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In many decision analysis problems, we have only limited information about the relevant probability distributions. In problems
like these, it is natural to ask what conclusions can be drawn on the basis of this limited information. For example, in the early
stages of analysis of a complex problem, we may have only limited fractile information for the distributions in the problem; what
can we say about the optimal strategy or certainty equivalents given these few fractiles? This paper describes a very general
framework for analyzing these kinds of problems where, given certain ‘““moments”” of a distribution, we can compute bounds on
the expected value of an arbitrary ‘“‘objective’” function. By suitable choice of moment and objective functions we can formulate
and solve many practical decision analysis problems. We describe the general framework and theoretical results, discuss
computational strategies, and provide specific results for examples in dynamic programming, decision analysis with incomplete

information, Bayesian statistics, and option pricing.

In many decision analysis problems, because of com-
putational or cognitive limitations, we have only lim-
ited information about the probability distributions
involved in the problem. In these cases it is natural to
ask what conclusions can be drawn on the basis of this
limited information. For example, in the early stages of a
decision analysis, we often have only rough estimates of,
say, the 10th, 50th, and 90th percentiles of the distribu-
tions in the problem; what can we say about the optimal
policy and certainty equivalent on the basis of these few
assessments? In a Bayesian statistics problem, we might
have extensive sample data, but only limited information
about the prior; what can we say about the posterior
distribution given this limited prior information? This pa-
per describes how we can compute bounds on the quan-
tities of interest given limited information about the
underlying distribution.

The classic problem of this kind is where we are given
power moments (mean, variance, etc.) for a random vari-
able and are interested in its cumulative distribution. In
this case, we can use ‘““Chebychev’s inequalities” to
compute bounds on the distribution given an arbitrary
number of power moments. Here we consider generaliza-
tions of these inequalities that let the ‘““moments™ be
expectations of arbitrary ‘“moment functions’’ defined on
very general spaces; provide bounds on the expected
value of an arbitrary ‘‘objective function’; and allow
constraints on the set of underlying distributions. Our
goal in this paper is to describe the general structure of
this class of problems, review and synthesize the rele-
vant theory, and demonstrate how, by suitable choice of
moment and objective functions, we can formulate and
solve many practical decision analysis problems using
these techniques.

We illustrate the general framework and results by con-
sidering four specific examples. In the first example, we
apply the results of the classical moment problem in dy-
namic programming: We develop a recursive procedure for
calculating the moments of the uncertain return (or total
reward) and use these moments to calculate bounds on the
return distribution and its certainty equivalent. In the sec-
ond example, we consider Howard’s (1971) ““Entrepre-
neur’s Problem’ and calculate bounds on certainty
equivalents and optimal policies given limited fractile in-
formation for the state variables in the problem. In the
third example, we consider a Bayesian forecasting prob-
lem and compute bounds on the posterior distribution
given a few fractiles from the prior. In the final example,
we compute bounds on the value of a call option given
market prices for the underlying stock and related options.

The foundation for the results presented here can be
traced back to the classical “‘problem of moments,”” the
problem of constructing a probability distribution which
matches a prescribed sequence of moments. The original
“Chebychev’s inequalities” were stated without proof
by Chebychev in 1873 and were proven by Markov (a
student of Chebychev) in his Ph.D. dissertation and inde-
pendently by Stieltjes in 1884. Since then there have
been many advances in the theory of the moment prob-
lem and from it flow developments in functional analysis,
probability and statistics, and approximation theory. For
a survey of recent results, see Landau (1987) and the
other papers in that volume, especially Kemperman
(1987) and Diaconis (1987). For a survey of the early
history, see Shohat and Tamarkin (1943).

Despite these theoretical advances, there is still a per-
ception that ““the theory is not up to the demands of
applications™ (Diaconis, p. 129). One often-cited reason
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for this is that the bounds given by Chebychev’s inequal-
ities—particularly the simple two-moment version given
in most introductory probability and statistics texts—are
quite loose. The more general versions are rarely used
because of the lack of simple closed-form expressions for
the bounds and the lack of “‘reasonably good numerical
procedures’” for handling the variety of cases which arise
in practice (Kemperman, p. 20, Diaconis, p. 129). We
pay particular attention to these criticisms by discussing
general computational procedures and illustrating them
with specific and practical examples.

This paper is organized as follows. In Section 1, we
introduce the general framework and the four illustrative
examples. In Section 2, we consider the problem of com-
puting bounds given by moments when we place no re-
strictions on the allowed set of probability distributions.
We view the problem as a linear programming problem,
give versions of the fundamental theorem of linear pro-
gramming and the duality theorem, and present results
for the examples. We describe a general computational
strategy for solving these problems in an appendix. In
Section 3, we obtain tighter bounds by placing restric-
tions on the allowed set of distributions. We give some
general duality results (in subsection 3.1) and consider
specific examples where the distributions are constrained
to be unimodal with a fixed mode (subsection 3.2), where
the distributions are constrained to have a density func-
tion that lies between specified lower and upper bounds
(subsection 3.3), and where the distributions are con-
strained to have entropy greater than a specified lower
bound (subsection 3.4). In Section 4, we offer a few con-
cluding remarks. All proofs are given in an appendix.

Our main contributions are in the review and synthesis
of the theory of generalized Chebychev inequalities, the
description of computational strategies, and the demon-
stration of applications in decision analysis. The main
theoretical results—the fundamental theorem and duality
results—were developed though not in their present form
in Isii (1963), but seem little known in the decision anal-
ysis and operations research communities. The decision
analysis applications, the general computational strategy
(in Appendix A), and entropy constraints (in subsection
3.4) all appear to be new.

1. GENERAL FRAMEWORK AND ILLUSTRATIVE
EXAMPLES

Our general framework follows that of Isii. Let X be an
abstract space (with elements x) and & a o-algebra of mea-
surable subsets of X. We assume that we are given n + 1
real-valued moment functions f(x), i = 0, 1,..., n, de-
fined on X and measurable with respect to 8. The expec-
tations of these moment functions, referred to as moments
M, are assumed to be known and finite; i.e., we know that

fori=0,1, ..., n,

Wi =Eplfi]= [ £i(x) dP(x)

X

though we may not know the underlying distribution
(or nonnegative measure) P. For convenience, we take
fo(x) = 1 so that uy = Ep[fy] = 1 for all probability
distributions P and write the vectors of moment func-
tions and moments as f = (fy, fi, --- f,,) and w = (0,
Mis <o+ 5 My,). We assume that the moment functions are
linearly independent on X in that there is no nonzero
vector A such that A"f{x) = 0 for all x € X.

Given a real-valued objective function ¢ that is defined
on X and measurable with respect to %, our goal is to
compute

inf Ep[¢] and sup Ep[¢], (1)
PEA(p) PedA(p)

the lower and upper bounds on the expectation of ¢
over the set of allowed distributions whose moments
match w. We let { denote the set of allowed distributions
and let s4(u) denote the subset of ¢ matching the speci-
fied moments; i.e., those distributions P in & such that
u = Ep[f]. It is convenient to let & include distributions
with total mass not necessarily equal to 1 and then en-
force the scaling requirement through the moment con-
straint w, = Ep[fy] = 1. The distributions in & are
defined on (X, @A) and are assumed to be such that the
moment and objective functions are integrable with respect
to each distribution P in 4. In Section 2 we take & to be
the set @ of all such distributions, and in Section 3 we
restrict the set of allowed distributions by taking & to be a
convex subset of D.

This framework is quite general. The space X may be
discrete or continuous, multidimensional, even infinite
dimensional. The moment and objective functions may
be any real-valued function, subject only to the measur-
ability requirements. To illustrate this framework and
our interest in the lower and upper bounds (1), we con-
sider four specific examples that will be used throughout
the paper.

Example 1: Dynamic Programming and the
Classical Moment Problem

In many decision tree or dynamic programming prob-
lems, it is easy to compute the moments of the return
distribution (sometimes called a ““value lottery” or “‘risk
profile’’) but very difficult to compute the exact distribu-
tion or its certainty equivalent. For example, let us
consider a discrete-time, discrete-space dynamic pro-
gramming problem. Let the states be indexed by integers
J and k, and let 4 be the set of actions available. Let
pjx(a) denote the probability of making the transition
from state j to state  if actiona € A is chosen, let r;(a)
denote the reward earned in this case and let v, (j) denote
the uncertain return (or total reward) for an n-stage prob-
lem starting in state j, assuming that the optimal strategy is
followed. For n = 0, we have v(j) = 0 for all j and thus
E[vy(j)] = 0 for all j. For n > 0, we can write a recursive
equation for the maximum expected return:



E[v,(j)] = max }kj pix(@)(rix(@) + E[v,-i (k)]).

A risk-averse decision maker may be interested in the
distribution of returns and its certainty equivalent as well
as the expected return. While the distribution and cer-
tainty equivalent are, in general, difficult to compute, we
can develop a recursive equation for the higher-order
moments of v,(j) analogous to the one given for the
expected return. If we assume the optimal policy a* is
followed and use the binomial expansion, the ith moment
of v,(j) is given by the recursive equation

E[v,(/)] = };, pix(@*)(ri(a*) + v, (k)

-3 (p,-k<a*>]_20(;')r,-k(a*>"-’ E[v,’,_mk)]).

Using this recursive formula, we can efficiently compute
the leading moments of the return distribution. We can
then use these moments to construct an approximate re-
turn distribution, which matches these moments and
computes its certainty equivalent.' To determine the pos-
sible ranges of these distributions and certainty equiva-
lents, we can compute Chebychev-type bounds.

To place this problem in our general framework, we let
x represent the uncertain return of the process (v () for
the current stage N and state j) and take X to be the
real-line ®'. The moment functions are the power func-
tions, fi(x) = x’, and the moments are the ordinary
moments about the origin, E[x‘]. To compute the
bounds on the cumulative return distribution at a point
d, we take ¢(x) = 1if x < d, and ¢(x) = 0 if x > d,
because the expected value of this step function is equal
to the value of the cumulative distribution at the point d,
F(d). To compute the bounds on the entire cumulative
distribution, we vary this point d. To compute the
bounds on the certainty equivalent, we take ¢(x) to be
the decision maker’s utility function and use the bounds
on expected utility given by (1) to generate bounds on the
certainty equivalent.

To make this example concrete, we will assume that
we have computed the first four moments of the return
distribution: wu, = E[x] = 5, u, = E[x?] = 26, u; =
E[x’] = 140, and u, = E[x*] = 778. These are the
moments of the normal distribution with mean 5 and
standard deviation 1. We assume that the decision mak-
er’s risk preferences are captured by an exponential util-
ity function of the form u(x) = —exp(—x/2); if the
distribution is normal, then the exact certainty equivalent
is =2 Ln(—E[u(x)]) = $4.75.

Example 2: Decision Analysis With Incomplete
Probability Assessments

In recent years, a number of decision analysis research-
ers have developed methods for reducing the probability
and utility assessments required to complete an analysis.
One approach is to examine all solutions that are consis-
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tent with a given, limited set of assessments and see if
these limited assessments are sufficient to recommend a
particular action (see, e.g., Fishburn 1965, Hazen 1986,
Rios Insua and French 1992, and Moskowitz, Preckel
and Yang 1993). Much of this work is based on linear
programming and assumes a finite number of states of
nature. We will study an example with continuous states
and will focus on incompleteness in the probability as-
sessments; the payoffs and utilities are assumed to be
known.

Our specific example is based on Howard’s ““Entrepre-
neur’s Problem” (Howard 1971) and concerns an entre-
preneur who is trying to determine a price for a new
product. He faces an uncertain demand curve and has an
unknown cost of production. If he charges $p for the
product, the quantity sold g will be determined by
q(p) = 80[ln 50 — In p] + ¢,, where ¢, is a random
error in the estimate of the demand curve. The total cost
¢ (measured in $) to produce g units of the product is
given by c(g) = 700 + 4g + 400(1 — exp(—gq/50)) +
€., where ¢, is a random error in the cost curve. The
entrepreneur’s profit m is given by w(p, g, ¢) = pg — ¢
and his utility function is assumed to be u(w) =
—exp(—m/250).

The entrepreneur’s probability assessments are incom-
plete. As is common in the early stages of analysis, we
will assume that the entrepreneur has specified only the
10th, 50th, and 90th fractiles for each uncertainty
(—12.82, 0, and 12.82 for €, and —128.2, 0, and 128.2 for
€.) and has not yet made any assertions about their joint
distribution. Suppose that the entrepreneur decides to
charge $25 for the product; what bounds can we place on
his certainty equivalent? What can we say about the set
of potentially optimal prices? As a point of reference, if
we assume that the errors €, and €, are independent and
normally distributed with mean 0 and standard deviations
of 10 and 100, respectively (these assumptions are con-
sistent with the specified fractiles), the optimal price
is $22.72 and the corresponding certainty equivalent is
$123.70.

To place this problem in our framework, let x be a
random vector of errors (€,, €.) and take X = R>. The
moment functions f, f5, ..., f, are indicator functions
on the events whose probabilities are specified and the
moments are the specified probabilities. For example, for
the first fractile specified, f(e,, €.) = 1if ¢, < —12.82
and 0 otherwise, and u, = 0.10. To compute the bounds
on the certainty equivalent for a fixed price p, we take
the objective function ¢ to be the function u(p, €,, €.)
that describes the entrepreneur’s utilities as a function of
the price p and errors ¢, and €.. To check whether a
price p is potentially optimal, we apply a result of Hazen
that says that p is potentially optimal if and only if there
does not exist a convex combination of pricing strategies
that dominates p, in that Ep[u(p, €,, €.)] < Ep[u*(e,,
€.)] for all P € A(u), where u*(e,, €.) denotes a convex
combination of utility functions for different prices. To
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check for dominance, we take the objective function ¢ to
be u(p, €, €) — u*(e, €) and compute the lower
bound in (1). If this lower bound is less than 0, p is not
dominated by this combination of prices. If the lower
bound is greater than 0, p is dominated and is not poten-
tially optimal.?

Example 3: Bayesian Analysis With an
Incompletely Specified Prior

In Bayesian statistics problems, we typically start with a
model of the sampling process and a prior distribution for
the unknown model parameters. As we observe sample
data, we update our prior to obtain a posterior distribu-
tion for the model parameters. In practice, it is often
difficult to obtain complete, precise assessments of the
prior distribution and, consequently, a number of re-
searchers have studied the sensitivity of the posterior
distribution to the assumed prior (see Berger 1990 for a
comprehensive review). Here we consider a specific ex-
ample where we have an incompletely specified prior.

Our example is based on a problem given in Clemen
(1991, pp. 309-310) and concerns a salesman’s estimates
of future sales. The salesman’s errors, € = (actual
sales — forecast sales), are assumed to be normally dis-
tributed with an unknown mean m and a standard devia-
tion of 3,000 units. Because of the salesman’s quota-
based incentive system, the decision maker thinks the
salesman tends to underestimate sales and believes that
there is a 5% chance that m is less than 1,000 units, a
50% chance that m is less than 1,700 units, and a 95%
chance that m is less than 2,400 units. Given 14 observa-
tions of actual and forecast sales (see Clemen for the
sample data) and this limited information about the prior,
the problem is to calculate bounds on the posterior distri-
bution for m. As a point of reference, the specified prior
fractiles are consistent with a normal distribution with a
mean of 1,700 units and a standard deviation of 426 units.
The sample data has a mean of 2,418 and, if the prior is
normal, the posterior is normal with a mean of 1,858 and
a standard deviation of 376.

To place this problem in our framework, we let x be
the unknown mean m of the error distribution and take
X = @R'. As in the previous example, the moment func-
tions f,, f,, and f; are step functions on the events
whose probabilities are specified and the moments u, are
the specified probabilities. Given a prior P and observa-
tions € = (g, €, ... , €4), the posterior cumulative dis-
tribution at d is given by Bayes’ Rule as
Ep[o]e] = EPLEIL(elm = )]

Ep[L(elm =x)] ~
where ¢ is the step function with a step at d and L(ejm =
x) denotes the likelihood of the observations e given a
mean error m equal to x. We will assume that the errors
are independent (given m), so L(€|m = x) is a product of
normal densities with a mean m equal to x and a stan-
dard deviation of 426. Unfortunately, Ep[¢|€] is not a

simple expectation of the kind required in (1). However,
we can use a ‘‘linearization technique,” due to Lavine
(1991), to convert this problem into a series of problems
of the form of (1). For any real k, define c(x, k) =
(¢(x) — k)L(elm = x) and note that E,[¢|e] > k if and
only if Ep[c(x, k)] > 0. Using this, we can compute
bounds on E,[¢|€] by varying k until the corresponding
upper or lower bound on Ep[c(x, k)] is equal to 0.

We can calculate bounds on other quantities of interest
by choosing different forms for ¢. For example, to com-
pute bounds on the predictive distribution for the error
on a particular sales forecast, we would take ¢(x) to be
the cumulative probability for a normal distribution with
mean x and standard deviation 3,000. The prior predic-
tive distribution is then given by Ep[¢#] and bounds are
given by (1). Upon incorporation of the sample data, the
posterior predictive distribution is given by E,[¢|€] and
bounds can be calculated using the linearization tech-
nique. Similarly, bounds on the mean of the prior and
posterior distributions can be calculated by taking

é(x) = x.
Example 4: Option Pricing

In a market context, we can use the results of this paper
in a risk-neutral” pricing framework to determine
bounds on the value of one security given market prices
for other related securities. To illustrate, suppose that we
are given current (time 0) market prices for a stock and
for a series of (European) call options on this stock that
expire at time ¢. Let X = [0, ») represent the possible
stock prices at time ¢. At expiration, the holder of a call
option may either buy the stock for the ““strike price” K;
or let the option expire worthless. Assuming optimal ex-
ercise, the value of the option at expiration is then given
by (x — K;)™ = max[0, x — K/].

Provided the markets do not allow risk-free arbitrage
opportunities, there exists a ‘‘risk-neutral”’ probability
distribution P, such that the price of every security is
equal to its (risk-neutral) expected future wvalue dis-
counted at the risk-free rate for borrowing and lending.
For example, if P is the risk-neutral distribution and 7 the
risk-free rate, the current stock price (X,) is given by
Ep[X/(1 + r)'] and the current price of the a option is
given by Ep[(X — K;)*/(1 + r)]. In general, the risk-
neutral distribution will be unique if and only if the set of
securities is sufficient to give ‘‘complete’® markets. See
Harrison and Kreps (1979) for a detailed discussion of
this theory; see Nau and McCardle (1991) and Smith and
Nau (1995) for discussions relating this theory to decision
analysis.

In our framework, the moments are the observed mar-
ket prices of the securities and the moment functions
describe the discounted future values of the securities as
a function of the stock price at expiration (x): for the
stock fi(x) = x/(1 + r)" and for the call options f;(x) =
(x = K)*/(1 + r)', where K; denotes the call’s strike
price. To compute bounds on a call option with a $30



strike price, we take ¢(x) = (x — 30)/(1 + r)'. We
can compute bounds on the underlying cumulative “‘risk-
neutral”” distribution by taking ¢ to be a step function as
in the first example.

To make the example concrete, suppose that the cur-
rent stock price is $40 and call options that expire in 4
months with strike prices $35, $40, and $45 have current
prices of $6.26, $3.08, and $1.26. These prices are consis-
tent with the Black-Scholes model with a risk-free dis-
count rate of 5% per year and an annual volatility (o) of
30%; in this case, the exact price for a call option with a
$30 strike price is $10.59. In the Black-Scholes model,
the risk-neutral distribution is log-normal: /n(X/X,) is
normally distributed with mean (» — o-*/2)¢ and variance
o’t.

2. BOUNDS WITHOUT DISTRIBUTION
CONSTRAINTS

We first consider the problem of computing bounds
where we place no constraints on the allowed set of dis-
tributions. Focusing on the upper bound, the problem (1)
can be rewritten as

sup Ep[d], (2)
PED(1)

where @(u) represents the class of all distributions
matching the given set of moments u, i.e., the set of
feasible distributions. This problem can be viewed as a
linear programming problem in standard form: The deci-
sion variables are the amount of mass assigned to each
point x in X and are required to be nonnegative; the
objective, Ep[¢], and constraints, u = Ep[ f], are linear
functions of these decision variables. If the space X is
finite, (2) is a conventional linear program. If X is infinite
(as in our examples), (2) is a semi-infinite linear program
with an infinite number of decision variables and a finite
number of constraints. Viewing (2) as a linear program,
we can identify basic solutions and state versions of the
fundamental and duality theorems of linear program-
ming. Appendix A describes computational strategies for
solving (2) in the specific case where X = %R*.

2.1. Fundamental Theorem

Analogous to basic solutions in conventional linear pro-
gramming, we define a basic distribution as a discrete
probability distribution with mass points x, X5, ... , X
such that the vectors f(x,), f(x,), ... , f(x;) are linearly
independent. As there are » + 1 moment functions,
these basic distributions have at most n + 1 points. We
let A(u) denote the set of basic distributions that match
moments u, i.e., the set of basic feasible distributions.
With this definition of a basic distribution, we can state
a version of the fundamental theorem of linear program-
ming as follows. Mulholland and Rogers (1955) proved
this result for the specific case in which X is the real line
R'. Isii worked in the more general framework used here
but focused on discrete distributions with no more than
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n + 1 points of support without considering the linear
independence condition. The proof given in the appendix
is an extension of Isii’s.

Fundamental Theorem. Given the problem (2),

a. if there is a feasible distribution, there is a feasible
basic distribution;
b. if there is an optimal distribution, there is an optimal
basic distribution;
c. sup Ep[¢d]= sup Ep[o].
PED(p) PEA(R)
Parts a and b of the theorem paraphrase the conventional
fundamental theorem of linear programming as stated in,
for example, Luenberger (1984). Part ¢ addresses a con-
cern in semi-infinite linear programs that is not a concern
in conventional linear programs: Even though the bound
may be finite, there may be no distribution in P(u)
achieving this bound. The message of the theorem is
that, even if the bound is not achieved, the problem (2)
requiring a search of the set of all feasible distributions
@(m) can be reduced to a search of the set of basic feasi-
ble distributions A(u).?

To illustrate the use of this theorem, we consider its
application in the dynamic programming example; the
other examples are discussed in subsection 2.3. Here, we
are given four moments of the return distribution and
seek bounds on the cumulative distribution and certainty
equivalent. The results are summarized in Figure 1.

To compute bounds on the cumulative at a point d,
F(d), we take ¢ to be a step function with a step at d.
For each d, the bounds on F(d) are achieved (or ap-
proached) by a 3-point discrete distribution; each dis-
crete distribution is unique in that it is the only 3-point
distribution that has mass at the point 4 and matches the
specified moments. Moreover, these 3-point moment-
matching distributions provide both upper and lower
bounds on F(x) at each mass point. By varying d, we
generate the upper and lower bounding envelopes shown
in Figure 1. Here, we see that the bounds, though the
best possible based only on the given moments, are not
very tight.?

Provided we restrict the underlying random variable,
the bounds on the certainty equivalent are much tighter.
The bounds on the certainty equivalent are generated by
taking ¢ to be the utility function given in Section 1 and,
if we place no restriction on X, are equal to —o
and 4.760. These bounds are not achieved by any distri-
bution in A(u): They are given by constructing the
3-point moment-matching distribution with mass at d and
taking the limit as d approaches *o. If we restrict the
range of the underlying random variable to some finite
interval [a, D], the bounds are achieved by the 3-point
moment-matching distributions with mass at a (for the
lower bound) and b (for the upper bound). For example,
if we take the interval [a, b] to be [0, 10], the bounds are
given by 4.743 and 4.753.
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Figure 1. Bounds on return distribution for the dynamic programming example.

2.2. Duality Theorem

Associated with each primal problem of the form (2) is a
corresponding dual problem. Instead of seeking a feasi-
ble distribution that maximizes Ep[¢], we seek a vector
A = (Ag, Ay, «.., A,) that solves

il/’\lf{/\Tp,: ATf(x) = ¢(x) for all x € X}. (3)

It is not hard to see that the solution to the dual problem
(3) provides an upper bound on the value of the primal
problem: Taking expectations on both sides of the in-
equality ATf(x) = ¢(x) yields ATu = Ep[¢] for any
distribution P in @(u). These observations imply the fol-
lowing results.

Weak Duality Lemma. a. if P and A are feasible for (2)
and (3), respectively, then Ep[¢] < ATpu.

b. if P and A are feasible for (2) and (3), respectively
and Ep[¢] = A", then P and A are optimal for their
respective problems.

The duality theorem of conventional linear program-
ming establishes the equality of the solutions to the pri-
mal and dual problems: if either the primal or dual
problem has a finite optimal solution, so does the other
and the corresponding values of the objective function
are equal (see Luenberger 1984, p. 89). In our context,
we can state the following slightly weaker version of the
duality theorem. This result was first stated in its general
form in Isii and can be proven as a special case of the
more general duality theorem of the next section.

Duality Theorem. If u is an interior point of {Ep[f(x)]:
P € 9}, then

sup  Er[4]

PEY

= if\lf{/\T;.L: ATf(x) = ¢(x) for all x € X}. (4)

Furthermore, if the primal problem is bounded, the dual
has a finite optimal solution.

This duality result is weaker than the conventional result
in that we require p to be an interior point of the set
{Ep[f(x)]: P € @}. The interior point restriction re-
quires that p be the moments of some distribution but
rules out, for example, moments that uniquely determine
the underlying distribution.’

To illustrate the use of the duality theorem, let us con-
sider the dynamic programming example where we are
given four power moments and compute bounds on F(d)
by taking the objective function ¢ to be a step function
with a step at d. In this case, the functions A"f are poly-
nomials of degree 4. Figure 2 shows several polynomials
A'f that dominate ¢ (i.e., A'f(x) = ¢(x) for all x), and
hence are feasible for the dual problem. Geometric argu-
ments suggest that if the polynomial is to have the least
expectation, it must be equal to ¢ at three points includ-
ing the point d (like the polynomial with the bold line in
Figure 2). These three points are precisely the points of
the discrete distribution that solves the corresponding
primal problem. This result holds in general and can be
stated as follows.

3.00 4.00 500 4 6.00 7.00 8.00 9.00 x

Figure 2. The dual minimization problem for the dy-
namic programming example.
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Complementary Slackness Condition. If P and A are opti-
mal solutions to the primal and dual problems respec-
tively, then P has mass only at those points x such that

A'f(x) = ¢(x).

The complementary slackness condition provides a
valuable method for checking solutions for optimality.
Given a feasible probability distribution, we can con-
struct a polynomial A'f satisfying the conditions of the
complementary slackness condition. If this polynomial
dominates ¢, then the distribution is an optimal solution
to (2). Conversely, given a feasible polynomial A'f, we
can check its optimality by seeing if it is possible to
construct a feasible distribution with mass restricted
to the points x where ATf(x) = ¢(x).

The dual perspective also offers some insight as to
which objective functions ¢ will yield tight bounds: the
tightness of the bounds depends on how well the function
¢ can be approximated by dominating and dominated
polynomials of the form A'f. At one extreme, if ¢ is a
linear combination of moment functions, then E[¢] is
precisely determined. If ¢ is poorly approximated by the
polynomials, as is the case with step function and power
moments (see Figure 2), the bounds on E[¢] will not be
very tight. If ¢ is well approximated by the polynomials,
as is the case with power moments and exponential util-
ity (when X is bounded below), the bounds on E[¢] will
be much tighter.

2.3. Examples

The results for the other examples are similar to the dy-
namic programming example and reinforce the same gen-
eral conclusions.

Example 2: Decision Analysis With Incomplete
Probability Assessments

In this example, we are given limited fractile information
for two uncertainties, demand (€,) and costs (e,.) and are
asked to compute bounds on the certainty equivalent for
various prices p. To ensure finite bounds, we restrict ¢,
to [—30, 30] and €. to [—300, 300]. The results are

summarized in Figure 3. Both the upper and lower
bounds are given by 4-point distributions. For every
price p, the upper bound is given by a distribution with
mass .1 at (¢, €) = (—12.82, —300), 0.4 at (0,
—128.2), 0.4 at (12.82, 0), and 0.1 at (30, 128.2); the lower
bound is given by a distribution with mass 0.1 at (e, €.)
= (=30, 300), 0.4 at (—12.82, 128.2), 0.4 at (0, 0), and
0.1 at (12.82, —128.2). In both cases, the two uncertain-
ties are dependent.

For any price p, the bounds on the certainty equiva-
lent are quite loose. What can we say about the optimal
p? As discussed in Section 1, we can check for domi-
nance and potential optimality by computing bounds on
utility differences. An immediate consequence of the fun-
damental theorem in this context is that we can check
dominance and potential optimality by considering the
set of basic distributions A(u) rather than the set of all
feasible distributions @(u). In the example, we find that
the set of potentially optimal prices consists of [19.6,
25.4]. (If we assume the uncertainties are normal and
independent, the exact optimum is $22.72.) Thus we find
that, even though we cannot obtain tight bounds on the
certainty equivalents, we can establish a reasonably nar-
row range of potentially optimal prices. The dual prob-
lem offers some insight as to why this is the case: while
the utility function u(p, «,, €.) is not well approximated
by the step functions whose expectations are assessed,
the utility differences u(p, €,, €.) — u(p, €,, €.) are
more easily approximated as ¢, and €. have similar im-
pacts on utility regardless of price.

Example 3: Bayesian Analysis with an
Incompletely Specified Prior

In this example, we are given sample data and three
fractiles of the prior distribution for the mean of the sam-
pling distribution and are asked to compute bounds on
the posterior distribution. The results are summarized in
Figure 4. Here we see that, except for the tails of the
distribution, the bounds are quite loose. As described
Section 1, the bounds on the posterior distribution are
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Figure 4. Bounds on posterior distribution in the Bayesian example.

calculated by computing bounds on Ep[c(x, k)], where
c(x, k) = (¢(x) — k)L(ejm = x), ¢ is the step function
and L is the likelihood function, and varying k until the
upper (or lower) bound is equal to zero; here P ranges
over the set of allowed priors. As required by the Funda-
mental Theorem, the bounds on the posterior are
achieved (or approached) by a discrete prior distribution
with no more than 4 points. For example, the lower
bound at the point x = 3,000 is achieved by a discrete
prior distribution with masses 0.05, 0.45, 0.45, 0.05 at
—o0, 1,000 + €, 1,700 + €, and 3,000 + €, where € is an
infinitesimal positive quantity. The observed sample data
(14 observations with a mean of 2,418) is inconsistent
with a mean of —w, and the corresponding posterior dis-
tribution (shown as the faint line in Figure 4) assigns
masses 0, 0.217, 0.694, and 0.088 to these same points.®

Again the dual perspective offers some insight as to
why these bounds are so loose. Except for the extreme
tails where L(e|/m = x) = 0, the objective function c(x,
k) = (¢(x) — k)L(elm = x) is poorly approximated by
linear combinations of the step functions whose expecta-
tions were specified. For example, the objective function
corresponding to the bound at d = 3,000 is shown in
Figure 5. Provided we restrict the range of the underlying
variable, the bounds on the posterior mean are somewhat
tighter as the objective function as with ¢(x) = x the

0 . “/".\

500 1,000 1,500 2,000 2500 3,400 3,500 ,000 x

Figure 5. Objective function for the Bayesian example.

objective function c¢(x, k) is better approximated by the
step functions whose expectations are given.

Example 4: Option Pricing

The results for the option pricing example are summa-
rized in Figure 6. Here we are given prices for a stock
and call options on that stock with strike prices of $35,
$40, and $45. Like the earlier examples, we find that the
bounds on the underlying risk-neutral distribution are
quite loose. This is a reflection of the fact that the step
functions used in computing these bounds are poorly ap-
proximated by the given moment functions: a “‘step”
security that pays $1 if and only if the stock price is less
than, say, $30 cannot be approximated very well by a
portfolio consisting of the stock and given call options.
The bounds on the value of a call option with a strike
price of $30 are somewhat tighter as we can better ap-
proximate its payoffs using the given securities.

3. BOUNDS WITH DISTRIBUTION CONSTRAINTS

In the previous section, we studied the problem of com-
puting bounds where we placed no constraints on the
underlying distribution. In these cases, the bounds were
always achieved (or approached) by a discrete distribu-
tion and the resulting bounds were often quite loose. To
achieve tighter bounds, it is natural to try to constrain
the underlying distributions to rule out these discrete dis-
tributions. For example, the structure of some problems
might suggest that the underlying distribution is unimodal
or continuous. In this section, we study the problem of
computing bounds where we restrict the underlying dis-
tributions to a convex set 4 of allowed distributions’ and
focus on the problem of computing

sup Ep[4], (5)
PEA(n)

where sd(u) denotes the subset of ¢ matching the mo-
ments u,
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Figure 6. Bounds on the risk neutral distribution in the option pricing example.

This restriction to convex sets & allows us to preserve
some of the geometry underlying the unconstrained prob-
lem even though (5) is not a linear program. Some exam-
ples of useful convex constraint sets & include: a) the set
of all distributions 9; b) the set of all distributions sym-
metric about a specific point; c) the set of distributions
that are unimodal with a specific mode; d) the set of
distributions with bounded density functions; and e) the
set of all distributions with entropy greater than a specific
value. Moreover, since the intersection of two convex
sets is again a convex set, these examples may be com-
bined to yield further examples of convex constraint
sets. We give general results applicable to all convex
constraint sets and then discuss examples c, d, and e to
illustrate these general results.

3.1. General Resulits

Though (5) is no longer a linear program, the problem
still possesses many of the same geometric features: we
are maximizing a linear functional over a convex set of
feasible distributions 4(u). In the unconstrained case,
we can identify the basic solutions as the extreme points
of A(u) (see Winkler 1988 for a precise statement of and
conditions for this result), and the fundamental theorem
allows us to reduce our search for optimal solutions to
this set of extreme points. Though this intuition still ap-
plies in this more general setting, we have not yet made
enough assumptions about sd(u) to be sure that it pos-
sesses extreme points, let alone be sure that the solution
to (5) is achieved by one. Rather than make the assump-
tions required to make the fundamental theorem hold in
general, we will instead identify the equivalent of “‘basic
solutions”” for specific examples of .

In contrast to the fundamental theorem, the duality
results carry over directly to this more general setting.
The dual problem corresponding to (5) can be written as

inf{A T + sup Ep[é — ATf1}. (6)
A Pest

To relate this problem to the problem considered in the
previous section, let s be the set of all distributions &.
Since 9 includes distributions that place arbitrarily large
amounts of mass at any single point (or measurable set),
for any fixed A, we have

sup Ep[é — ATf)
PeA

_ {0 if ATf(x) = ¢(x) forallx €X
®  otherwise.

Thus (6) reduces to

inf{A Tw: ATf(x) = ¢(x) for all x € X},

which is exactly the dual problem (3) considered in the
previous section.

As in the unconstrained case, it is not hard to see that
solutions to the dual problem (6) provide an upper bound
on the solutions to the primal problem (5). To see this
note that for any fixed A, we have

®(A)=ATu + sup Ep[¢ ~ATf] 2 ATw
Pesd

+ sup Ep[¢p —ATf]= sup Ep[d].
Ped(p) PeEA(p)

Thus, we have established a generalized version of the

weak duality lemma.

Weak Duality Lemma

a. if P and A are feasible for (5) and (6), respectively,
then Ep[¢] < D(A).

b. if P and A are feasible for (5) and (6), respectively and
Epl@] = P®(A), then P and A are optimal for their
respective problems.

The duality theorem and complementary slackness
conditions of the unconstrained case generalize perfectly
to the constrained case. These results were first stated in
their general form by Isii (1963) but can also be viewed as
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an application of the Lagrange duality theorems devel-
oped in Hurwicz (1958) and discussed in Luenberger
(1969). A proof based on Isii’s is given in the Appendix.

Duality Theorem. If w is an interior point of {Ep[f]: P €
A}, then

sup Ep[¢]=inf {ATu +sup Ep[¢ — ATf]}.
PEsi(n) A Ped

Furthermore, if the primal problem is bounded, the dual
problem has a finite optimal solution.

Complementary Slackness Condition: If P and A are opti-
mal solutions to the primal and dual problems respec-
tively, then P attains the supremum in (6) for the
specified A.

We illustrate the use of these results by considering
three examples of constraint sets. These examples are
chosen both for their practical interest and to illustrate a
variety of different solution strategies. In subsection 3.2,
we consider the case of unimodal distributions and solve
the problem by transforming the constrained problem to
an equivalent unconstrained one. In subsection 3.3, we
consider the case of distributions with bounded density
functions and use the duality results to identify the form
of the basic solutions for this problem. In subsection 3.4,
we consider distributions that satisfy an entropy con-
straint and solve the problem using the duality theorem
directly. In the case of the classical moment problem, the
unimodal restriction was first treated by Johnson and
Rogers (1951) and the bounded density function restric-
tion dates back to Markov (see Shohat and Tamarkin
1943, pp. 82-87). The entropy restriction is apparently
new.

3.2. Unimodal Distributions

Let X = ®'. A distribution P on X is unimodal with
mode m if its cumulative probability distribution F(x) is
convex on (—, m] and concave on [m, «). The mode
may be a point of discontinuity, but apart from this, uni-
modality requires the existence of a density function that
is nondecreasing on (—«, m] and nonincreasing on [m,
). Without loss of generality, we can assume that the
mode m is equal to 0 because we can always translate a
problem with mode m to one with mode 0.

We can compute bounds over the unimodal distribu-
tions by establishing a one-to-one correspondence be-
tween the set of unimodal distributions with mode 0 and
the set of all distributions & that allows us to transform
the unimodal problem back to the unconstrained problem
treated in Section 2. The key to this transformation is the
following result due to Khintchine (see Feller 1971, p.
158 for a proof).

Khintchine’s Proposition. A4 distribution is unimodal with
mode 0 if and only if it is the distribution of a product YZ
where Y and Z are independent random variables and Z
is uniformly distributed on [0, 1].

To see how this result allows us to transform the uni-
modal problem back to the unconstrained problem, note
that if X has a unimodal distribution, then for any func-
tion f(x) we may write E[ f(x)] as

x 1

E[ f(x)] = j f flyz) dz dF,(y) = ELg(»)],
z=0)

y=-—x

where g(y) = [{ f(yz) dz. Since the distribution for Y is
not constrained in any way, we can transform the mo-
ment and objective functions f; and ¢ for the unimodal
problem to new moment and objective functions for an
equivalent unconstrained problem on Y. The optimal val-
ues for the two problems are equal and, given an optimal
distribution for the unconstrained problem, we can use
Khintchine’s proposition to transform it to a solution to
the unimodal problem: if the solution to the uncon-
strained problem is a discrete distribution with masses p;
at points x;, the solution to the unimodal problem is a
mixture of uniform distributions on [0, x,] (or [x;, 0] if
x; < 0) with mixing weights p;. Thus, the basic solutions
in the unimodal case are mixtures of n + 1 or fewer of
these uniform distributions.

To illustrate the results in this case, we consider the
dynamic programming example and suppose that the un-
derlying distribution is known to be unimodal with mode
5. The results are summarized in Figure 7. Comparing
these results with those in Figure 1, we see that we have
obtained much tighter bounds on the cumulative distribu-
tion, particularly in the tails of the distribution. As in the
unconstrained case, there is no lower bound on the cer-
tainty equivalent unless we place some restriction on the
range of the underlying random variable. If we do restrict
the range, we see that the bounds on the certainty equiv-
alent are slightly tighter in the unimodal case than in the
unconstrained case.

3.3. Distributions With Bounded Density Functions

Suppose that in addition to knowing the moments of the
distribution, we know that the underlying distribution is
continuous with a bounded density function. For exam-
ple, if X = R®* we can take the allowed set of distribu-
tions to be the set of all measures P such that dP(x) =
p(x) dx and are bounded in that p(x) lies between some
specified lower and upper bounds / and u: I(x) < p(x) <
u(x) for all x. More generally, we consider measures
that are absolutely continuous with respect to some
given measure P,, so P can be written dP(x) =
p(x)dP,(x) where p is the Radon-Nikodyn derivative of
P with respect to P, and p lies between some specified
lower and upper bounds / and u.*

In this case, the dual problem (5) can be written in the
form:

inf{A T + sup
A

I(x)Sp(x)<u(x)

j [6(x) = A (x)Ip(x) dP, (x)}.
X
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Figure 7. Results for the dynamic programming example with unimodal distrubitons.

For any fixed A, the supremum is obtained by concen-
trating as much mass as possible in regions where
#(x) > N'f(x) and as little as possible where ¢(x) <
A'f(x). Thus the optimal Radon-Nikodyn derivative p*
must satisfy

if ¢(x)> /\Tf(x)
if ¢(x)<ATf(x)

and we can restrict our search for optimal solutions to
the set of basic distributions of this form.

To illustrate the results in this case, we again consider
the dynamic programming example. We take P, to be
Lebesgue measure on (—, ), so the Radon-Nikodyn
derivative p is a density function in the usual sense and
assume uniform upper and lower bounds on the density
function: /(x) = 0 and u(x) = 0.5. The upper bound of
0.5 corresponds to a maximum value of 0.39 for the

u(x)

pr(x) = I(x)

““true”” normal distribution. The results are summarized
in Figure 8. Comparing these results with the uncon-
strained case, we find substantially tighter bounds on
the cumulative distribution and slightly tighter bounds
on the certainty equivalent. Comparing these results with
the unimodal case, we find tighter bounds on the cumu-
lative near the mode of the distribution, but looser
bounds in the tails; the bounds on the certainty equiva-
lents are very similar.

3.4. Entropy Constraints

Another useful constraint set requires the allowed distri-
butions to be ‘“‘not too unusual” by requiring them to
have entropy greater than some specified amount. To
formalize this notion, given distributions P, and P, such
that P, is absolutely continuous with respect to P,, the
entropy of P, relative to P-, is

Probability

1.00 r

0.90 +

0.80 +

0.70 +

060 +

0.50 +

0.40 T
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Figure 8. Results for the dynamic programming example with bounded density.
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H(P,, P,) = —J p(x) In p(x) dP,(x),

X

where p(x) is the Radon-Nikodyn derivative of P, with
respect to P, and 0 In 0 is taken to be equal to 0. For
distributions P, that are not absolutely continuous with
respect to P,, H(P,, P,) is defined to be —«. For our
purposes, it suffices to interpret H(P,, P,) as a measure
of how much P, differs from the ““prior’’ distribution P,:
if P, and P, are identical, then p(x) = 1 and H(P,,
P,) = 0; otherwise H(P,, P,) < 0. (See Kullback 1959
and Jaynes 1983 for complete discussions of the entropy
measure and its interpretations.)

In our case, we assume that we are given the prior P,
as well as a lower bound, H,, on the entropy of the
allowed distributions. The problem (5) can then be writ-
ten:

sup Ep[¢]

subject to Ep[f]l=pm and H(P, P,) =2 H,.

Since the constraint set is convex and the objective func-
tion is linear, the optimal solution will lie at a boundary
of the constraint set and the entropy constraint will hold
with equality. Introducing a Lagrange multiplier y for the
entropy constraint (y < 0), we can write the dual prob-
lem (6) as

j\nyf sup{Ep[¢] + AT(w = Eplf))

+ y(Hy — H(P, Py))}. (7)

Since H(P, P,) = — for distributions P that are not
absolutely continuous with respect to P,, when consider-
ing optimal solutions to (7), we can assume that P is
absolutely continuous with respect to P, and focus on
computing the optimal Radon-Nikodyn derivative p*.
Differentiating (7) with respect to p and setting the result
equal to zero gives the form of p* as a function of A
and 1.

P7(xi A, ) = exp( = (6(x) = ATf00) + 7).

Substituting p* back into (7), reduces (7) to an equivalent
unconstrained optimization problem

inf(~Ep-[¢]+ ATu + yH,}, (8)

where P* denotes the distribution corresponding to the
Radon-Nikodyn derivative p*(x; A, y). The gradient for
(8) is given by [(uw — Ep-[f]), (Hy = H(P*, P,))], so
the first-order conditions for (8) requiring the gradient to
be equal to zero correspond to feasibility in the original
problem (6). The Hessian is also readily computed and
can be shown to be positive definite (provided the mo-
ment functions f; are linearly independent on the support
of P,). Thus, the minimization problem (8) can be solved
using variations of Newton’s method (keeping y < 0) and
numerical approximations of the integrals involved.

To illustrate the results for the case of entropy con-
straints, we present results for each of the four examples
and compare them with the results obtained when we
place no constraints on the underlying distribution. In
each example, we see that the bounds with entropy con-
straints are substantially tighter than those found earlier.

Example 1: Dynamic Programming

In this example, we are given power moments of the
return (or total reward) distribution and asked to com-
pute bounds on the distribution and its certainty equiva-
lent. Here we take the prior P, to be Lebesgue measure
so the Radon-Nikodyn derivative p is a density function
in the usual sense. We take H, to be 1.400 as compared
to a maximum entropy for these moment constraints of
1.419.° The results are shown in Figure 9. Here we see
the bounds on the cumulative distribution are substan-
tially tighter than in the other cases. The bounds on the
certainty equivalent are somewhat tighter as well.
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Example 2: Decision Analysis With Incomplete
Probability Assessment

To illustrate the sensitivity of the bounds to the entropy
cutoff, we consider the ‘“Entrepreneur’s Problem” and
solve for bounds given a variety of different entropy cut-
offs. Here, we are given fractile information for sales and
costs and are asked to compute bounds on certainty
equivalents for various prices and to determine the range
of potentially optimal prices. The results are summarized
in Figure 10 and Table I. Here we have taken the prior
P, to be the multivariate normal distribution that is con-
sistent with the specified fractiles and truncated the
range of the variables as in subsection 2.4. We give re-
sults for a variety of cutoffs, ranging from —0.1 to —0.8,
as compared to a maximum of 0.0. As expected, the
bounds on both certainty equivalents and optimal prices
become tighter and tighter as the entropy cutoff ap-
proaches the maximum possible entropy. As the cutoff
reaches the maximum, the set of allowed distributions
collapses to the ‘‘exact’ multivariate normal distribution
that we have taken as our prior. All of these bounds are
significantly tighter than those given by placing no con-
straint on the underlying distribution (or, equivalently,
taking the entropy cutoff to be —x).

Table 1
Potentially Optimal Prices for Incomplete
Assessment Example With Entropy Constraints

Lower Upper

Entropy Cutoff Bound Bound
0 (Exact) 22.7 22.7
-0.1 21.9 23.4
-0.2 21.5 23.6
-0.4 21.0 23.8
-0.8 20.5 24.1
—o (No Constraint) 19.6 25.4

While it is difficult to suggest a precise entropy cutoff
that is appropriate in this problem, on the basis of these
results, it seems safe to conclude that this project is a
““go”’ (its certainty equivalent is greater than 0) and that
the product should be priced at about $22.70. While it
would be nice to have more complete assessments, in
this case it seems unlikely that the conclusions would
change substantially.

Example 3: Bayesian Analysis With an
Incompletely Specified Prior

In this example, we are given fractiles of the prior distri-
bution and sample data and compute bounds on the pos-
terior distribution and its mean; the results are
summarized in Figure 11. Here we have taken P, to be
the normal distribution with parameters consistent with
the specified fractiles of the prior distribution. In this
case, the maximum possible entropy is 0.0 and we have
taken our entropy cutoff to be —0.02. Comparing Figures
5 and 11, we see that the bounds on the posterior distri-
bution here are much tighter than in the unrestricted case
and are particularly tight at the points corresponding to
the specified prior fractiles. Given restrictions on the
range of X, we find that the bounds on the posterior
mean are much tighter as well: [1,519, 2,214] versus
[1,821, 1,895].

Example 4: Option Pricing

In the option pricing example, we are given prices for a
stock and three call options on the stock and seek
bounds on the underlying risk-neutral distribution and
the price of call option with a $30 strike price. The re-
sults for this example are summarized in Figure 12. Here
we have taken the prior P, to be a lognormal distribution
(as assumed in the standard Black-Sholes model) with
parameters consistent with the given stock and call
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Figure 11. Results for the Bayesian example with entropy restrictions.
prices. In this case, the maximum possible entropy is 0 distributions. If the objective function is well-

and we take our entropy cutoff to be —0.02. Here, we see
that the bounds on the risk-neutral distribution are much
tighter than they were in the unrestricted case (compare
Figures 12 and 6), and the bounds on the price of a call
option with a $30 strike price are tighter as well: [10.53,
10.66] versus [10.50, 11.08].

4. SUMMARY AND CONCLUSIONS

We have reviewed the theory of generalized Chebychev
inequalities, discussed computational strategies, and il-
lustrated their use in a variety of applications in decision
analysis. We conclude with a few remarks about the use-
fulness of these bounds and remaining questions of the-
ory and practice.

The usefulness of these bounds depends both on how
tight they are and how easy they are to compute. The
tightness of the bounds depends on how well the objec-
tive function is approximated by linear combinations of

approximated by the moment functions, as was the case
with the exponential utility function and power moments
(when X was bounded below), tight bounds may be ob-
tained without placing any further restrictions on the al-
lowed distributions. If, however, the objective function
is poorly approximated by the moment functions, as was
the case of the step functions and power moments, we
must constrain the set of allowed distributions to obtain
tight bounds.

The choice of an appropriate constraint set raises sev-
eral practical concerns. While in some applications, the
appropriate constraint set may be obvious (symmetry
might suggest a symmetric unimodal distribution with a
mode at 0), in other cases the appropriate constraint set
may not be at all clear. For example, our intuition about
a problem may suggest that the underlying distribution is
unimodal without specifying a particular mode. Similarly
our intuition may suggest that the underlying distribution

the moment functions and the set of allowed has near-maximal entropy without specifying a particular
Probabilty
1.00 .
F
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Figure 12. Results for the option pricing example with entropy constraints.



entropy cutoff. In these cases, it may be helpful to exam-
ine bounds for varying modes or entropy cutoffs even if it
is impossible to determine precise constraints and,
hence, precise bounds.

The constraint sets also pose computational and theo-
retical questions. While it is possible to give a general
computational method for the unconstrained case, the
algorithms for the constrained case are ad hoc in that
they exploit the particular properties of the constraint
set; are general algorithms possible? To address this we
need to find a general characterization of the set of the
basic feasible solutions in the constrained case. In
the unconstrained case, the basic solutions are combina-
tions of n + 1 distributions that are, in a sense, ‘‘ex-
treme points’” of 9; does a similar result hold in general?

In terms of decision analysis applications, we see at
least two directions for further work. Here we have fo-
cused on problems where we have incomplete but pre-
cise information about the underlying distribution. What
if the information is imprecise as well as incomplete?
One way to relax the precision assumption is to work
with ranges of moment values. For example, rather than
assessing a precise probability or fractile, one might
specify bounds on the probabilities or fractiles. This
would lead us to replace the equality constraints in our
basic problem with inequality constraints and the results
of this paper would generalize in much the same way as
the conventional linear programming results generalize
from equality to inequality constraints.

More generally, what if we have incomplete and im-
precise information about the decision-maker’s prefer-
ences as well as his beliefs? One way to proceed is to
start with statements about preferences among particular
gambles (modeled as moment inequalities) and then seek
to determine preferences for other gambles that are con-
sistent with the specified preferences. Here we might
assume some functional form for the decision-maker’s
utility function, say an exponential utility with unknown
risk-tolerance parameter, and compute bounds over the
allowed set of utility functions as well as the allowed
set of probability distributions. Unfortunately, the prob-
lem of computing bounds in this context is not only non-
linear but may, in fact, be nonconvex. (See Moskowitz,
Preckel and Yang.)

Alternatively, given incomplete information about the
decision-maker’s beliefs and preferences, one might pro-
ceed as in the option pricing example: one might assess
“‘prices” for particular gambles and then seek to deter-
mine prices for other gambles that are consistent with the
assessed prices. Provided the decision-maker wishes to
be coherent and not allow arbitrage opportunities, there
will be a “‘risk-neutral” distribution such that the price of
any gamble is equal to its (risk-neutral) expected value.
Then, rather than using the decision-maker’s probabili-
ties and utilities, we would use these ‘risk-neutral”
probabilities in the framework developed here to deter-
mine bounds on the prices for other gambles. This
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approach is discussed in Nau and McCardle (1991) and
Nau (1994).

In summary, we see generalized Chebychev inequali-
ties as providing a very general framework for studying
decision analysis problems where we have incomplete
information about the underlying distribution. Having de-
scribed the common mathematical structure of this class
of problems and analyzed several examples in detail, the
hope is that this discussion has made the reader aware of
the broad range of applications in decision analysis and
given some insights as to what kinds of results, both
quantitative and qualitative, should be expected in these
applications.'’

APPENDIX A: A GENERAL COMPUTATIONAL
STRATEGY

In this appendix, we give a general computational strat-
egy for computing bounds in the unconstrained case.
Specifically, we focus on the case where X = ®* or a
subset of ®* and solve (2):

sup Ep[o].
PED(p)

Given the relationship between this problem and the con-
ventional linear programming problem, it is natural to
apply standard linear programming algorithms here. We
propose a 3-step procedure which we will briefly de-
scribe and illustrate. We will not attempt to completely
specify an algorithm or establish any convergence
results."'

STEP 1. Approximate the (potentially) infinite space X
by a finite grid and then solve the resulting finite linear
program using the simplex method. When choosing a
grid to approximate X, the grid must be fine enough and
large enough to ensure that the approximation of (2) has
a feasible solution. Because the solutions to (2) tend to
“‘pick out’’” those points where the moment and objective
functions (or their derivatives) are discontinuous, it is a
good idea to explicitly include these points in the approx-
imating grid. Because the solution to the approximate
problem is feasible for the original problem, the solution
to the approximate problem provides a lower bound on
the optimal value of the original problem.

To illustrate this procedure, we consider the dynamic
programming example and compute an upper bound on
the cumulative return distribution at the point d = 5.5.
The objective function ¢ in this case is the unit step
function with the step at 5.5. We approximate X with a
grid with 11 evenly-spaced points spanning the interval
[0, 10] and add to the grid the point 5.5, where ¢ has a
discontinuity. The optimal solution to the approximate
linear program involves the five points: 3.0, 4.0, 5.5, 7.0,
and 8.0, and has an objective function value of 0.934.

STEP 2. Using the solution in Step 1 as a guide, con-
struct a feasible and approximately optimal solution to
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the dual problem. The key to this step is to approxi-
mately locate the points x, x,, ... , x,(qg < n) involved
in the optimal distribution. If the points x,, x,, ..., x,
are the points of the exact solution, there would be a
polynomial A"f such that A"f(x;) = &é(x,) for i = 0,
1, ..., g and ATf(x) = ¢(x) for all x. If this is the case,
A'fand ¢ will also be tangent at those points where fand
¢ are both continuous. Given a set of points x,, x,, ...,
x,, that are not necessarily optimal, we can select n + 1
of these conditions, g equations of the form A'f(x;) =
#(x;) and n — q + 1 equations of the form A'f(x;) =
¢'(x;), and solve for A. If A is feasible for the dual prob-
lem (i.e., ATf(x) = ¢(x) for all x), then the objective
function value A" u provides an upper bound on the exact
optimal solution.

To ensure that the approximate solution A is feasible
for the dual problem, it is often necessary to first group
adjacent points of the approximate solution. In the exam-
ple, the optimal solution in Step 1 assigns mass at the five
points 3.0, 4.0, 5.5, 7.0, and 8.0. If we construct a poly-
nomial A'f equal to ¢ at these points, we find that A™f(x)
< ¢(x) between for 3 < x < 4and 7 < x < §; thus A is
not feasible for the dual problem. This suggests that ¢
and the optimal A"f are tangent at a point between 3 and
4 and at a point between 7 and 8. Replacing these adja-
cent points by their midpoint gives the points (x,, x,, X,)
= (3.5, 5.5, 7.5) and a polynomial A"f similar to the one
shown with the solid line in Figure 2. This A is feasible
for the dual problem and has an objective function value
(ATw) of 0.969.

STEP 3. If greater accuracy is desired, “‘polish’ the
approximate solution to the dual problem by solving a
nonlinear programming problem. Viewing the approxi-
mate solution to the dual problem A constructed in Step 2
as a function of the contact points x = (xg, Xy, ... , X,),
we attempt to improve A(x) by varying x to minimize
A(x)"w. In performing this minimization, we fix the
points x; corresponding to discontinuities in the moment
and objective functions (assuming that we have correctly
identified these discontinuities in Step 1) and seek a local
minimum in the vicinity of the original feasible solution
to the dual problem (other minima may not correspond to
a feasible solution). Provided that the initial points are
sufficiently close to the optimal points, the minimizing
polynomial will be the optimal solution for the dual prob-
lem and the minimizing points x§, x7, ..., x; will be
the points of the optimal distribution.

In the example, this polishing procedure gives the
three points (x§j, x5, x3) = (3.639, 5.5, 7.694). The
corresponding A is feasible and has objective function
value (A"u) of 0.964. We find the masses p, assigned to
the points x} by selecting g moments, say iy, Ky, - ,
Kg»> and solving X9_, fi(x7)p; = wm; fori = 0,1, ..., q,
we can verify the feasibility of the distribution by check-
ing that the distribution matches the other moments as
well. In the example, the resulting distribution has

masses (pg, pi, p-) = (0.311, 0.653, 0.036), is feasible
for the primal problem (2), and has an objective function
value (Ep[¢]) equal to the dual objective function value
(0.964). Since both primal and dual solutions are feasible
and have equal objective function values, by condition b
of the weak duality lemma, both are optimal for their
respective problems.

APPENDIX B: PROOFS

We give proofs for fundamental theorem in the uncon-
strained case and the duality theorem and complemen-
tary slackness condition in the constrained case. The
duality theorem and complementary slackness condition
in the unconstrained case are a special case of the con-
strained results.

B.1. Proof of the Fundamental Theorem
(Unconstrained Case)

To prove the fundamental theorem, we will instead prove
the following main proposition which simultaneously es-
tablishes all three parts of the fundamental theorem.

Proposition. For every P, € D(u), there exists a P, €
A(p) such that Ep [¢] 2 Ep [¢].

The proof of the proposition exploits the convexity of
the moment space M = {(Ep[f], Ep[¢]): P € D and
Ep[1] = 1} and its relation to the moment curve ¥ =
{(f(x), ¢(x)): x € X} and is established with the aid of
two lemmas. The first lemma concerns the representation
of points in the convex hull of &, denoted conv(¥), and
the second establishes the equality of M and conv(¥).

Lemma 1. For any point s € conv(¥), there exists q(q <
n + 2) points s, 5, ... , 8, in & and positive weights
Wi, Wa, oo, W, Such that s = 39_, w;s;. Furthermore,
the points s\, s,, ... , s, may be selected so that they are
linearly independent.

Since f,, = 1, the weights w; must sum to one, and X7_,
w;s; is a convex combination of points in &.

Proof. The fact that s can be represented as a positive
convex combination of a finite number of points in &
follows from standard results of convex analysis. We
now show that, if the points representing s are not lin-
early independent, s may be represented by a smaller set
of points that are linearly independent. Since ¥ C R"*2,
no more than n + 2 points can be linearly independent.

Suppose that s may be represented as a positive con-
vex combination X7, ws; of points sy, s,, ..., s, that
are linearly dependent. Then there exists numbers «,
A3, -+, 4o, NOt all zero, such that Y742 a;s; = 0. For
each r such that o, = 0, we may write s, and s as

q
S = —2 (aj/a,)s; and s = 2 (Wi = (aila,)w,)s;.

i=r i=1



If we take r to be such that (w,/a,) = min{w,/a;: «; > 0}
(if no «; > 0, multiply all of the «; by —1), all of the
(w; = (o;/a,)w,) are nonnegative. Thus, we have a new
convex combination with weights (w; — (&;/a,)w,) and
points §;, §,, ... , S,. The point s, now has a zero weight
and it, and any other point with zero weight, can be
dropped to yield a positive convex combination with
fewer points. We repeat this reduction process until we
arrive at a positive convex combination with linearly in-
dependent points.

Lemma 2. M = conv(¥).

Proof. We first show that conv(¥) C /M. For every point
s € &, there exists a distribution in %—the Dirac mea-
sure 8,—that places its entire mass on a point x such
that (f(x), ¢(x)) = s. Thus ¥ C (M. Since M is convex,
conv(¥) C M.

We show that M € conv(¥) by induction on the num-
ber of moments n. In the case n = 0, the result M C
conv(¥) reduces to {Ep[¢]: P € @ and

Ep[1] =1}
Clad(x)) +(1 - a)p(x,y): x;, x3 €EX,

0<a=s1},

which is true for any set X. As our induction hypothesis,
we assume that M € conv(¥) holds for any n — 1 mo-
ment functions and for any set X.

Suppose that, for some X, M C conv(¥) does not hold
for n moments. Then there exists a point u, € A such
that u, & conv(¥). Since conv(¥) is convex, there exists
a hyperplane that separates u, from conv(¥); i.e., there
exists a nonzero vector A € R"*? such that ATy, < 0
and AT = 0 for all u € conv(¥). Since u, € .t there
exists a distribution P, such that wy = Ep [(f, ¢)], this
implies E,, [A"(f, $)] < 0. Considering the points p € ¥,
we have AT(f(x), ¢(x)) = 0 for all x € X. Thus, we
must have Ep [AT(f, ¢)] = 0 which implies that P, is
concentrated on the set of points X' = {x: AT(f(x),
d(x)) = 0} (i.e., Py(X") = 1). Note that this implies that
the functions (f, ¢) are linearly dependent on X'.

Since the functions (f, ¢) are linearly dependent on
X', we can drop one of the moment functions, say f,,
and apply the induction hypothesis with X replaced by
X'. Letf' = (fo, fi» -++» fn—-1) denote the reduced set
of moment functions, ' the reduced moment space
{(Ep[f'], Ep[d]): P € D and Ep[1] = 1}, and &' the
reduced moment curve {(f'(x), #(x)): x € X'}. Since
my = Ep [(f', ¢)] € M, the induction hypothesis implies
uy € conv(¥').

We now show that this implies u, € conv(¥). Since
® € conv(¥'), by Lemma 1, there exists g(g < n)
points x;, x5, ..., x, € X', and positive weights w,
Wy, «o., W, such that uy = 27, wi(f'(x;), o(x)).
Because of the linear dependence of the functions (£, ¢)
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on X', there exists a vectora € R"*! such that fulx) =
a'(f'(x), ¢(x)) for all x € X' and w,,, = a'u/. Since

q

q
B =a'ph = 21 wia '(f'(x:), ¢(x;)) = > wifu(x:),

=1

we have u, = 27, w,(f(x,), ¢(x;)) and u, € conv(¥),
contradicting our assumption that u, & conv(¥). Thus,
M C conv(¥), which coupled with conv(¥) C M, im-
plies that conv(¥) = M.

Proof of Main Proposition. Consider any point (u, y) =
Ep [(f, ¢)] € M. (Note that y < o by our assumption
that P, € 9.) By Lemmas 1 and 2, there exists g(qg < n
+ 2) points x;, x,, ..., X, € X, and positive weights
Wi, Wi, ..., W, such that the g vectors (f(x,), ¢(x;))
are linearly independent and (u, y) = X7, w,(f(x,),
¢(x;)). The points (f(x;), ¢(x;)) are the vertices of a
simplex ¥ that contains the point (u, y). The half-line
= {(u, 7): 7 = y} must intersect a proper face of ¥ at
some maximal point (u, 7), where 7 = max{r: (u, 7) €
W}. Since this point lies on a proper face of V¥, it can be
represented as a positive convex combination of a subset
of the g points (f(x;), ¢(x;)) containing no more than n
+ 1 points. Thus we have established the existence of a
discrete distribution P, with mass at n + 1 or fewer
points such that E,[f] = u and Ep[¢p] = 7 =
Ep[é] = 7

We still need to show that the points x,, x5, ..., x;
involved in P, are such that the wvectors f(x,),
f(x3), ..., f(x,) are linearly independent. Suppose they
are not linearly independent. Then there exists a non-
zero vector N = (A, Ay, ..., Ag) such that X7, A, f(x;)
= 0. Since the vectors (f(x;), ¢(x;)) are linearly inde-
pendent, we must have Y7, A,¢(x;) = 0. Without loss
of generality, we may assume >{_; A;¢(x;) > 0 (other-
wise replace A by —A). Let py, p,, ..., p > 0 denote
the masses assigned to the points x,, x5, ... , x; in P5.
Since Ep [ f] = u, we have X7_, p, f(x;) = u. Since the
masses p, are positive, there exists some e > 0 such that
p; + €x; > 0 for all i. Then we have

q
21 (pi +€r)f(x;)=p and

q
! = Zl (p, + E)\i)d)(xi)

q

> Z] pid(x;)=7.

Thus (u, 7') is in ¥ and lies on the half-line ¢ above the
point (m, 7), contradicting our definition of (u, 7) as a
maximal intersection of { and W¥. Thus the vectors f(x,),
S(x2), ---, f(x,) must be linearly independent and P, €

A().
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B.2. Proof of Duality Results (Constrained Case)

The proof of the duality theorem is a standard Lagrange
duality type proof (see Luenberger 1969, pp. 213-238)
and runs as follows.

Proof. Let y and y be defined as:
7= sup Ep[é] and
Pesd(p)

= infilATu + E - AT
Y lf\l{An sup Eplé vl

We seek to show that ¥ = y. Since ¥ < y was established
in the weak duality lemma, we focus on showing that y =
v. The result is trivially true if ¥ = », so we assume that
y < w. The set M = {(Ep[f], Ep[¢]): P € &4} is a
convex subset of ®"*? and the point (u, ¥) is, by defini-
tion of y, a boundary point of M. Thus there exists a
hyperplane that supports M at the point (u, ); i.e., there
exists a nonzero vector (w, @) € ®R"*? such that

wTu + ay 2 wlEp[f]+ aEp[¢], forall PE «A.
(B.1)

We now show that & > 0. To see that « = 0, consider
the point (i, y + €) for € > 0. Because of the definition of
¥y, this point lies in the half-plane opposite of M, so
win + ay + ae = w'Ep[f] + rEp[¢] for all € > 0; this
implies @ = 0. We have a = 0, since otherwise u would
be a boundary point of {Ep[ f]: P € «{}, which contra-
dicts our assumption that u is an interior point. Thus a >
0.

Defining A = —1/aw, (B.1) can be rewritten as —ATu
+ 32 — ATEp[f] + Ep[¢] for all P € #, which implies
that

¥ 2 ATu + sup Ep[¢ — ATf].
PEA

Thus, we have established ¥ = y and the existence of a A
achieving vy in the case where 7 is finite.

Complementary Slackness Condition. Since P € (),
Ep[¢] = ATu + Ep[¢ — A'f]. By the duality theorem,
Ep[¢] = ATp + suppey Ep[¢ — Af]. Thus, Ep[¢] -
ATEp[f] = suppew Ep[d — ATf].

NOTES

1. Methods for doing this are discussed in Smith (1990,
1993). This recursive formula is easily generalized
to problems with discounting as well as infinite hori-
zon problems. This ‘“moment approach’ has been
applied in a recent extension of the Utility Fuel In-
ventory Model (Morris et al. 1987) to compute distri-
butions on costs associated with supply and demand
disruptions.

2. In this problem, we need only check for dominance
by individual prices. Because u(p, ¢,, €.) is concave
in p for all ¢, and ¢, every convex combination of
prices is dominated by an individual price, namely

the convex of combination of prices (by Jensen’s
inequality). Thus if there is a #* that dominates p,
there is a single price p* that dominates p.

. Assuming the bound is finite, there are various con-

ditions that ensure the existence of a distribution
achieving the bound including the requirement that
the set {(Ep[f], Ep[#]): P € D} be closed (see
Glashoff and Gustafson 1983, p. 79). Part c of the
theorem, unlike parts a and b, does not hold in semi-
infinite linear programs in general; here it follows
from our assumption that f(x) = 1 and pu, = 1.

. Notice that in this example the bounds are attained

(or approached) by 3-point discrete distributions
while the fundamental theorem suggests that we
need to consider distributions with as many as n +
1 = 5 points. This kind of ‘“degeneracy’’ is common
in problems of the form of (2). In fact, we can often
use the properties of the moment and objective func-
tions to a priori restrict our search to distributions with
fewer than n + 1 points. For example, with the power
moments, we can be sure that the bounds on F(d) will
be achieved (or approached) by a discrete distribution
with no more than (» + 2)/2 points including the point
d. Many of the properties of power moments general-
ize to moment functions {fy, fi, ..., f,} that form a
“Chebychev system’’; see Karlin and Studden (1966)
for a detailed discussion of these results.

. If wis in {Ep[f(x)]: P € @} but is not an interior

point, then the distributions in @ are concentrated on
a subset X, of X (i.e., P(X,) = 1 for all P € 9); if
this is the case, (4) holds provided we replace X by the
subset X, (see Kingman 1963). Another condition en-
suring that (4) holds is that the set {(Ep[f], Ep[¢]): P
€ B} be closed; in this case, if the primal problem is
bounded, the primal must have a solution though the
dual may not (see Glashoff and Gustafson 1983, p. 79).

. Note that, except for the tails of the distribution, the

bounds on the posterior are looser than the bounds
on the prior! For example, at the point x = 3,000,
the lower bound on the posterior is 0.883 while in
the prior, since that the 95th percentile is 2,400, the
lower bound is 0.95.

. o is convex if for every Py, P, € &, aP; + (1 -

a)P, € A for any e such that 0 < a < 1.

. A measure P is ‘““‘absolutely continuous’ with re-

spect to a measure P,, if P(E) = 0 for all events £
such that P,(E) = 0. If P is absolutely continuous
with respect to P,, there exists a unique Radon-
Nikodyn derivative p such that dP(x) = p(x)dP(x)
(see Royden, 1968, p. 238). Radon-Nikodyn deriva-
tives are sometimes referred to as ““generalized prob-
ability density functions.”

. One way to interpret this entropy cutoff is to appeal

to the ““entropy concentration theorem’” which can
be summarized as follows. Suppose we draw N sam-
ples from P, (or a probability distribution propor-
tional to P,) and estimate P; using some k parameter



family of distributions that satisfy the given moment
constraints (the family of distributions and estimates
must satisfy certain regularity conditions). Let H(*,
P,) denote the maximum entropy value consistent
with the given moments (1.419 in the example) and
H(P,, P,) the entropy of the estimated distribution.
Then asymptotically as N — o, 2N[H(*, P,)
H(P,, P,)] follows a »* distribution with k — n —
degrees of freedom. If we take N = 1,000 and &
20 in the example, we find that 99.9% (= P[x%s
2%1,000%(1.419 — 1.400)]) of the possible distribu-
tions P, will have entropy greater than 1.40. See
Jaynes (1983, pp. 315-336) and Kullback (1959, pp.
97-106) for precise statements of this ‘‘entropy con-
centration theorem.”” In general, the maximum en-
tropy distribution will have a Radon-Nikodyn
derivative of the form p*(x; A) = exp(—1 — ATf(x)).

10. The author is grateful for the helpful comments pro-
vided by Kevin McCardle, Bob Nau, Bob Winkler,
two anonymous referees, and the area and associate
editors.

11. This strategy is similar to the ‘“Three-Phase Algo-
rithm”” described by Glashoff and Gustafson though
the two proposals differ in their second and third
steps. Their second step does not require the approx-
imate solution to the dual problem to be feasible.
Their third step solves a set of nonlinear equations
where we solve a nonlinear programming problem in
fewer dimensions.

o= 1

\"
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