried out in a discrete-time, discrete-space model.  We begin by 

considering the perspective of a single investor whose goal is to maximize his expected utility of 

consumption by invest in traded securities and non-traded projects.  The investor takes the set of 

securities and their prices as given.  The analysis is thus a partial equilibrium analysis and one might 

interpret the results or the paper as applicable to an investor who is "small" in that his actions do not 

affect market prices or market structure.1  This basic framework is described in Section 1 along with a 

                                                      
1 For a discussion of models of equilibrium in incomplete markets, the reader is referred to the surveys of Duffie (1992), Magill 
and Shafer (1991), and Geanakoplos (1990) and the text Magill and Quinzi (1996).  For a recent review of the "financial market 
innovation" literature, see Allen and Gale (1994) or Duffie and Rahi (1995). 
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simple numerical example that will be used to illustrate the procedures and results developed later in the 

paper.   

In Section 2, we state the market and preference restrictions required for the separation theorem 

and, in Section 3, we describe the valuation procedure used to solve the production problem.  In Section 

4, we study the investor's securities trading decisions and show how the investor can decompose his 

grand problem into production and portfolio-consumption problems that may be solved sequentially; 

these results are summarized in a generalized version of the Fisher Separation Theorem.  In Section 5, we 

consider extensions of the separation result and describe which aspects of the result fail as we relax each 

of the necessary preference and market assumptions.  We also present a simple approximation result that 

gives bounds on project values as we relax the exponential utility assumption.   

In Section 6, we consider the case of multiple investors (a partnership) sharing projects and 

describe how one can separate ownership and control given partially complete markets.  The main result 

of this section is a dynamic aggregation result where investors' heterogeneous beliefs about private risks 

are aggregated as in Wilson (1968) and used in the valuation procedure developed earlier.  Again the 

project values are independent of the investors' beliefs about market risks and their time preferences.  All 

proofs are given in an appendix.   

1.  The Basic Framework 

Our model is a standard discrete-time, discrete-space model of a multiperiod economy where (until 

Section 6) we focus on modeling the decisions of a single agent, hereafter referred to as the investor.    

1.1.  Information Structure 

The possible states of the world are described by a measure space (Ω, �) where Ω denotes the 

finite set of possible states of the world (ω) and � is the collection of all subsets of Ω with elements A ∈  

� representing events.  The investor's beliefs about the likelihood of the various possible events are 

described by a probability measure P defined on (Ω, �) that is assumed to be strictly positive in that P(A) 

> 0 for all non-null events A ∈  �.  All expectations (E[-]) are determined using P unless otherwise noted. 

Uncertainties are resolved and trading takes place at times t = 0,1,…, T.  The information known to 

the investor is described by a sequence of algebras, �t ⊆  �, for t = 0,1,…, T.  The interpretation is that 

the investor knows at time t whether or not ω  ∈  At, for each At ∈  �t.  As usual, we will assume that the 
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algebras grow increasingly fine in that �s ⊆ �t, whenever s ≤ t, meaning that events are never 

"forgotten."  For convenience and without loss of generality, we take �0 = {∅,  Ω} and �T = � so there is 

no information revealed before period 0 or after period T.  The sequence of algebras F = {�0, �1, ..., �T} 

will be referred to as the investor's filtration.   

At several points in the paper, it will be convenient to identify states (or nodes) representing the 

investor's possible states of information at a particular time.  To formalize this notion, for each �t, we 

may uniquely define a partition �t generated by �t as the smallest collection of disjoint non-empty 

subsets St (referred to as time-t states) of Ω whose union is Ω and is such that each At ∈  �t may be 

represented as a union of states St. The interpretation is that the investor knows which state St prevails at 

time t.  The requirement that the algebras grow increasingly fine translates here to the requirement that 

the time-(t+1) partition �t+1 include a set of states that partition each time-t state St, so the investor's state 

of information grows more refined over time.  This equivalent representation of the information structure 

corresponds to an event tree with terminal states ST being endpoints of the tree and earlier states St being 

nodes in the tree. 

We will be concerned with modeling income streams, securities price processes, and trading 

strategies that will be represented as F-adapted stochastic processes.  This means that given a process x = 

(x0, x1, ..., xT), we require each xt to be a random variable with respect to (Ω, �t), so the investor knows 

(or can determine) the value of xt at time t.  We let X denote the space of all real-valued F-adapted 

stochastic processes and note that X ⊆  ℜ T+1 × ℜ |Ω| where |Ω| indicates the number of states ω in Ω. 

1.2.  Securities and Securities Markets 

There are N+1 long-lived securities.  For notational convenience, we will assume that the securities 

pay no dividends in the time frame of the model.  We let st = (st
0, st

1, …, st
N) ∈  ℜ N denote the vector of 

security prices in period t.  The security price process s = (s0, s1, …, sT) is assumed to be exogenously 

determined and adapted to F.  We will assume that there is a risk-free security (the 0th security) with 

price st
0(ω) = (1+rf)t for all t and ω ∈  Ω, with rf being the risk-free rate. 

The market is linear and frictionless in that the investor can buy or sell as many shares of a security 

as desired (including fractional and negative amounts) at market prices without incurring any transactions 

costs.  Let θθθθt = (θt0, θt1, …, θtN) denote a generic portfolio of shares of securities held from time t to time 

t+1.  As the investor's trading strategies must depend only on information known at time t, we require all 
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trading strategies θθθθ = (θθθθ0, θθθθ1, …, θθθθT) to be adapted to F, and, to prevent "borrowing from beyond the 

horizon", we require θθθθT = 0; the space of all such trading strategies is denoted ΘΘΘΘ.  If the investor follows 

trading strategy θθθθ, he receives proceeds d(θθθθ) ∈  X given by dt(θθθθ) ≡ (θθθθt-1− θθθθt) st (the product here is an inner 

product), for t > 0, and dt(θθθθ) ≡ − θθθθt st  for t = 0.  

The securities market is assumed to be arbitrage-free in that security prices are such that there is 

no trading strategy θθθθ ∈  ΘΘΘΘ that always generates non-negative proceeds (dt(ω; θθθθ) ≥ 0, for all t and ω) and 

has some chance of generating positive proceeds (dt(ω; θθθθ) > 0, for some t and ω). 

1.3.  Projects 

Projects are modeled as income streams that, unlike securities, are not traded.  We imagine these 

projects or productive opportunities as endowments resulting from unique, investor-owned (or potentially 

owned) patents, land or natural resources, technical knowledge, etc.  The impossibility of trading or 

sharing these projects might be the result of, for example, insurmountable transaction costs or moral 

hazard problems.  We let p = (p0, p1, ..., pT) ∈  X denote a generic project and, when the investor has 

flexibility in selecting or managing a project, we let p(ππππ) ∈  X denote the project cash flows given that the 

investor follows production plan ππππ.   

To formalize the structure of these production plans and capture the possibility of sequential 

decision making, we let �t denote the set of possible actions (αt) at time t.  A production plan ππππ = (π0, π1, 

..., πT) is sequence of policies πt mapping from states of the world (ω ∈  Ω) to time-t actions (αt ∈  �t).  

To ensure that the choices are made based only on available information, we require the policies ππππ to be 

adapted to the investor's filtration F.  Similarly, we require the project cash flows to be "non-

anticipating" in that the period-t project cash flows do not depend on decisions that have not yet been 

made.  Formally, this means that for any t, pt(ππππA) = pt(ππππB) for any ππππA and ππππB such that πτ
A = πτ

B for τ = 0, 1, 

... , t.  To ensure that an optimal production plan exists, we will assume that p(ππππ) is a continuous function 

of ππππ and ππππ ranges over some compact set of available plans ΠΠΠΠ.  (We can use the Euclidean topology for 

X; the topology for ΠΠΠΠ will depend on the application.)  

1.4. The Investor's Grand Problem 

The investor's goal is to maximize his expected utility of consumption where consumption is 

modeled as the net income to the investor, taking into account both securities and projects.  The 
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investor's preferences for a (realized) consumption stream c = (c0, c1, ..., cT) ∈  ℜ T+1 are captured by a 

utility function U(c0, c1, ..., cT), or simply U(c), that is assumed to be strictly increasing and strictly 

concave in c.  The investor's grand problem (or consumption-portfolio-production problem) is to choose 

a production plan ππππ* and a securities trading strategy θθθθg to solve 

 
  

max
ππππ ∈  ΠΠΠΠ , θθθθg ∈  ΘΘΘΘ

 E[ U(e + p(ππππ) + d(θθθθg)) ]  , (1)  

where e = (e0, 0, ..., 0) denotes the a cash flow stream corresponding to a lump-sum receipt of the 

investor's (endowed) initial wealth (e0) at time 0.  e + p(ππππ) + d(θθθθg) is the consumption stream generated 

by the project and securities investments using production plan ππππ and trading strategy θθθθg.  Note that in 

this formulation of the grand problem, we allow the possibility of negative consumption in any period.  

For reasons discussed in Section 5.3, we cannot fully separate production and portfolio-consumption 

decisions if we require consumption to be non-negative.  

1.5.  A Simple Example 

To illustrate the results and procedures of the paper, we will consider a simple numerical example 

involving a farmer who is using a new seed and faces price and yield uncertainty.  The farmer plants his 

crop in period 0 and observes some early indication the effectiveness of the new seed in period 1 which 

gives him some information about future yields.  There is still uncertainty about the yield due to, say, 

uncertainty about the weather near harvest.  In period 2, he harvests the crop and sells it at then-

prevailing market prices.  The cash flows and probabilities are shown in the tree of Figure 1.  The farmer 

may buy and sell two securities:  a risk-free security whose price in period t is given by (1+.04)t 

(corresponding to a risk-free rate rf of 4 percent) and a forward contract that guarantees delivery of a 

certain amount of the crop for $13.00.   The contract requires no up front cash payments in periods 1 or 2 

and pays the difference between the spot price and $13, as shown in Figure 1.  The farmer's preferences 

are captured by an additive-exponential utility function of the form described in Section 2.1 (below) with 

utility weights k0 = k1 = k2 = 1 and consumption risk tolerances ρ0 = ρ1 = ρ2 = 40.  His initial wealth (e0) is 

assumed to be 100. 
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Period 1 Period 2 Project Cash Flows Security 1 Price
Indication Price Yield 0 1 2 0 1 2

17 bu.
$15 .43 -130 -5 255 0 0 2

.47 12 bu.
Positive .57 -130 -5 180 0 0 2

16 bu.
.70 $10 .52 -130 -5 160 0 0 -3.53

11 bu.
.48 -130 -5 110 0 0 -3

14 bu.
$15 .44 -130 -3 210 0 0 2

.47 10 bu..30 Negative .56 -130 -3 150 0 0 2

13 bu.
$10 .54 -130 -3 130 0 0 -3.53

10 bu.
.46 -130 -3 100 0 0 -3  

 Figure 1:  The farmer's problem. 

2. Valuation in Partially Complete Markets 

Given certain preference and market restrictions, we can decompose the grand problem (1) into 

simpler production and portfolio-consumption problems that focus exclusively on projects and 

exclusively on securities, respectively.  After describing the preference and market restrictions in 

Sections 2.1 and 2.2, we describe the procedure for valuing a single project in the next section.    

2.1.  Preference Assumptions 

To achieve separation with incomplete markets, we assume that the investor's preferences for 

consumption satisfy the following two assumptions. 

A1) Additivity:  The investor's utility function can be represented as the sum of utility functions for 

consumption in individual periods, U(c0, c1, …, cT) = �t=0
T  kt ut(ct) where kt > 0 for all t.   

A2) Constant Absolute Risk Aversion:  The investor's preferences for period-t consumption 

exhibit constant absolute risk aversion and, hence, can be represented by a utility function of 

the form ut(ct) = − exp(−ct/ρt) where ρt  > 0, for all t.   

The utility weights kt  and consumption risk tolerances ρt  can be interpreted as capturing the investor's 

time and risk preferences, respectively.  The second assumption implies that the investor is indifferent 

between an uncertain period-t consumption level ct~  and certain level given by the certainty equivalent, 

 CEt[ct~] ≡ −ρt ln(E[exp(−ct~/ρt)]) .   
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These two assumptions (together with our assumptions about the continuity of p(ππππ), the compactness of 

ΠΠΠΠ, and the absence of arbitrage opportunities) ensure that there exists a solution to the grand problem. 

Lemma 1:  If the investor's preferences satisfy (A1) and (A2), then there exists ππππ* and θθθθg* that solve (1). 

To show how we will use these preference assumptions, let us consider a simplification of the 

grand problem (1) where the investor has no project income and the only security available is the risk-

free security.  In this case, given (A1) and (A2), the investor's grand problem (1) reduces to  

 U* ≡  
 

max
x

 �t=0
T −ktexp(−xt/ρt) 

subject to  �t=0
T xt/(1+rf)t  =  e0   . 

The constraint being that the present value of the consumption stream must equal to investor's initial 

wealth e0.  Letting µ*
0 denote the Lagrange multiplier associated with the constraint, the first order 

conditions for this problem require that the optimal solution x* satisfy −ktexp(−x*
t/ρt) = µ*

0 ρt/(1+rf)t for all 

t.  Thus we may write the optimal utility as U* = µ*
0R0 where R0 ≡ �t=0

T ρt/(1+rf)t.   

Now suppose the investor receives the additional project income amount p0 in period 0.  Taking µ+
0 

to be the new Lagrange multiplier, the first-order conditions require that the optimal solution x+ satisfy 

−ktexp(−x+
t /ρt) = µ+

0 ρt/(1+rf)t for all t.  Taking x+
t  = x*

t + p0 ρt/R0, we see that −ktexp(−x+
t /ρt) = −ktexp(−x*

t/ρt) 

=  µ*
0 ρt/(1+rf)t exp(−p0/R0) for all t, so the first-order conditions are satisfied with µ+

0 = µ*
0 exp(−p0/R0).  

Thus, given that x* is the optimal consumption stream with no project income, x+
t  = x*

t + p0 ρt/R0 is 

optimal given this additional income in period 0.  Moreover, the investor's utility is now U+ = 

U*exp(−p0/R0), implying that the investor's preferences towards period-0 income can be described by an 

exponential utility function with an "effective risk tolerance" equal to R0.  Thus, given a gamble p0~  that is 

resolved and paid in period 0, the investor is just indifferent between receiving the gamble and the 

"effective certainty equivalent" equal to −R0 ln(E[exp(−p0~ /R0)]).  The investor spreads the outcome of the 

gamble over future periods by increasing consumption in each period by p0~  ρt/R0.   

This kind of intertemporal risk sharing and aggregation will play a key role in the results that 

follow.  In the valuation procedure of Section 3, we will evaluate private risks (those that cannot be 

hedged by trading existing securities) by calculating these effective certainty equivalents.  In the 
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separation theorem, we see that the optimal trading strategy contains a rebalancing component that 

spreads private risks over time by adjusting the position in the risk-free security.  Intuitively, these risk 

sharing and aggregation results are analogous to a risk-sharing syndicate of Wilson (1968).  Here, it is as 

if the investor forms a syndicate with his "future selves" and shares risks by investing in the risk-free 

security.  Wilson shows that individuals with exponential utilities, as a Pareto efficient group, should 

behave as if they have an exponential utility with risk tolerance equal to the sum of the individual risk 

tolerances and should share risks in proportion to their individual risk tolerances.  Here each "future self" 

has an exponential utility function for consumption in that period and the analogous results hold with 

discounted consumption risk tolerances, reflecting the interest earned on the risk-free security.  

2.2.  Market Assumptions 

In addition to restricting the investor's preferences, to achieve separation we must assume that there 

is a complete, efficient securities market embedded within the multiperiod model.  To formalize this idea, 

we introduce a market filtration, Fm ≡ {� t
m : t = 0, 1, ..., T}, a sequence of increasingly fine algebras of Ω, 

with elements A t
m of � t

m referred to as time-t market events.  We let the market states S t
m and market 

partitions � t
m be defined in the same way that the investor's states of information were defined in Section 

1.1.  At each time we require � t
m ⊆  �t; the interpretation is that the investor knows the market state but 

may also have private information.  This implies that for each private state St ∈  �t there is a unique 

market state S t
m ∈  � t

m such that St is a subset of S t
m.  In practice, we envision these market states as being 

defined by reference to the security price process, perhaps corresponding to a binomial- or trinomial-tree 

model (as in Cox, Ross, and Rubinstein 1979, for example).  In the farmer's problem of Figure 1, the 

market filtration describes price changes in the prices of the forward contract and is illustrated in the tree 

Figure 2.   

Period 2 Security 1 Price
Period 1 Price 0 1 2

$15
.47 0 0 2

$10
.53 0 0 -3  

 Figure 2:  Market filtration for the farmer's problem 
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Let ΘΘΘΘm ⊆  ΘΘΘΘ denote the set of trading strategies that are adapted to Fm and thus depend on market 

information only.  The market assumptions may then be formalized as follows: 

(A3) Partial Completeness:  The securities market is complete within Fm in that, for every x ∈  X 
that is adapted to Fm, there exists a replicating trading strategy θθθθr ∈  ΘΘΘΘm such that dt(ω; θθθθr) = 
xt(ω) for all ω ∈  Ω and t > 0. 

(A4) Efficiency:  (a) The security price process s is adapted to Fm and (b) the investor believes that, 
given the current market state, his private information gives no additional information about 
future market events; i.e., for any t > τ and A t

m ∈  � t
m, P[At

m | �τ] = P[A t
m | � τ

m]. 

This definition of partially complete markets (A3) is a natural generalization of complete markets that 

includes complete markets and non-existent markets as extreme cases.  In one extreme, the market is 

complete in the usual sense if it is partially complete and Fm = F; in this case the efficiency assumption 

(A4) is trivially satisfied.  In the other extreme, if the only security is the risk-free security, the market is 

still partially complete with � t
m = {∅,  Ω} for all t.  The efficiency condition can be interpreted as saying 

that private information provides no information about security prices that is not already included in Fm.  

As a consequence, we can completely describe the securities market by assigning probabilities and prices 

in the reduced model described by Fm (e.g., using the reduced tree of Figure 2 rather than the full tree of 

Figure 1).   

Note that the efficiency condition requires market events to be independent of earlier private 

events but allows private uncertainties to be dependent on contemporaneous and previous market and 

private events.  This is the case in the farmer example where low prices tend to accompany high yields 

and vice versa (see Figure 1).    

3.  Valuation 

Given these restrictions on the investor's preferences and the form of incompleteness in the market, 

we can develop a procedure for evaluating projects without explicitly modeling the investor's trading 

decisions.  The basic idea is to use subjective beliefs and preferences to determine effective certainty 

equivalents conditioned on the occurrence of a particular market state.  We then determine the value of a 

project by determining the market value of a portfolio that matches these market-state-contingent 

effective certainty equivalents or, equivalently, using risk-neutral methods.  In essence, in calculating 
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market-state-contingent certainty equivalents, we are projecting a problem with incomplete markets to an 

equivalent one where markets are complete.  In a multiperiod setting, this projection is done recursively.  

We first focus on valuing a single project (i.e., a project with a fixed production plan) in Sections 3.1-3.3.  

We present a value additivity result in 3.4 and consider the selection of optimal production plans in 

Section 3.5.   

The justification of this definition of "value" developed in this section will be provided by the 

Separation Theorem of the next section.  There it is shown that optimal production plans maximize this 

definition of value and the amounts may be interpreted as a project's present certainty equivalent value or 

breakeven buying or selling price. 

3.1.  Effective Certainty Equivalent Projection 

The key to the valuation procedure is to define a projection that maps from project cash flows in 

incomplete markets to an equivalent set of cash flows in the span of the complete market subspace.  We 

can then use complete market methods to value spanned component.  This projection is defined by 

replacing one-period's private risks with their effective certainty equivalents (as discussed informally in 

Section 2.1) and is done recursively, one period at a time.  Let vt denote a �t measurable random variable, 

which later will represent the value of the project at the end of period t, after period t's uncertainties have 

been resolved.  Let �t
m ⊕  �t-1 denotes the smallest algebra containing both �t

m and �t-1; describing what is 

known at time-(t-1) plus the time-t market information.  The effective certainty equivalent mapping 

ECEt[-] is defined by calculating certainty equivalents for period-t private risk using an exponential 

utility function with effective risk tolerance Rt: 

 ECEt[ vt | �t
m ⊕  �t-1]  ≡  −Rt ln(E[exp(−vt/Rt) | �t

m ⊕  �t-1])     (2) 

 Rt  ≡  �
τ=t

T
 

ρτ

(1+rf)τ-t   .  (3) 

In (2), we condition on the time-(t-1) private state (contained in �t-1) and the occurrence of a particular 

market state at time t (contained in �t
m) and take expectations over the time-t private state.  The operator 

changes each period as the effective risk tolerances change and income risks are spread over different 

numbers of remaining periods. 
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We can illustrate these definitions using the farmer example described in Figure 1.  In period 2, the 

algebra �t
m ⊕  �t-1corresponds to the state of information at the nodes representing the yield uncertainty 

where the period-2 price is known but the yield uncertainty has not yet been resolved.  We would 

calculate effective certainty equivalents by taking expectations over the yield risks using an effective risk 

tolerance of R2 = ρ2  = 40.  Focusing on the scenario where the early indication is positive and calculating 

effective certainty equivalents for the top yield node, we find an effective certainty equivalent for the 

high price scenario of −R2 ln(.43exp(−255/R2) + .57exp(−180/R2)) = 198.11.  The interpretation of this 

effective certainty equivalent is that the investor is just indifferent between taking the gamble described 

by this yield node (.43 chance of receiving $255 and .57 chance of receiving $180) and receiving $198.11 

for certain.  Similar calculations for the low price scenario give an effective certainty equivalent of 

128.55. 

This effective certainty equivalent operator thus decomposes the �t-measurable random variable vt 

into two components  

 vt = ECEt[ vt | �t
m ⊕  �t-1] + wt  .  

The first component ECEt[ vt | �t
m ⊕  �t-1] is a �t

m ⊕  �t-1-measurable random variable that can be 

interpreted as the projection of vt onto the marketed subspace.  This component will be valued using 

contingent claims methods as described in the next two sections.  The second component, is a residual 

term or a windfall wt ≡ vt − ECEt[ vt | �t
m ⊕  �t-1] that has no value under the ECE operator, i.e., ECEt[ wt | 

�t
m ⊕  �t-1] = 0 (this is easily verified).  The stream of these windfalls w = (w0, w1, ..., wT) (w ∈  X) can be 

interpreted as the unhedgable private shocks to the project value.   

Note that the ECE operator is non-linear in that, in general, ECEt[avt] ≠ aECEt[vt].  The ECE 

operator is also not additive in that, given two �t-measurable random variables vA
t  and vB

t , in general, 

ECEt[vA
t  + vB

t ] ≠ ECEt[ vA
t ] + ECEt[ vB

t ].  Additivity does however hold in the case where either vA
t  or vB

t  is 

�t
m ⊕  �t-1-measurable.  The projection both linear and additive in the limiting case of a risk-neutral 

investor (i.e., one with consumption risk tolerances ρt approaching ∞ for all t). 

3.2.  Valuation by Replication 

After reducing the private risks by calculating effective certainty equivalents, we can value the 

market components using either replicating methods or, equivalently, using risk-neutral methods.  We 
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consider replicating methods first.  A certainty-equivalent replicating trading strategy for a project is a 

trading strategy that matches the project's effective certainty equivalent in each future market state.  

Given a project p ∈  X, since the project produces no income after time T, the project's final replicating 

portfolio θθθθr,T is equal to 0.  In this case, and in general, the time-t value (vt) of the project is defined as the 

market value of its certainty-equivalent replicating trading strategy plus any time-t project cash flows:  

 vt  ≡  pt + θθθθr,t st  . (4) 

Earlier certainty-equivalent replicating portfolios are defined recursively: given vt, we find θθθθr,t-1 (and 

hence vt-1) by solving 

    θθθθr,t-1 st  =  ECEt[ vt | �t
m ⊕  �t-1]  . (5) 

If markets are partially complete we can always find trading strategies θθθθr that are adapted to F (and thus 

feasible) that satisfy (3) and this, together with the no arbitrage assumption, implies that the value stream 

v ≡ (v0, v1, ..., vT) is unique and F-adapted.   

Proposition 1 (Valuation by Replication):  If markets are partially complete (A3), then, for any project 

p, there exists a θθθθr ∈  ΘΘΘΘ and a unique v ∈  X, satisfying equations (2) and (3). 

In the special case of complete markets or, more generally, for a project that lies in the span of the 

securities market (i.e., an Fm-adapted project), the project values vt are uniquely determined by the time-t 

market information and this valuation procedure reduces to the standard complete-markets replication 

procedure.  In this case, the values and replicating trading strategies are independent of the investor's 

beliefs and preferences.  If markets are incomplete, the values and replicating strategies depend on the 

investor's probabilities for private risks (i.e., the conditional probabilities P(St | St
m, St-1) used to calculate 

expectations in equation 4) and risk preferences (as captured by the consumption risk tolerances ρt), but 

are independent of his beliefs for market events (i.e., the probabilities P(St
m)) and time preferences (as 

captured by the utility weights kt) as well as his initial wealth (e0).  Any dependence between market and 

private events is taken into account by calculating effective certainty equivalents conditioned on the 

market states.  

We can illustrate this valuation procedure by considering the example of Figure 1.  Focusing on the 

scenario where the early indication is positive, we earlier found effective certainty equivalents of 198.11 
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and 128.55 for the high and low price states, respectively.  To find the certainty-equivalent replicating 

portfolio θθθθr,2 = (θ0
r,2 , θ1

r,2 ), we solve equation (3) which in this context becomes: 

 (1.04)2  θ0
r,2   +    2.00 θ1

r,2   =  198.11   

 (1.04)2  θ0
r,2   +  −3.00 θ1

r,2   = 128.55. 

This gives θθθθr,2 = (157.44, 13.91):  given a positive early indication on yield, the certainty equivalent 

replicating portfolio contains 13.91 shares of the futures contract and 157.44 shares of the risk-free 

security.  In this case, according to equation (2), the project is worth v1 = −5 + (157.44, 13.91) × (1.04, 

0.00) = 158.73.  Given a negative early indication on yield, similar calculations give a project value of 

136.81.   

Proceeding recursively, we then calculate an effective certainty equivalent for the period 1 using an 

effective risk tolerance R1 = 40 + 40/(1.04) = 78.46.  The period-1 effective certainty equivalent is −R1 

ln(.70exp(−158.73/R1) + .30exp(−136.81/R2)) = 151.49.  With no market uncertainty in this period, the 

replicating portfolio could contain only the risk-free bond or only the futures contract or a combination of 

the two (since both are risk-free); using only the risk-free bond, the replicating portfolio contains 145.66 

= (151.49/1.04) bonds.  Applying equation (4), we find a present value v0 = –130 + (145.66, 0) × (1.00, 

0.00) = 15.66. 

3.3.  Risk-Neutral Valuation 

Rather than explicitly constructing a certainty-equivalent replicating portfolio, we can also 

calculate project values using "risk-neutral" methods.  When markets are arbitrage-free, there is a risk-

neutral measure (or "equivalent martingale measure") P* defined on (Ω, �) such that security prices may 

be calculated as expected future values discounted at the risk-free rate rf, i.e., for any t and τ > t, 

 st  =  
1

(1+rf)τ-t E*[ sτ | �t] (6) 

where E* denotes expectations computed using P* (see Harrison and Kreps 1979).  In general, these risk-

neutral probabilities will not be equal to the investor's (or any other investor's) probabilities and will be 

unique if and only if markets are complete.  In our case, if we assume that markets are complete within 

Fm, there will be unique risk-neutral probabilities for market events and we can determine unique risk-

neutral expectations E*[ x | �t] for any (�t+1
m  ⊕  �t)-measurable random variable x.  We can determine 
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these risk-neutral probabilities P*(St+1
m  | St

m) working in a reduced tree focusing on the market risks (e.g., 

in the tree of Figure 2).  We can then use the risk-neutral probabilities to construct a tree for the project 

with risk-neutral probabilities P*(St+1
m  | St

m) in place of the corresponding subjective probabilities P(St+1
m  | 

St) for these market events.  The "mixed tree" for the example is shown in Figure 3 with the risk-neutral 

probabilities marked with asterisks; the calculations for this example will be discussed shortly.2 

 

Period 1 Period 2 Project Cash Flows Security 1 Price
Indication Price Yield 0 1 2 0 1 2

17 bu.
$15 .43 -130 -5 255 0 0 2

.60* 12 bu.
Positive .57 -130 -5 180 0 0 2

16 bu.
.70 $10 .52 -130 -5 160 0 0 -3.40*

11 bu.
.48 -130 -5 110 0 0 -3

14 bu.
$15 .44 -130 -3 210 0 0 2

.60* 10 bu..30 Negative .56 -130 -3 150 0 0 2

13 bu.
$10 .54 -130 -3 130 0 0 -3.40*

10 bu.
.46 -130 -3 100 0 0 -3  

 Figure 1:  The farmer's problem. 

To value a project using risk-neutral methods, we "roll back" this mixed tree, using subjective 

probabilities and risk tolerances to calculate effective certainty equivalents at nodes corresponding to 

private risks and using risk-neutral probabilities to calculate expected values at nodes corresponding to 

market risks.  In a multiperiod framework, we again proceed recursively. 

Proposition 2 (Risk-Neutral Valuation):  If markets are partially complete (A3), then we may compute 
project values recursively as follows.  The time-T value of a project is given by vT = pT.  For earlier 
times, the project values are given recursively by 

 vt = pt + 
1

(1+rf) E*[ECEt+1[ vt+1 | �t+1
m  ⊕  �t] | �t]  (7) 

where E*[ − | �t] denotes expectations computed using the risk-neutral measure (defined in equation 6) 
and ECEt+1[ − | �t+1

m  ⊕  �t] denotes effective certainty equivalents (defined in equation 2). 

                                                      
2 To facilitate calculations in these trees, we adopt the convention of placing nodes for one period's market risk before the private 
risks for the same period.  Thus a tree with market and private risk in each period, would have the market risk for period 1 and 
then the private risk for period 1, followed by the market risk for period 2 and then the private risk for period 2, and so on. 
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In the special case of complete markets, this procedure reduces to the standard risk-neutral 

valuation procedure, and, in the special case where the only security available is the risk-free security, 

this valuation procedure reduces to a special form of the recursive utility procedure developed in Kreps 

and Porteus (1978).  In the case were the only security is the risk-free security, if we write the recursion 

of Proposition 2 in terms of "effective utilities", Ût ≡ −exp(−vt/Rt), we have a terminal utility ÛT = 

−exp(−pT/RT) and, for t = 0, 1, ... , T−1, 

 Ût-1 = ût-1(pt-1, E[Ût | �t-1 ])  

where ût-1 (p, Û) = exp(−p/Rt-1) Û 1/(1+rf)  (Rt/Rt-1) . 

Thus, in this case, the valuation procedure reduces to a special case of the Kreps-Porteus recursive utility 

procedure with a specific form of terminal utility ÛT and "basic utility function" (or "aggregator 

function") ût.  The procedure in Proposition 2 can then be seen as a generalization of the Kreps-Porteus 

procedure that uses market information (in the form of risk-neutral probabilities) to value market risks.  

While one could consider other forms of utility and aggregator functions in a procedure like equation (7), 

the particular forms assumed here reflect the assumed additive-exponential utility function required for 

separation to hold.  Project values computed using other forms may not correspond to present certainty 

equivalent values and may lead to project selections inconsistent with the solution to the investor's grand 

problem (1).  (More on this in Section 5.1 below.) 

We can illustrate the risk-neutral valuation procedure using the farmer example.  First, we find the 

risk-neutral probabilities using equation (6).  Letting p1 denote the probability associated with the top 

branch in Figure 2 and p2
 the other probability, equation (6) becomes: 

 0.00  =  (p1 (2.00) + p2 (-3.00))/(1.04)    

 1.04  =  (p1 (1.042) + p2 (1.042))/(1.04). 

Solving this, gives p1 = .60 and p2 = .40.  Then we can calculate project values by rolling back the tree of 

Figure 3.  Given a positive early indication, we have an effective certainty equivalent of 198.11 given a 

high price and an effective certainty equivalent of 128.55 given a low price; as described earlier.  Given a 

positive early indication, the value in period 1 is then given by equation (7) as v1  =  −5 + 1/1.04 

(.60×198.11 + .40×128.5) = 158.73.  Given a negative indication, we find a value of v1 = 136.81.  Rolling 

the tree further back and calculating effective certainty equivalents for period 1 and discounting, we find 
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an present value v0 = 15.66.  As required by Proposition 2, the values calculated using the risk-neutral 

approach are the same as those found earlier using replicating portfolios.  

3.4. Value Additivity 

The valuation procedure described so far considers a single project; what happens when we 

consider multiple projects that are undertaken simultaneously?  With complete markets, we have the so-

called "value additivity" principle that says the value of a portfolio of projects is equal to the sum of the 

values of each project.  Moreover, we can hedge the portfolio of projects by hedging each project 

individually.  To achieve similar results in this setting, we must place some restrictions on the projects in 

the portfolio.  To formalize this "value additivity" result, let v(p) and θθθθr(p) denote the value stream and a 

replicating trading strategy for a project p. 

Proposition 3 (Value Additivity):  Assume markets are partially complete (A3) and efficient (A4).  

Given projects pA, pB ∈  X, if pA, pB are independent given �T
m, then  

a) v(pA + pB) = v(pA) + v(pB),   

b) θθθθr(pA + pB) = θθθθr(pA) + θθθθr(pB), and. 

c)  v(pA) and v(pB) are independent given �T
m. 

Informally, the independence condition of the proposition requires the project cash flows to have 

independent private risks, though the two projects may have common market risks.  For example, two 

farms may both face the same price risks and have yield risks that are correlated, provided that yields are 

conditionally independent given prices.  Part (c) of the proposition says that values satisfy this same 

independence condition.  If markets are complete or both projects are spanned by the market, this 

independence condition is automatically satisfied (the project cash flows are determined by the market 

state) and this result reduces to the standard complete markets "value additivity" result.  In the case of 

incomplete markets, the result follows from the fact that, given an exponential utility function, the 

certainty equivalent of the sum of two independent random variables is equal to the sum of the two 

certainty equivalents.   

3.5.  Project Selection and Sequential Decision Problems 

Given partially complete markets, the valuation procedure developed in this section defines a 

unique present value (v0) for any fixed project.  If we have some flexibility in selecting or managing a 
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project and are given a family of projects p(ππππ) where we can choose a production plan ππππ from a set of 

available strategies ΠΠΠΠ, we can determine a unique maximal project value and identify at least one optimal 

strategy ππππ*.  (This follows from our assumption that p(ππππ) is a continuous function of ππππ and ΠΠΠΠ is 

compact.)  If we can decompose the production plans ππππ into a sequence of decisions made in each period, 

we exploit the recursive nature of the valuation procedure to determine an optimal plan using dynamic 

programming techniques. 

Proposition 4 (Sequential Decision Making): A strategy ππππ* is optimal if and only if, for t = 0, 1, ..., 

T−1, 

 vt(ππππ*) = max  
�
�
�

�
�
� pt + 

1
(1+rf) E*[ECEt+1[ vt+1(ππππ) | �t+1

m   ⊕  �t ] | �t]
 ππππ ∈  ΠΠΠΠ t(π∗π∗π∗π∗ ) 

 

where ΠΠΠΠ t(π∗π∗π∗π∗ ) = {π π π π ∈ Π  Π  Π  Π  | πτ = πτ* for τ = 0, 1, ... , t }.  

Here the set ΠΠΠΠ t(π∗π∗π∗π∗ ) denotes the set of all strategies with the same decisions for the first t periods, and, 

Proposition 4 says a plan is optimal if and only if the actions chosen in each period are "optimal 

continuations" given the then-prevailing state and the decisions made up to that point.  Thus we can adapt 

standard dynamic programming arguments for use in this framework.  For example, Smith and McCardle 

(1998) adapt standard dynamic programming results on optimal stopping to determine the form of the 

optimal policy for abandoning an oil field. 

4.  Fisher Separation in Partially Complete Markets 

In this section, we present an extension of the Fisher Separation Theorem applicable in partially 

complete markets.  The result says that given the preference and market assumptions described in Section 

2, an investor considering both productive opportunities and market opportunities for trading securities 

can decompose this grand problem into simpler production and portfolio-consumption problems that may 

be solved sequentially.  In the production problem, the investor chooses among alternative projects to 

maximize their present values as given by the procedure of the previous section.  In the portfolio-

consumption problem, the investor chooses a security trading strategy to maximize his expected utility of 

consumption given that his initial wealth has been increased by the maximal project value.  The optimal 

grand strategy is then given by composing the solutions to these two subproblems.  We first discuss the 
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separation theorem in complete markets so we may develop the analogy between the complete and 

partially complete markets results. 

4.1.  Separation in Complete Markets 

With complete markets, every project can be perfectly replicated by trading securities and project 

cash flows can literally be converted into their present certainty equivalent value.  If the investor 

undertakes a project p and shorts its replicating trading strategy θθθθr, all future project cash flows are 

exactly canceled and the net effect of the project is reduced to a lump-sum time-0 receipt of the project 

value v0.  If the investor undertakes a project and shorts its replicating trading strategy θθθθr, then his grand 

trading strategy, θθθθg in (1), may be represented as θθθθs− θθθθr where θθθθs represents the speculative securities 

investment, i.e. that part of the securities position that is not hedging project risks.  Rewriting the grand 

problem using this representation of θθθθg, the project cash flows are exactly canceled by the replicating 

trading strategy and the grand problem reduces to the portfolio-consumption problem: 

 
  

max
θθθθs ∈  ΘΘΘΘ

 E[U(e + v + d(θθθθs))]  

where e = (e0, 0, 0, ..., 0) is the cash flow stream corresponding to a time-0 lump-sum receipt of the 

investor's endowed wealth (e0), v = (v0, 0, 0, ..., 0) is the cash flow stream corresponding to a time-0 

lump-sum receipt of the project value (v0), and d(θθθθs) is the stream of proceeds generated by trading 

strategy θθθθs. 

Thus, when markets are complete we may decompose the grand problem (1) into production and 

portfolio-consumption problems that may be solved sequentially.  In the production problem, the investor 

determines a production plan ππππ* that maximizes the project's present value.  In the portfolio-consumption 

problem, the investor solves for a speculative trading strategy θθθθs* that maximizes his expected utility of 

consumption given that his wealth has been increased by the maximal project value.  The solution to the 

grand problem is to follow production plan ππππ* and the optimal grand trading strategy θθθθg* is given by 

following the speculative trading strategy and shorting the optimal project's replicating strategy θθθθr*, i.e., 

θθθθg* = θθθθs* − θθθθr*.  
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4.2.  Partially Complete Markets 

When markets are partially complete, but not complete, if the investor undertakes a project and 

shorts its certainty-equivalent replicating trading strategy, project cash flows are generally not perfectly 

canceled.  If the project's cash flows in some period exceed (or fall short) of the cash flows generated by 

the replicating trading strategy, the investor will rebalance his securities investments to spread this 

windfall (or shortfall) across future consumption.  As discussed in 3.1, these windfalls wt are defined as 

the private component of value vt − ECEt[ vt | �t
m ⊕  �t-1].  Alternatively, noting the definition of the 

replicating portfolio in equation (5), the windfall as the difference between the value of the project at 

time-t and value of the replicating portfolio constructed in the previous period, wt = vt − θθθθr,t-1 st.  Or, 

equivalently, since dt(θθθθr) = (θθθθr,t-1 − θθθθr,t) st and vt = pt + θθθθr,tst, we can write the windfall as the difference 

between the cash flow generated by the project and that generated by the replicating portfolio, wt = pt − 

dt(θθθθr).  

Following the analogy with complete markets, suppose the investor undertakes a project p with 

present value v0, shorts its certainty-equivalent replicating trading strategy θθθθr, and adjusts his portfolio 

following a rebalancing trading strategy θθθθb.  We can then represent his grand trading strategy as θθθθg = θθθθs − 

θθθθr + θθθθb, where we can interpret the consumption strategy (θθθθs) as a speculative investment in securities, 

the certainty-equivalent replicating portfolio (θθθθr) as an a priori risk management strategy for reducing 

project risks before the uncertainties are resolved, and the rebalancing trading strategy (θθθθb) as an ex post 

risk management strategy for bearing project risks after the uncertainties are resolved.  Given our 

preference assumptions, this rebalancing takes a particularly simple form and involves only an 

adjustment in the holdings of the risk-free security, given by trading strategy θθθθb,t = (θb,t,0, 0, ..., 0) where  

 θb,t,0 ≡ 
Rt+1

(1+rf)t+1 
�
�
�

�
�
�

�
τ=1

t wτ

Rτ
 (10) 

indicates the number of shares of the risk-free security held from period t to period t+1.  Like the 

replicating trading strategy, this rebalancing trading strategy does not depend on the investor's 

probabilities for market events or his utility weights (kt) and may be determined independently of the 

solution to the portfolio-consumption problem.  The following lemma characterizes the investor's 

consumption stream using this representation of the grand trading strategy.  Proof that (10) describes the 

optimal rebalancing strategy will follow shortly. 
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Lemma 2:  Let p be a project with present value v0, certainty-equivalent replicating trading strategy θθθθr 

and rebalancing trading strategy θθθθb defined according to equation (10).  Then, for any trading strategy 

θθθθs and θθθθg = θθθθs − θθθθr + θθθθb, we have the following:  

 (a)  pt + dt(θθθθg)  =  
�
�
�

   

v0 + d0(θθθθs)

 dt(θθθθs) +  ρt �
τ=1

t wτ

Rτ

 
for t = 0

for t > 0 .
 

 (b)       u0(e0 + p0 + d0(θθθθg)) =  u0(e0 + v0 + d0(θθθθs)),      and   

  E[ ut(pt + dt(θθθθg)) ] =  E[ ut(dt(θθθθs)) ],  for t > 0. 

Here pt + dt(θθθθg) denotes the sum of the project cash flows and the cash flows generated by the grand 

trading strategy θθθθg and dt(θθθθs) denotes the proceeds of the speculative trading strategy θθθθs.  The first part of 

the lemma says that if the investor manages project risks according to θθθθr and θθθθb, the net effect of the 

project on consumption is reduced to a lump-sum receipt of the project value v0 at time 0 plus a residual 

cash flow stream in which each period's windfall (wt) is shared with future periods in proportion to each 

period's consumption risk tolerance.  This risk sharing is analogous to Wilson's results on sharing risks 

among members of syndicate, as discussed in Section 2.1.  The second part of the lemma shows that the 

expected utility in each period (expectations taken based on the information available at time 0) is the 

same if the investor undertakes the project and follows the grand trading strategy θθθθg or if he receives the 

project's value v0 as lump-sum in period 0 and follows θθθθs.  This residual cash flow stream thus has no 

value to the investor.  

When markets are complete, the residual cash flows are identically zero and we may ignore the 

project cash flows when solving for the optimal speculative investment θθθθs in the portfolio-consumption 

problem.  When markets are incomplete the residual streams are not identically zero, but, provided 

assumptions (A1) − (A4) are satisfied, the project cash flows and private information can be safely 

ignored when solving the portfolio-consumption problem.  This allows us to decompose the grand 

problem into simpler production and portfolio-consumption problems that may be solved sequentially. 
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Separation Theorem: Suppose assumptions (A1)-(A4) are satisfied.  Given a project p(ππππ), let ππππ* denote 

a production plan that maximizes the present value of the project, let v0* be the maximal project value, 

and let θθθθr* and θθθθb* be certainty-equivalent replicating and rebalancing trading strategies for p(ππππ*).  Let 

θθθθs* denote an Fm-adapted trading strategy that solves 

 
  

max
θθθθs  ∈  ΘΘΘΘm

 E[ ]U(e + v* + d(θθθθs)) , (Portfolio-consumption Problem) 

where e = (e0, 0, 0, ..., 0) and v* = (v0*, 0, 0, ..., 0).  Then ππππ* and θθθθg* = θθθθs* − θθθθr* + θθθθb* is a solution to 

 
  

max
ππππ ∈  ΠΠΠΠ , θθθθg ∈  ΘΘΘΘ

 E[ ]U(e + p(ππππ) + d(θθθθg))  . (Grand Problem) 

In the special case of complete markets, this separation theorem reduces to the complete markets result 

and the production decisions are entirely independent of the investor's subjective beliefs and preferences.  

With incomplete markets, if assumptions (A1)-(A4) are satisfied, the production decisions are 

independent of the investor's beliefs about market events, his time preferences (i.e., the utility weights kt) 

and initial wealth (e0), but depend on his beliefs about private events and his risk preferences (i.e., the 

consumption risk tolerances ρt).  The solution to the portfolio-consumption problem depends on the 

investor's beliefs about the market states as well as his time and risk preferences and initial wealth, but 

requires no private information beyond the project value v0*.  After increasing his wealth by v0*, the 

investor can focus exclusively on the securities investments and he can solve a simpler problem set in Fm.  

For example in the farmer's problem, this means that the farmer can determine the optimal speculative 

trading strategy (θθθθs*) working in the tree of Figure 2 rather than that of Figure 1. 

The Separation Theorem says that the production plans (ππππ) that are optimal in the grand problem 

(1) are those that maximize this definition of value.  Since the investor is indifferent between two 

projects with the same value, we can also interpret these values as present certainty-equivalent values (or 

breakeven selling prices):  the investor is indifferent between undertaking the project and receiving its 

value v0 as a lump-sum for certain at time 0.  The values can also be interpreted as breakeven buying 
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prices in that the investor is willing to pay up to v0 to obtain the rights to the project.3  In this sense, the 

valuation procedure plays a role analogous to the "NPV rule" in the deterministic framework considered 

by Fisher.   

We can illustrate the separation result using the farmer example.  Because the optimal speculative 

trading strategy (θθθθs*) is adapted to the market filtration of Figure 2, it does not vary depending on the 

early indication revealed in period 1.  Specifically, we find that θθθθs,0*  = (76.68, 0) and θθθθs,1*  = (37.68,−4.20), 

where the first entry denotes the number of shares of the risk-free security and the second the position in 

the forward contract.4  We may then derive the optimal grand trading strategy using the result of the 

Separation Theorem.  For example, if we have a positive early indication in period 1 the farmer should 

hold the portfolio θθθθg,0*   =  θθθθs,0*  − θθθθr,0*   +  θθθθb,0*  = (37.68, −4.20) − (−157.44, 13.91) + (3.41, 0) = (-116.33, 

−18.12), where the replicating portfolio is as given in Section 3.2 and the amount of the risk-free-security 

in the rebalancing portfolio is given by equation (10).  Here we see that the farmer takes a speculative 

short position (−4.20 shares) in the forward contract, reflecting his relatively pessimistic view of the 

future prices (his probability for the high price is .47 compared to the risk-neutral probability of .60).  

This, when coupled with his hedging activities (short 13.91 shares) leads to a much larger short position 

(−18.12 shares).  The decomposition of the grand problem of the Separation Theorem thus provides some 

insight into the structure of the optimal trading strategies as well as simplifying the computation of these 

strategies. 

5.  Extensions 

In this section, we consider the implications of relaxing the assumptions made in deriving the 

separation theorem.  We first consider relaxing the preference assumptions (A1 and A2) and then 

consider relaxing the market assumptions (A3 and A4).  We also consider the possibility of incorporating 

non-negativity constraints on consumption in the grand problem.   

                                                      
3 Breakeven buying and selling prices are generally not equal, but here the equality follows from the absence of wealth effects.  
To see this, suppose project p has value v0.  Subtracting v0 from the projects period-0 cash flow results in a project with value 0.  
Thus the investor is just indifferent to paying v0 for p and forgoing the project. 
4 Note that since both securities are risk-free in period 1, without loss of optimality, we have arbitrarily taken the forward 
contract position in period-0 to be to be zero. 
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5.1.  Preference Assumptions 

While the assumption of time-additive utilities (A1) is fairly standard, the assumption of constant 

absolute risk aversion for period consumption (A2) is perhaps troublesome as it is inconsistent with the 

standard economic intuition that suggests risk aversion should be decreasing in wealth.  We first examine 

the necessity of these conditions and then state a useful approximation result applicable when 

preferences do not exhibit constant absolute risk aversion. 

Necessity.  With incomplete markets, the investor will wind up holding residual risks for some 

projects.  In order to achieve separation, the investor's preferences for these residual risks must be 

independent of the distribution of securities payoffs.  For this to be the case, additivity is required to 

ensure that the investor's preferences for residual risks in one period are independent of the distribution 

of securities payoffs in other periods (see Fishburn 1970; Theorem 11.1).  Constant absolute risk 

aversion is required to ensure that the market-state-contingent valuations in one period are independent 

of the securities payoffs in the same period.  If risk aversion were varying with consumption levels, the 

market-state-contingent valuations would depend on the securities positions, which would, in turn, 

depend on the probabilities for the market states.  Thus, if we allow incompleteness in all periods, both 

additivity and constant absolute risk aversion are necessary in order to be able to evaluate project and 

securities investments independently.   

If, as in our model, we do not have any uncertainty in period 0, we can generalize these conditions 

slightly.  In this case, the investors' preferences for consumption need only satisfy additive-independence 

and constant absolute risk aversion for future periods, conditioned on the period-0 consumption.  Rather 

than the strictly additive exponential form described in Section 2.1, we can then have utility functions of 

the form: 

 U(c0, c1, …, cT) = a(c0) + b(c0)
�
�

�
��t=1

T  
 kt ut(ct)  (11) 

where b(c0) > 0 and, for t > 1, the period utilities ut are exponential as before.  Note that the procedures 

and results of Section 3 and the results of Lemma 2 are independent of the period-0 consumption risk 
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tolerance (ρ0) and utility weight (k0) and are unaffected by this change.  The statement of the Separation 

Theorem is unchanged and its proof needs only slight modifications for this generalization.5 

Approximation.  Given that constant absolute risk aversion is necessary for separation, one might 

interpret the main message of the paper to be negative in that separation holds if and only if we make 

very restrictive assumptions about the investor's preferences.  Alternatively, and more constructively, we 

can interpret the valuation procedure as a useful approximation.  To formalize this sense of 

approximation, we maintain the assumption of additivity (A1) and relax the assumption of constant 

absolute risk aversion (A2).  Given a fixed project p ∈  X, we can write the investor's problem 

recursively, as  

 Ut(et, p) ≡ 
 

max
θθθθt

 { ktut(et + pt − θθθθt st) + E[Ut+1(θθθθt st+1, p) | �t] } (12) 

for t = 0 to T-1 with the terminal case being UT(eT, p) = kTuT(eT + pT).  Here et denotes the investor's 

wealth at the beginning of period t.  The investor's overall time-0 utility defined is given as U0(e0, p) and 

the optimal grand trading strategy θθθθg* is given as the sequence of solutions (θθθθ0*, θθθθ1*, …, θθθθT*) to the 

optimization problem in (12), starting from wealth e0 at time 0.  We will assume that such a trading 

strategy exists. 

In this setting, we can define the time-t certainty equivalent value of a project vt as in section 4.2 as 

the lump-sum amount vt such that the investor is indifferent between receiving vt as income in period t 

(for certain) and continuing the project and receiving its uncertain income stream.  Here, unlike the case 

where we assume constant absolute risk aversion, these project values will depend on the investor's 

wealth at time t, and can be defined formally as the vt(et, p) such that Ut(et + vt(et, p), 0) = Ut(et, p) where 

0 is a project paying 0 at all times and in all states.  While these values are in general difficult to 

                                                      
5 It is interesting to note that these preference conditions are essentially equivalent to those required for the Kreps-Porteus 
recursive utility procedure to represent induced preferences for income.  In the case where the only security is the risk-free 
security, the grand problem (1) reduces to the "consumption-savings problem" studied in Kreps and Porteus (1979b).  There they 
show that, in the two period case, a necessary and sufficient condition for induced preferences for income to be represented in 
their recursive utility framework is that the investor's utility function for consumption be of the form U(c0, c1) = f(c0) + g(c0) 
h(c0(1+rf) + c1) where g(c0) > 0 and f, g, and h may depend on rf.  If we further require the investor's preferences for consumption 
to be independent of rf, we find that the utility function must be of the form of equation (11), with a(-) and b(-) independent of rf.  
Thus, the valuation procedure developed here can be viewed as an extension of the Kreps-Porteus procedure in the one case 
where the Kreps-Porteus procedure accurately represents induced preferences for income. 
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compute, if we can place upper and lower bounds on the investor's risk tolerances, ρt(ct) ≡ −ut'(ct)/ut"(ct), 

we can use the valuation procedure of Section 3 to generate upper and lower bounds on these values.   

Proposition 5:  Suppose assumptions (A1), (A3) and (A4) are satisfied and the investor's period utility 
functions ut are strictly risk-averse and twice continuously differentiable.  Let θθθθg*  denote an optimal 
grand trading strategy for project p ∈  X, and let vt denote the time-t value of p determined using the 
investor's true preferences assuming the investor follows the optimal trading strategy.  Let ρt¯   ≥ 
max{ρt(ct) : ct = pt + dt(θθθθg* )}, ρt_   ≤ min {ρt(ct) : ct = pt + dt(θθθθg* )}, and let vt̄  and vt_   denote the time-t 
values of p computed assuming constant consumption risk tolerances ρτ¯  and ρτ_  (respectively) for all τ ≥ t.  
Then  vt_  ≤ vt ≤ vt̄. 

Thus the accuracy of values computed assuming a constant risk aversion depends on how much the 

investor's risk tolerance varies over the range of possible consumption levels and how much of the 

project's risks can be hedged by trading.  If the project can be perfectly hedged, the valuation procedure 

reduces to the standard contingent claims procedure and the values are independent of the investor's risk 

tolerance.  In this case, the upper and lower bounds are equal.  If there are private (unhedgable) risks, 

then the width of these bounds depends on the magnitude of the private risks and the change in risk 

tolerance over the range of possible consumption levels.  The range of possible consumption levels 

depends on both the magnitude of the private risks and the magnitude of the speculative risks the investor 

takes in the securities market.  If the investor takes speculative positions that lead to large variations in 

consumption and risk tolerances, then the bounds on value may be quite wide.  If, however, these 

speculative positions are smaller, for projects without large private risks, it may be reasonable to assume 

that risk aversion is approximately constant.  In these cases, the valuation procedure of Section 3 will 

generate approximate values and "approximately optimal" production plans. 

5.2.  Market Restrictions   

We now consider the implications of relaxing the market assumptions required for the separation 

result.  First, suppose that the partial completeness (A3) condition fails and the securities market is not 

complete within the market filtration Fm.  In this case, for some projects there will be no certainty-

equivalent replicating portfolios and we cannot determine project values using the replication method.  

Though there will still be risk-neutral probabilities for the market states, these risk-neutral probabilities 

will no longer be unique and the risk-neutral valuation procedure may not generate unique values.  
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Though we may uniquely define project values as their present certainty-equivalent value, even if the 

preference assumptions are satisfied, these values may depend on the investor's subjective probabilities 

for market states.  (This can be verified by deleting a security in the numerical example and calculating 

present certainty equivalent values with different probabilities for the market states.)  Thus, if the 

securities market is not partially complete, at least this aspect of the separation result fails. 

Second, suppose that the efficiency conditions fails, so there is a filtration Fm (perhaps the null 

filtration with �t
m = {∅ , Ω} for all t) that is spanned by existing securities, but there exist securities 

whose prices are not independent of the private information.  While we can determine unique project 

values using the valuation procedure of Section 3, the market-state-contingent effective certainty 

equivalents would not properly take into account the dependence between securities and project cash 

flows.  The values calculated would (in general) no longer be equal to the project's present certainty 

equivalent value.  Consequently, production plans selected to maximize this definition of value may no 

longer be optimal in the grand problem (1).  Moreover, even if one were to somehow determine the 

present certainty equivalent values, because the private states give information about the securities 

prices, we could not restrict our attention to the market filtration Fm when solving the portfolio-

consumption problem.   

5.3.  Non-Negativity Constraints 

Finally, one might also hope to impose non-negativity constraints on consumption in the grand 

problem (1).  While such constraints pose no problems with complete markets, if we impose these 

constraints with incomplete markets, we can no longer decompose the grand problem into production and 

portfolio-consumption problems that can be solved separately.  With complete markets, since project 

cash flows are exactly canceled by the replicating portfolio, a non-negativity constraint on consumption 

in the grand problem translates to an identical non-negativity constraint in the portfolio-consumption 

problem.  When markets are incomplete, the project cash flows are generally not perfectly canceled by 

the certainty-equivalent replicating portfolio and, if we were to impose a non-negativity constraint in the 

grand problem, the feasible cash flow streams in the portfolio-consumption problem would depend on the 

project cash flows.  Thus, the value of the project can no longer be summarized by a single lump-sum 

increase in wealth and we could no longer focus exclusively on the market filtration (Fm) when solving 

the portfolio-consumption problem.  Moreover, if the non-negativity constraints are binding in the grand 
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problem, the present certainty-equivalent value of a project may depend on the investor's subjective 

probabilities for the market states. 

6.  Separation and Valuation for Firms 

As discussed in the introduction, in the deterministic and complete market cases, the Fisher 

Separation Theorem provides a justification for both the "NPV rule" for evaluating projects and the 

separation of ownership and management.  Throughout this paper, our focus has been on evaluating 

projects from an individual's perspective and we have developed the analog of the NPV rule for partially 

complete markets.  We now briefly consider the separation and valuation issues in the case of a project 

owned by multiple investors, as in a partnership, firm, or a syndicate. 

6.1  Separation and Valuation in Syndicates 

When markets are complete, investors with diverse beliefs and preferences may cooperate on 

projects and, with no loss, may delegate project management to a manager who need not know anything 

about the investors' beliefs and preferences.  The present certainty equivalent value of a project is 

unambiguously defined and the manager's job is to maximize this value.  When markets are partially 

complete and efficient and the investor satisfies the necessary preference restrictions, an individual 

investor may still delegate production decisions to a manager and separately solve his own portfolio-

consumption problem.  In order to make production decisions that are optimal for the investor, the 

manager needs to know the investor's risk tolerances and his probabilities for private events (i.e., the 

conditional probabilities P(St | St
m, St-1) used in the valuation procedure of  Section 3).  When investors 

with diverse beliefs and preferences cooperate and share the risks of a project, they need to develop 

mechanisms for making production decisions. 

What might these mechanisms look like?  Wilson's "theory of syndicates" (Wilson 1968) provides 

some results along these lines.  Wilson examines a single-period model and considers a group of 

investors (the syndicate) sharing some risky project.  If the investors all have exponential utilities, 

Wilson shows that in a Pareto optimal sharing arrangement the investors would place bets with each 

other on the state of the world (only if they disagree on probabilities) and own shares in the risky project 

in proportion to their risk tolerances; they may also make deterministic side payments.  The syndicate, as 

a Pareto efficient group, would then make decisions as if it were a single investor with an exponential 
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utility function with a risk tolerance equal to the sum of the individual investors' risk tolerances and 

probabilities equal to the geometric mean of their probabilities, weighted in proportion to their shares.  

Given this sharing system, all investors will agree on the choice of projects and production plans, 

unanimously supporting that which maximizes the expected utility given by using the syndicate's 

probabilities and utilities. 

Wilson's results generalize directly to our setting.  To formalize these results, let us consider a 

group of I investors, labeled by superscripts i = 1, 2, …, I.  Each investor's beliefs are captured by a 

probability measure Pi defined on (Ω, �), where we assume (as in Section 1) that each measure is strictly 

positive in that Pi(A) > 0 for all non-null events A ∈  �.  Thus, though we allow the possibility of 

differences in beliefs, we assume that the investors agree on what is possible.  We further assume that all 

investors receive the same information (i.e., they share the same filtration F) and have access to the same 

securities markets and trade at common prices, maintaining the market assumptions of Section 1.  Then 

applying Wilson's result recursively in the partially complete market setting, we find the following. 

Proposition 6 (Syndicates in Partially Complete Markets): Suppose that each investor in the 

syndicate satisfies assumptions (A1) and (A2) with utility weights kt
i and consumption risk tolerances ρt

i.  

Further suppose that the market is partially complete (A3) and that each investor believes that the 

market is efficient (A4).  Then, in a Pareto optimal sharing arrangement: 

(a) The syndicate will select production plans using the valuation procedure of Section 3 with 

effective risk tolerances Rt
0  ≡ �i=1

I Rt
i  and probabilities  

 Pt
0(St | St

m , St-1) ≡  ∏
i=1

I
 P(St | St

m, St-1)Rt
i/Rt

0
   . 

(b) Each investor receives a share of the period-t project windfalls (wt) that is proportional to 

their effective risk tolerance (i.e., each investor receives wt(Rt
i/Rt

0)), for each t >0. 

(c) All investors unanimously support the strategies selected using this valuation procedure. 

Thus, considering an investment decision made by a firm, we can use the valuation procedure of 

Section 3 with aggregate beliefs and preferences in the same way as Wilson's model except here a 

manager need only query investors about their probabilities for private events (Pi(St | St
m, St-1)).  Like the 

individual production decisions, the syndicate's decisions are independent of the investors' beliefs about 

market events and their time preferences.  Note that it is the investors' effective risk tolerances (Rt
i) that 
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determine their preferences for income in period t and, hence, determines their weights in the probability 

weighting scheme of part (a) and their shares in part (b).  If all of the investors have common 

probabilities for the private events, then the syndicate's probabilities will be equal to these common 

probabilities.  If the investors disagree on these probabilities, then the syndicate's probabilities, by virtue 

of taking geometric means, will sum to less than one; this has no economic consequences provided we 

take account of this fact when effective certainty equivalents.6  In the multiperiod setting, the weights 

used to aggregate the probabilities may vary by period as the investors' consumption risk tolerances and 

share holdings vary.  Consequently, the syndicate's probabilities for an event may change over time in 

manner inconsistent with Bayes' rule. 

Also note that the sharing rule of part (b) is not unique in being Pareto efficient.  Given their ability 

to trade securities, the investors will be indifferent among all income streams that generate wt(Rt
i/Rt

0) in 

period-t value, regardless of the precise timing of the cash flows:  the firm could add the cash flows 

generated by any F-adapted trading strategy θθθθ to the investor's dividends and the investor could undo this 

modification by subtracting their share of θθθθ from his own strategy.  (This is the logic of the famous 

Modigliani-Miller "irrelevance" theorem; see, e.g., DeMarzo 1988.)  The particular payment scheme of 

part (b) distributes project cash flows to the investors as soon as possible (i.e., as soon as the 

uncertainties are resolved) and does not require the investor to adjust his position in any security other 

than the risk-free securities.  Alternatively, the syndicate could spread the period-t windfalls over all 

subsequent periods by paying each investor wt(ρτ
i /Rt

0) in each period τ ≥ t (as in Lemma 2a).  In this case, 

the period-t value of the stream associated with period-t windfall would still be wt(Rt
i/Rt

0) and the 

investors would not have to adjust any securities positions; each investor would simply consume the cash 

flows as they are received. 

                                                      
6 In calculating these effective certainty equivalents, we must note that the expected utility of the certain amount is less than the 
utility of that amount;  this leads to a renormalization of the probabilities when calculating effective certainty equivalents.  For 
example, suppose the farmer in the example were to share his crop with some other investor with the same period risk tolerances 
but who thought the probability of a high yield given high prices and a positive early indication is .65 instead of .43 as assumed 
by the farmer.  As a group, the two of them should take the probability of this event to be (.430.5)(.650.5) = .5287 and its 
complement to be (.570.5)(.350.5) = .4400.  The effective certainty equivalent for this node is then given by −R2

0 
ln((.5287exp(−255/R2) + .4400exp(−180/R2

0))/(.5287 + .4400)) = 212.01 where R2
0 = R2

1 + R2
2 = 40 + 40 = 80. 



 33 8/8/96  

6.2  Discussion 

Thus, given the assumptions required for separation to hold in incomplete markets, investors can 

cooperate on projects and delegate project management to managers (or firms) in much the same way as 

in complete markets.  As in complete markets, the manager's job is to choose projects to maximize the 

market value of the project, but, to the extent that markets are incomplete, there is some subjectivity in 

this definition of value.  In this setting, managers must poll the investors about their risk preferences and 

their beliefs concerning the private uncertainties, aggregating them as in Proposition 6. 

For a firm with many investors (for example, a large publicly held firm), the aggregation of 

investor beliefs and preferences required by Proposition 6 would seem to be impractical.  Taking 

Wilson's arguments to the limit and summing risk tolerances over all shareholders, one could argue that a 

large company should be essentially risk-neutral for all but the largest investments.  In so far as beliefs 

are concerned, most investors would not have much information about the private opportunities facing 

the company and, if asked for probabilities, would defer to management's judgment.  In this case, if 

management uses the valuation procedure of Section 3 to evaluate projects, for "small" projects, it would 

seem appropriate for them to adopt risk-neutral preferences and attempt to estimate aggregate 

probabilities for private events.  In this case, the ECE operator of Section 3.1 is replaced by the 

expectations operator and by construction, the windfalls wt are uncorrelated with all securities prices 

(since E[ vt | �t
m ⊕  �t-1] = 0 for all t).  The valuation procedure of 3.3 reduces to standard dynamic 

programming, taking expectations at every node and discounting at the risk-free rate.  The firm would be 

risk-neutral with respect to private risks, but, because it uses risk-neutral probabilities to evaluate market 

risks, the firm would appear to be risk-averse with respect to market risks.   

It may be instructive to compare this valuation procedure with those discussed in the real options 

literature.  Dixit and Pindyck (1994; pp. 120-121) propose using contingent claims methods (e.g., 

dynamic programming with risk-adjusted probabilities or replicating portfolio methods) in cases where 

the project uncertainties are spanned by the market; cash flows are discounted at the risk-free rate.  When 

spanning does not hold, they suggest using dynamic programming with an "arbitrary discount rate" (pg. 

148) that "can simply reflect the decision maker's subjective valuation of risk" (pg. 121).  The valuation 

method developed here is helpful in the middle ground where some risks may be hedged and others 

cannot.  Here the risk-adjustments are incorporated by risk-adjusting the probabilities for market risks 
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(i.e., using risk-neutral probabilities instead of true probabilities) and, if the stakes are sufficiently large, 

using the investor's or investors' risk tolerances to assign risk premiums for private risks; cash flows are 

always discounted at the risk-free rate.  Any correlation between market and private risks is captured by 

explicitly modeling the dependence between them and using risk-neutral probabilities for the market 

risks. 

7.  Summary 

In summary, we see this paper as making two contributions.  First, we have identified conditions 

that allow investors to separate production and portfolio-consumption decisions with incomplete markets.  

In as much as markets in the real world are incomplete and production and portfolio-consumption 

problems are typically solved separately, it is important to understand when and how separation may be 

achieved without loss.  Second, we have developed a new procedure for valuing real projects that cannot 

be replicated by trading existing securities.  This new procedure extends the complete-markets contingent 

claims valuation methods and provides a simple method for computing project values and management 

strategies that are consistent with market prices for existing securities and investor's or investors' 

subjective beliefs and preferences. 

Appendix:  Proofs 

Lemma 1:  We first consider the case of a fixed project p and show that there exists an optimal trading 
strategy θθθθg.  Let  

 EU(θθθθg) ≡ E[ U(p + d(θθθθg)) ] = �ω
  �t=0

T  − P({ω}) kt  exp(−(pt(ω) + dt(ω; θθθθg))/ρt ). 

For any feasible trading strategy θθθθg such that d(θθθθg) ≠ 0, there exist at least one time-state (t,ω) such that 
dt(ω; θθθθg) < 0 and another such that dt(ω; θθθθg) > 0, otherwise either θθθθg or −θθθθg would be an arbitrage 
opportunity.  Considering trading strategies κθθθθg with proceeds κd(θθθθg), we find that limκ→±∞ EU(κθθθθg) = 
−∞, since in each time-state (t,ω),  

 limκ→∞ exp(−(pt(ω) + dt(ω; κθθθθg))/ρt) = 
�
�
� 0   if dt(ω; θθθθg) > 0
 ∞  if dt(ω; θθθθg) < 0  . 

Thus, since EU(θθθθg) is a concave function of θθθθg (having inherited the concavity of U) that asymptotically 
approaches −∞ in all feasible directions, the optimization problem maxθθθθg EU(θθθθg) has an interior solution.  
Given a choice of production plans, the existence of a ππππ* that solves (1) then follows from our 
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assumption that p(ππππ) is a continuous function of ππππ where ππππ is restricted to some compact set (see, e.g., 
Royden 1968, pg. 161). ///   

Proposition 1:  We need to show that for all t, θθθθr,t and vt  exist and are �t-measurable and vt is unique.  
We establish this result using induction.  At time t = T, the result is trivial.  Assuming that result holds 
for time t, we need to show that the same properties hold at t-1.  The conditional expectations in (4) 
ensure that the right side of (3) is a (�t

m ⊕  �t-1)-measurable random variable for all t > 0.  The 
assumption of partially complete markets (A3) then implies the existence of a �t-1-measurable θθθθr,t-1 that 
solves (3).  Since pt-1, θθθθr,t-1, and st-1 are all �t-1-measurable, vt-1 ≡ pt-1 + θθθθr,t-1 st-1 is also �t-1-measurable.  
The uniqueness of vt-1 follows from our no-arbitrage assumption:  though θθθθr,t-1 need not be unique, if θθθθ1

r,t-1  
st-1 ≠ θθθθ2

r,t-1  st-1 for two θθθθ1
r,t-1  and θθθθ2

r,t-1  that both satisfy equation (3), then either a trading strategy θθθθ* taking 
θθθθ*t-1 = θθθθ1

r,t-1  − θθθθ2
r,t-1  for this t and θθθθ*τ-1 = 0 for all other times would be an arbitrage opportunity, or else −θθθθ* 

would be./// 

Proposition 2:  We establish this result using induction.  At time t = T, since the project generates a 
certain cash flow pT and no future cash flows, θθθθr,T = 0 and vT = pT.  Assuming that equation (7) holds for 
time t, we show that it holds for time t-1 by establishing the following sequence of equalities:  

    vt-1  = pt-1 + θθθθr,t-1 st-1 

  = pt-1 + 
1

(1+rf) E*[ θθθθr,t-1 st | �t-1]  

  = pt-1 + 
1

(1+rf) E*[ECEt[ pt + θθθθr,t st | �t
m ⊕  �t-1] | �t-1]   

The first equality is simply the definition of vt-1.  The second equality follows from equation (6) defining 
the risk-neutral measure and the third equality follows from our definition of the certainty-equivalent 
replicating trading strategy.  Equation (7) then follows from the induction hypothesis. /// 

Proposition 3:  We use induction to show that, for any t, (i) vt(pA + pB) = vt(pA) + vt(pB), (ii) θθθθr,t(pA + pB) 
= θθθθr,t(pA) + θθθθr,t(pB), and (iii) vt(pA) and vt(pB) are conditionally independent given �τ

m ⊕  �τ−1 for any τ ≤ t.  
The terminal case (t = T) is trivial: p t

A  and p t
B  are both known constants and (i) and (ii) follow from the 

definition of vT and θθθθr,T and (ii) follows from the assumption of the proposition.  Next, we assume that (i) 
–(iii) hold for time t and show they also hold for time t-1.  From equation (7) and part (i) of the induction 
hypothesis, we have 

 vt-1(pA + pB) = pt-1 
A  + pt-1 

B  + 
1

(1+rf) E*[ECEt[ vt(pA) + vt(pB) | �t
m ⊕  �t-1 ] | �t-1 ]  . 

Since, for the exponential utility, the certainty equivalent of the sum of two independent random 
variables (vt(pA) and vt(pB)) is equal to the sum of the two certainty equivalents, we may rewrite this 
equation as:  

 vt-1(pA + pA) = pt-1 
A  + pt-1 

B  + 
1

(1+rf) (E*[ECEt[ vt(pA) | �t
m⊕ �t-1 ]|�t-1] + E*[ECEt[ vt(pB) | �t

m⊕ �t-1 ]|�t-1]) 

or,  vt-1(pA + pB) = vt-1(pA) + vt-1(pB). 
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This establishes part (i) of the induction hypothesis for time t-1 and part (ii) follows from the definition 
of θθθθr,t in equation (5).  The induction hypothesis implies that E*[ECEt[ vt(pA) | �t

m⊕ �t-1 ]|�t-1] and 
E*[ECEt[ vt(pB) | �t

m⊕ �t-1 ]|�t-1] are conditionally independent given �T
m.  Since pt-1 

A  and pt-1 
B  are 

similarly independent by the assumption of the proposition, vt-1(pA) and vt-1(pB) must also be independent, 
thereby establishing part (iii) for time t-1./// 

Proposition 4:  This result is immediate given the definitions and the result of Proposition 2./// 

Lemma 2:  (a) Substituting θθθθg = θθθθs − θθθθr + θθθθb into the definition of dt(θθθθg) and using wt = pt − dt(θθθθr), we 
have  

 pt + dt(θθθθg) = pt + dt(θθθθs) − dt(θθθθr) + dt(θθθθb) = dt(θθθθs) + wt + dt(θθθθb)  . (A1) 

The result for t = 0 follows from noting d0(θθθθb) = 0 and w0 = p0 + θθθθr,0s0 = v0.  To prove the result for t > 0, 
we establish the following sequence of identities: 

 dt(θθθθb) =  (θb,t-1,0 − θb,t,0) (1+rf)t 

  =   
�
�
�

�
�
�Rt

(1+rf)t 
�
�
�

�
�
�

�
τ=1

t-1 wτ

Rτ
  −  

Rt+1

(1+rf)t+1 
�
�
�

�
�
�

�
τ=1

t wτ

Rτ
 (1+rf)t 

  =  
�
�
�

�
�
�

�
�

�
�Rt

(1+rf)t  −  
Rt+1

(1+rf)t+1

�
�
�

�
�
�

�
τ=1

t wτ

Rτ
  −  

Rt
(1+rf)t 

wt
Rt

 (1+rf)t 

  =  ρt �
τ=1

t wτ

Rτ
  −  wt. 

The first two equalities follow from the definition of the rebalancing portfolio.  The third equality 
rearranges the windfall terms, factoring out �τ=1

t wτ/Rτ from both terms in the second line.  The next 

equality is the result of canceling common risk tolerance terms in the third line.  The next equality 
follows from multiplying through by the outer (1+rf)t, canceling common factors, and noting that Rt − 
Rt+1/(1+rf) = ρt.  Substituting this final expression back into (A1) yields the equation of the Lemma. 
 
*** rewrite proof of (b) and sep theorem. 

(b) The first equality of the proposition, CEτ[ ρτwt/Rt | �t
m ⊕  �t-1] = ECEt[wt | �t

m ⊕  �t-1] follows from the 
definitions of the consumption certainty equivalent CEτ[-] and the effective certainty equivalent ECEt[-].  
Noting that wt = vt − θθθθr,t-1st (as shown in the text in the paragraph before the Lemma), we can rewrite this 
effective certainty equivalent as  

 ECEt[vt − θθθθr,t-1st | �t
m ⊕  �t-1]  . 

Noting that θθθθr,t-1st is constant given �t
m ⊕  �t-1 and exploiting the "∆-property" of the exponential utility 

function (given an exponential utility function, for any constant ∆ and gamble ct~ , ECEt[ct~  + ∆] = ECEt[ct~] 
+ ∆), we can rewrite this as  

 ECEt[vt | �t
m ⊕  �t-1]  − θθθθr,t-1st , 

which is equal to zero by definition of the replicating portfolio given in equation (3).   
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(c) For t > 0, we have  

 CEt[pt + dt(θθθθg)] =  CEt
�
�
	



�
�dt(θθθθs) + ρt �

τ=1

t
 
wτ

Rτ
  (A3) 

  =  CEt
�
�
	



�
�dt(θθθθs)  + ρt �

τ=1

t-1
 
wτ

Rτ
 + CEt�

	


�ρt 

wt
Rt

 | � t
m ⊕  �t-1  

  =  CEt
�
�
	



�
�dt(θθθθs)  + ρt �

τ=1

t-1
 
wτ

Rτ
 

The first equality follows from part (a) of this lemma.  The second equality is derived by computing 
certainty equivalents iteratively (conditioning on the time-t market state and the time-(t-1) market state) 
and then applying the "∆-property" of the exponential utility function (given an exponential utility 
function, for any constant ∆ and gamble ct~ , CEt[ct~  + ∆] = CEt[ct~] + ∆) and noting that, for τ < t, the 
windfalls wτ, having been determined before period t are all known constants given �t-1;  similarly θθθθs and 
dt(θθθθs) are known given � t

m and, using the "∆-property", can be pulled outside the CEt[-].  The next 
equality follows from part (b) of this lemma.  At this point, we have eliminated the τ = t term from the 
summation in (A3).  Repeating this process and taking expectations over the earlier private states (all 
conditioned on the time-t market state) we can eliminate the other terms to obtain the result of part (c). /// 

Separation Theorem:  We first prove the separation theorem in the special case where there is no 
flexibility in managing the project and then generalize to the case where there is a choice of production 
plans. 
 Let p be a fixed project with value v0 and replicating and rebalancing trading strategies θθθθr and θθθθb.  
Let θθθθ s* be an optimal solution to the portfolio-consumption problem.  To establish the separation theorem 
for a fixed project, we need to show that θθθθg = θθθθ s* − θθθθr + θθθθb is a solution to:   

 
  

max
θθθθg

 E[ ]U(e + p + d(θθθθg))   . 

Because U is assumed to be strictly concave, the first-order conditions for optimality are necessary and 
sufficient for a trading strategy θθθθg to be optimal.  These first-order conditions may be written as 

 ∂
∂θθθθg,t(ω)  E[ ]U(e + p + d(θθθθg)) | �t  = 0 ,   

for all t and ω.  Using the additive form of the investor's utility function, for t > 0, the first-order 
conditions are equivalent to 
 kt st ut'(pt + dt(θθθθg))  =  kt+1 E[ st+1 ut+1' (pt+1 + dt+1(θθθθg)) | �t]  (A4) 

where ut' denotes the derivative of the utility function ut for period-t consumption.  The t = 0 result is 
similar with the left side including e0 + p0 in place of p0.  The left side of (A4) is an n+1 vector whose 
entries represent the marginal utility of purchasing one additional share of each security at time t.  The 
right side of (A4) is the corresponding vector with entries representing the expected marginal utilities 
generated by each additional share at time t+1.  An optimal trading strategy equates these two vectors of 
marginal utilities. 
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In the remainder of the proof, we focus on the case where t > 0; the proof for t = 0 is similar.  
Taking θθθθg = θθθθ s* − θθθθr + θθθθb, rewriting (A4) using part (a) of Lemma 2, and dropping common constant 
factors, we see that (A4) holds if and only if: 

 kt st ut'(dt(θθθθ s*))  =  kt+1 E��
	



�
� st+1 ut+1' (dt+1(θθθθ s*)) exp

�
�
�

�
�
�−

pt+1 − dt+1(θθθθr)
Rt+1

 | �t       (A5) 

Noting that st+1 and dt+1(θθθθs*) are both constants given the time-(t+1) market state and taking expectations 
iteratively, we can rewrite the right side of (A5) as: 

  E
�
�
	



�
� st+1 ut+1' (dt+1(θθθθ s*)) E

�
�
	



�
�exp

�
�
�

�
�
�−

pt+1 − dt+1(θθθθr)
Rt+1

 | �t+1
m  ⊕  �t  | �t   

Applying part (b) of the lemma (in particular equation A2), this becomes 
 E[ ] st+1 ut+1' (dt+1(θθθθ s*)) | �t  . 

Noting that this expression is independent of the private states and substituting back into (A5), we find 
that (A4) is satisfied if  
 kt st ut'(dt(θθθθ s*))  =  kt+1 E[ st+1 ut+1' (dt+1(θθθθ s*)) | � t

m ]  .  

These are precisely the first-order necessary and sufficient conditions for the portfolio-consumption 
problem (they are analogous to the conditions of equation A4).  Thus if θθθθ s* is optimal for the portfolio-
consumption problem, then θθθθg = θθθθ s* − θθθθr + θθθθb is optimal for the grand problem.  
 Having established the separation theorem for a fixed project, we now show that the production 
plan ππππ* that maximizes the project value v0 is optimal for the grand problem (1).  To do this note that, for 
any fixed project, Lemma 2 (parts a and c) imply that the certainty equivalents for each period's 
consumption are identical in the portfolio-consumption and grand problems.  Because the utility function 
U is additive, this then implies that, for any fixed project, the maximal overall expected utilities are the 
same as well.  Since the utility function is increasing in first period consumption, given flexibility in 
choosing a production plan, any increase in the project value v0 leads to an increase in the expected 
utility in the portfolio-consumption problem and, hence, in the grand problem as well.  Thus the 
production plan ππππ* that maximizes the present value v0 is optimal for the grand problem. /// 
 
Proposition 5:  Our proof focuses on the upper bound, a similar proof holds for the lower bound.  Let 
�t(et) ≡ Ut(et, 0) denote the investor's "true" utility for wealth assuming he forgoes all future project 
income, and let �t¯ (et) = −exp(−et/R̄t) be the corresponding utility function given by assuming constant 
risk tolerances ρτ¯  for all τ ≥ t;  R̄t is the upper bound effective risk tolerance defined as in equation (5).  
We proceed in two steps. 

Part 1:  We first show that �t is "more risk averse" than �t¯  in that for any ��adapted random variable x̃t 
and time-t wealth et such that the possible values of et + x̃t are within the range of possible period-t wealth 
levels (i.e., min {θθθθg,t* st+1 + vt+1} ≤ x̃t  ≤ max {θθθθg,t* st+1 + vt+1})), the certainty equivalent xt

c  given by the true 
utility function is less than the corresponding certainty equivalent x̄ t

c  given by the upper bound utility 
function.  The certainty equivalents xt

c  and x̄ t
c  are defined as �t-measurable random variables such that 

�t(et + x̄ t
c) = E[�t(et +  x̃t) | �t] and �t¯ (et +x̄ t

c ) = E[�t¯ (et + x̃t) | �t].  We prove xt
c  ≤ x̄ t

c by induction.  The 
terminal case is straightforward:  �T(eT) = kTuT(eT) and �t¯ (et) = −exp(−et/ρΤ¯ ), so xT

c  ≤ x̄T
c follows from the 
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definition of ρT¯  as an upper bound on the period risk tolerance (using, e.g., Theorem 1 of Pratt 1964).  
We now assume that xτ

c  ≤ x̄τ
c  holds for all τ > t and show that it holds for period t as well. 

Let θθθθt
b denote the optimal portfolio given xt

c  as a lump-sum in period t, i.e., the solution to 

 �t(et + xt
c)  =  

 
max

θθθθt

 { ktut(et + xt
c − θθθθtst) + E[�t+1(θθθθtst+1) |�t] } (A6) 

Note that though the trading strategy θθθθt
b need not be unique, because of the strict convexity of the utility 

functions ut and �t+1, the pattern of consumption generated by the trading strategy will be unique.  Let 
θθθθt*(xt) be a trading strategy such that θθθθt

b + θθθθt*(x̃t) is an optimal trading strategy given outcome xt of the 
gamble (i.e., with xt in place of xt

c  in A7); θθθθt*(x̃t) can be interpreted as an adjustment in the trading 
strategy in response to the outcome of the gamble.  We then have 

� �t(et +xt
c ) =  E[ �t(et + x̃t) | �t] 

  =  E[ktut(et + x̃t − (θθθθt
b + θθθθt*(x̃t))st) | �t] + E[ E[�t+1((θθθθt

b + θθθθt*(x̃t))st+1) | �t+1
m  ⊕  �t] | �t] 

  =  ktut(et + x^ t − θθθθt
b st) + E[�t+1(θθθθt

bst+1 + x^ t+1) | �t]  . 

The first equality follows from the definition of vt as the effective certainty equivalent of x̃t and the 
second from the definitions of �t, θθθθt

b, and θθθθt*(x̃t), and taking expectations iteratively in the second term.  
In the next line, we replace the expressions depending on the gamble x̃t by their certainty equivalents: x^ t 
is the �t-measurable random variable such that ut(et + x^ t − θθθθt

b st) = E[ut(et + xt − (θθθθt
b + θθθθt*(x̃t))st) | �t] and x^

t+1 is the (�t+1
m  ⊕  �t)-measurable random variable such that �t+1(θθθθt

bst+1 + x^ t+1) = E[�t+1((θθθθt
b + θθθθt*(x̃t))st+1) 

|�t+1
m  ⊕  �t].  Because x^ t+1 is (�t+1

m  ⊕  �t)-measurable, the consumption stream in the third line can be 
achieved by trading securities without conditioning on the outcome of the gamble and hence is feasible 
for (A6).  Since this consumption stream achieves the maximum utility in equation (A6) and the optimal 
consumption pattern in (A6) is unique, it follows that x^ t = xt

c  and x^ t+1 = 0.   
Now, let θθθθ̄t

b denote the optimal portfolio for the upper bound utility given xt
c  as a lump-sum in 

period t, i.e., the solution to 

� �̄t(et + xt
c)  =  

 
max

θθθθt

 { ktut̄(et + xt
c  − θθθθtst) + E[�̄t+1(θθθθtst+1) | �t] } .  

Then we have  

 �̄t(et + x̄ t
c ) =  E[ �̄t(et + x̃t) | �t]    

  ≥  E[ kt ut̄(et + x̃t − (θθθθ̄t
b + θθθθt*(x))st) | �t] + E[ E[�̄t+1((θθθθ̄t

b + θθθθt*(x))st+1) | �t+1
m  ⊕  �t] | �t]  

  ≥  ktut̄(et + x^ t − θθθθ̄t
bst) + E[�̄t+1(θθθθ̄t

bst+1 + x^ t+1) | �t]    

  =  ktut̄(et + xt
c  − θθθθ̄t

bst) + E[�̄t+1(θθθθ̄t
bst+1) | �t]  

  =  �̄t(et + xt
c )  .    

The first equality follows from the definition of x̄ t
c as a certainty equivalent.  The next inequality follows 

from the definition of �̄t and noting that θθθθ̄t
b + θθθθt*(x̃t) is a feasible but non-optimal trading strategy given 

the outcome of the gamble; the adjustment θθθθt*(x̃t) is optimal for the true preferences but not the upper 
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bound preferences.  The third line follows from rearranging the order of expectations as before.  The next 
inequality (line 4) follows from ut̄ and �̄t+1 being less risk averse than ut and �t+1 (by the assumption of 
the proposition and the induction hypothesis), and hence yield certainty equivalents in each period 
greater than those given by the true utility (x^ t and x^ t+1).  The consumption in period t ranges over the set 
of possible consumption levels identified in the proposition provided the outcomes of the gamble x̃t 
ranges over the set of possible values vt.  The next equality follows from x^ t = xt

c and x^ t+1 = 0 (as 
established in the previous paragraph).  The final line follows from the definition of θθθθ̄t*.  Thus we have 
established �̄t(et + x̄ t

c ) ≥ �̄t(et + xt
c ), which implies that the certainty equivalents for the gamble x̃t satisfy 

xt
c  ≤ x̄ t

c .  

Part II.  We now use the result of Part I to show that the true and upper bound present certainty 
equivalent values satisfy vt ≤ vt̄.  Again the proof is by induction with the terminal case (t = T) being 
trivial as there is no uncertainty and vT = vT̄.  Now assuming that vτ ≤ vt̄ holds for all τ > t, we show that 
they hold for time t as well.  We establish this result as follows: 

� �t(et + vt) =  Ut(et, p)  (A7.1) 

  =  ktut(et + pt − θθθθg,t* st) + E[Ut+1(θθθθg,t* st+1, p) | �t]  (A7.2) 

  =  ktut(et + pt − θθθθg,t* st) + E[�t+1(θθθθg,t* st+1 + vt+1) | �t]  (A7.3) 

  =  ktut(et + pt − θθθθg,t* st) + E[ E[�t+1(θθθθg,t* st+1 + vt+1) | �t+1
m  ⊕  �t] | �t]  (A7.4) 

  ≤  ktut(et + pt − θθθθg,t* st) + E[�t+1(θθθθg,t* st+1 + ECEt+1[ vt+1 | �t+1
m  ⊕  �t]) | �t]  (A7.5) 

  ≤  ktut(et + pt − θθθθg,t* st) + E[�t+1(θθθθg,t* st+1 + ECEt+1[ vt̄+1 | �t+1
m  ⊕  �t]) | �t] (A7.6) 

  =  ktut(et + vt̄ − (θθθθg,t*  + θθθθr,t )st) + E[�t+1((θθθθg,t*  + θθθθr,t )st+1) | �t]  (A7.7) 

  ≤ max{ ktut(et + vt̄ − θθθθtst) + E[�t+1(θθθθtst+1) | �t] }
θθθθt

  (A7.8) 

  =  �t(et + vt̄) (A7.9) 

The first line is the definition of the period-t value vt, the second follows from the definition of θθθθg,t* , and 
the third from the definition of the period-(t+1) value vt.  The fourth line follows by taking expectations 
iteratively.  In the fifth line, we let ECEt+1[ − | �t+1

m  ⊕  �t] denote the effective certainty equivalent 
(defined in equation 4) given by assuming constant risk tolerances ρτ¯  for all τ > t.  The inequality of the 
fifth line then follows from the result of part I and the inequality of the sixth line follows from the 
induction hypothesis.  Taking θθθθr,t  to be a certainty-equivalent replicating portfolio defined (as in equation 
3) as solving θθθθr,t st+1 = ECEt+1[ vt̄+1 | �t+1

m  ⊕  �t], the seventh line then follows using this along with the 
definition of vt̄ as pt + θθθθr,t st.  The next line follows since (θθθθg,t*  + θθθθr,t ) is a feasible, but generally non-
optimal, portfolio for the optimization problem of line 8.  The final equality follows from the definition 
of �t.  We have thus established �t(wt + vt) ≤ �t(wt + vt̄) which implies vt ≤ vt̄ as desired. /// 
Proposition 6:  In a Pareto optimal sharing arrangement, the distribution of wealth in each period (after 
that period's uncertainties are resolved) would maximize a weighted sum of the individual's expected 
utilities for wealth in that period.  It is easiest to focus on a particular state of information St-1 and 
consider the arrangement to share a gamble xt

0 that is resolved in the next period and pays xt
0(St) in each 
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state St ∈  �t such that St ⊆  St-1.  A Pareto optimal sharing arrangement for a gamble xt
0(St) is a set of 

functions (xt
1, xt

2, …, xt
I) with xt

i(St) specifying an allocation that of wealth to investor i in period t and 
state St, such that, for some set of weights (λ1, λ2, …, λI), λ i > 0, solves 

  
 

max
(xt

1, xt
2, …, xt

I)
   �

i=1

I
  
 �
St ⊆ St-1

  λ i Pi(St | St-1)�t
i(xt

i(St)) (A9) 

         subject to  �
i=1

I
xt

i(St) = xt
0(St)    for all St ⊆  St-1  , 

where �t
i denotes investor i's utility for wealth in period t.  A Pareto efficient group would then evaluate 

alternative gambles xt
0 on the basis of the maximal value of the objective function in (A9) for a given set 

of weights. 
From the separation theorem, we know that �t

i(xt
i) can be represented as −exp(−xt

i/Rt
i) where Rt

i is 
investor i's period-t effective risk tolerance.  The first-order conditions for (A9) require the existence of a 
set of Lagrange multipliers µt(St) such that, for all i and states St ⊆  St-1, the optimal sharing arrangement xt

i

* satisfies: 

 λ i Pi(St | St-1) exp
�
�

�
�− 

xt
i*(St)
Rt

i   =  µt(St) Rt
i   . (A10) 

Solving this for xt
i*(St), we find  

 xt
i*(St) =  −Rt

i 
�
�
�

�
�
�

 ln(µt(St)) − ln
�
�
�

�
�
�λ i

Rt
i  − ln(Pi(St | St-1))  . 

Summing over i and using the constraint from (A9), this implies  

 xt
0(St) =  −Rt

0 


�
�

�
�
�

 ln(µt(St)) − ln
�
�
�

�
�
�

∏
i=1

I
 
 �
�
�

�
�
�λ i

Rt
i

Rt
i/Rt

0

 − ln
�
�
�

�
�
�

∏
i=1

I
 
 Pi(St | St-1)

Rt
i/Rt

0

   

or, rearranging,   

 λ0 Pt
0(St | St-1) exp

�
�

�
�−

xt
0(St)
Rt

0  =  µt(St) Rt
0   (A11) 

where Pt
0(St | St-1) =  ∏i=1

I  
 Pt

i(St | St-1)Rt
i/Rt

0 and λ0 = Rt
0 ∏i=1

I  
 (λ i/Rt

i)Rt
i/Rt

0.  Using this with (A10), we can 

write the objective function in (A9) as   

 �
St ⊆ St-1

 −λ0 Pt
0(St | St-1) exp

�
�

�
�−

xt
0(St)
Rt

0    ,  (A12) 

where λ0 enters only as an irrelevant constant.  Therefore, the group of investors evaluates gambles in 
each period as if it were a single investor with probabilities Pt

0(St | St-1) and an exponential utility with 
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effective risk tolerance Rt
0, and would evaluate production plans using the valuation procedure of Section 

3.   
To complete the proof of part (a) of the proposition, we need to show that the aggregate 

probabilities for private events used in the valuation procedure (Pt
0(St | S t

m, St-1)) are given by aggregating 
the individual probabilities for private events.  To see this, note that, since Pt

i(St | St-1) = 
Pt

i(St | S t
m, St-1) Pt

i(S t
m | St-1), 

 Pt
0(St | St-1) = ∏i=1

I  
 Pt

i(St | S t
m, St-1)Rt

i/Rt
0 ∏i=1

I  
 Pt

i(S t
m | St-1)Rt

i/Rt
0  = Pt

0(St | S t
m, St-1) Pt

0(S t
m | St-1)  

where Pt
0(St | S t

m, St-1) and Pt
0(S t

m | St-1) are aggregate probabilities for private and market events 
respectively, the latter being irrelevant in the valuation procedure of section 3. 

To establish part (b) of the proposition, combining (A10) and (A11) we find  
 

1
Rt

i λ i Pi(St | St-1) exp
�
�

�
�−

xt
i*(St)
Rt

i  = 
1
Rt

0 λ0 Pt
0(St | St-1) exp

�
�

�
�−

xt
0(St)
Rt

0    . 

Solving for xt
i*(St) yields 

 xt
i*(St) = Rt

i ln
�
�
�

�
�
�λ i Rt

0

λ0 Rt
i  + Rt

i ln
�
�

�
�Pt

i(St | St-1)
Pt

0(St | St-1)  + 
Rt

i

Rt
0 xt

0(St)      . 

The first term here totals zero when summed over investors and can be interpreted as deterministic "side 
payment"; the amount of the payment depends on the weights (λ i) associated with investor i, but is 
independent of the gamble (xt

0) or the beliefs of the investors.  The second term also sums to zero and can 
be interpreted as a "side bet" that depends on the investors' beliefs, but not the project or weights;  
intuitively, investor i receives more in those scenarios where his probability is higher than the aggregate 
probability.  The final term represents investor i's share of the gamble xt

0 and we see that each investor 
shares in proportion to their effective risk tolerance.  In the context of the valuation procedure, the 
changes in wealth in each period are specified by the windfalls wt , and, hence, each investor would share 
these windfalls in proportion to there effective risk tolerances, as specified in part (b) of the proposition.   

The unanimity claim of part (c) follows from the fact that the evaluation of projects are 
independent of the weights λ i associated the individuals.  Thus, if we assigned vanishingly small weights 
to all individuals except individual i (as individual i would want to do), we would reach the same 
conclusions./// 
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