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ABSTRACT
In this monograph, we provide an overview of the informa-
tion relaxation approach for calculating performance bounds
in stochastic dynamic programs (DPs). The technique in-
volves (1) relaxing the temporal feasibility (or nonanticipa-
tivity) constraints so the decision-maker (DM) has additional
information before making decisions, and (2) incorporating
a penalty that punishes the DM for violating the temporal
feasibility constraints. The goal of this monograph is to pro-
vide a self-contained overview of the key theoretical results
of the information relaxation approach as well as a review
of research that has successfully used these techniques in a
broad range of applications. We illustrate the information re-
laxation approach on applications in inventory management,
assortment planning, and portfolio optimization.
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1
Introduction

In principle, dynamic programming (DP) provides a powerful framework
for modeling complex decision problems where uncertainty is resolved
and decisions are made over time. However, in practice, the “curse of
dimensionality” – the fact that the size of the state space typically grows
exponentially in the number of state variables considered – severely
limits the complexity of problems that can be solved using DP methods.
In contrast, Monte Carlo simulation methods typically scale well with
the number of state variables considered and, given a control policy,
it is not difficult to simulate a complex dynamic system with many
uncertainties. Simulating with a feasible policy provides a lower bound
on the expected reward (or upper bound on the expected cost) with an
optimal policy, but Monte Carlo simulation typically does not provide
a good way to identify an optimal policy or provide a performance
bound, i.e., an upper bound on the expected reward (or lower bound on
expected cost) with an optimal policy. Consequently, researchers and
practitioners using heuristic control policies often wonder how good a
policy is and whether it is “good enough” to use in practice.

In this monograph, we review the information relaxation approach
for calculating performance bounds in stochastic DPs, following Brown,
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248 Introduction

Smith, and Sun (2010) (hereafter BSS (2010)) and related works. The
information relaxation approach consists of two elements: (1) we relax
the temporal feasibility (or nonanticipativity) constraints that require
decisions to depend only on the information available at the time a
decision is made and (2) we impose a penalty that punishes violations
of these relaxed constraints. Relaxing the temporal feasibility constraint
allows the decision-maker (DM) to make decisions using more infor-
mation than is truly available and thus leads to an upper bound on
value. Without any penalty for using this additional information, the
resulting performance bound is often quite weak. Informally, we say
a penalty is dual feasible if it does not penalize temporally feasible
policies. Though there exists a dual feasible penalty that provides a
bound that is equal to the optimal value for the primal DP (i.e., strong
duality holds), these ideal penalties are based on the optimal value
function, which is typically not available in the applications of interest
– if the value function were available, we would not need performance
bounds. In practice, we typically use penalties based on approximate
value functions to generate performance bounds.

By relaxing the temporal feasibility constraints, we can often greatly
simplify the problem by reducing a complex stochastic DP to a series
of scenario-specific deterministic optimization problems solved within
a Monte Carlo simulation. To illustrate this idea, we will consider a
dynamic assortment problem, where a retailer decides which products
to offer for sale (“display”) when facing uncertain demand, drawn from
a distribution with unknown parameters. Here a perfect information
relaxation assumes the DM knows all demands and distribution param-
eters before deciding which products to display. With this information,
the problem of choosing products to display is a deterministic optimiza-
tion problem. The information relaxation performance bound can be
estimated using Monte Carlo simulation by repeatedly drawing random
demands and distributions and averaging the results. We can also con-
sider imperfect information relaxations where, for example, the DM
knows the demand distribution but not the realized demands.
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1.1 Outline of the Monograph

The goal of this monograph is to provide a summary of the key ideas
of information relaxation methods for stochastic DPs and demonstrate
their use in several examples. The idea is to provide a “one-stop-shop”
(or at least a “first stop”) for researchers seeking to learn the key ideas
and tools for using information relaxation methods.

Following a brief history and literature review in Section 1.2, in
Sections 2–4, we describe the theory associated with the information
relaxation approach. Section 2 establishes the basic framework and
Section 3 presents the key theoretical results, both following BSS (2010).
In Section 4, we study DPs with a convex structure and show how the
use of “gradient” penalties leads to inner problems that are easy to solve;
this section draws on Brown and Smith (2014b). Before considering
specific examples in detail, in Section 5 we provide a summary of
the information relaxation approach and advice on how to proceed in
applications.

In Sections 6–8, we consider illustrative applications. Section 6 illus-
trates the basic results and methods in a simple inventory management
example with and without uncertainty about the state of the world; this
problem is simple enough that it can be solved to optimality, allowing
us to compare the information relaxation performance bounds to the
optimal value. In Section 7, we consider a more complex example based
on the dynamic assortment problem studied in Caro and Gallien (2007);
our discussion draws on Brown and Smith (2020). In Section 8, we illus-
trate the use of gradient penalties (introduced in Section 4) on dynamic
portfolio optimization problems with transaction costs, building on the
model and results of Brown and Smith (2011).

A reader eager to see examples could read Section 6 describing the
inventory example and perhaps Section 7 on the dynamic assortment
example in parallel with Sections 2–3 describing the general framework
and main results. Similarly, one could read Section 8 describing the
portfolio optimization example in parallel with Section 4 describing the
theory for convex DPs.
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In Sections 9 and 10, we briefly review other work that has advanced
information relaxation methodology and successfully applied the infor-
mation relaxation approach. Section 11 offers a few concluding remarks
and suggestions for future research.

1.2 History and Literature Review

Our interest in information relaxation methods for DPs began with
BSS (2010). As discussed in BSS (2010), we were motivated by the
need to evaluate the quality of heuristic policies in applications. As an
example of one such application, Lai et al. (2010) consider the problem
of managing natural gas storage over time in the presence of stochastic
price dynamics. In the model, the merchant may inject or withdraw
natural gas in each period. This problem is naturally formulated as a
stochastic DP but is challenging because the natural gas forward curve
involves a high-dimensional model that leads to a very large state space
for the stochastic DP. Lai et al. (2010) develop some policies based on
approximations of the value function. Naturally, one might wonder how
good these policies are: could one do better with other – perhaps more
complex – policies or is the current one “good enough?” Such questions
are common when studying complex dynamic models.

The information relaxation approach to calculating performance
bounds for DPs in BSS (2010) was inspired by Haugh and Kogan (2004)’s
“duality approach” for placing bounds on the value of an American op-
tion; Rogers (2002) independently proposed a similar approach, also
applied to option pricing. Both Haugh and Kogan (2004) and Rogers
(2002) consider the use of what we call perfect information relaxations
and establish their main results using martingale arguments. Haugh and
Kogan (2004) propose a particular method for generating penalties or, in
their terminology, “dual martingales” based on approximate value func-
tions and demonstrate the use of this method in high-dimensional option
pricing problems. Andersen and Broadie (2004) propose an alternative
method for generating dual martingales based on approximate policies.
Glasserman (2003) provides a nice overview of this work. Subsequent
work (e.g., Meinshausen and Hambly, 2004; Schoenmakers, 2012) in
financial engineering extended these dual methods to multiple stopping
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problems, for example, derivatives with several exercise rights such as
“swing options” in electricity markets or “chooser caps” in interest rate
markets.

BSS (2010) generalizes Haugh and Kogan (2004), Rogers (2002), and
Andersen and Broadie (2004) in several ways. First, rather than focusing
exclusively on option pricing problems, it considers general stochastic
DPs. Second, rather than focusing exclusively on perfect information
relaxations, it considers general information relaxations. BSS (2010)
also presents a general method for constructing good penalties that
includes and extends the methods proposed by Haugh and Kogan (2004)
and Andersen and Broadie (2004).

The idea of relaxing temporal feasibility (or nonanticipativity) con-
straints has also been studied in the stochastic programming literature
(see, for example, Rockafellar and Wets, 1976; Shapiro et al., 2009).
The stochastic programming formulation typically requires the reward
functions and set of feasible actions to be convex and the penalties to be
linear functions of the actions; they consider only perfect information
relaxations. In contrast, the information relaxation approach described
here allows general reward functions and action spaces, allows general
penalty functions, and considers imperfect as well as perfect informa-
tion relaxations. The connection between the stochastic programming
formulation and the information relaxation approach is discussed in
more detail in Appendix B of BSS (2010). That appendix also discusses
connections between the information relaxation results and standard
Lagrangian duality results for linear programs (LPs). In the LP formu-
lation of the information relaxation problem, the decision variables are
mixing weights on policies and the objectives and constraints (including
the temporal feasibility constraints) are linear functions of these decision
variables. In this LP formulation, the penalties of the information relax-
ation approach correspond to the Lagrange multipliers associated with
the temporal feasibility constraints. However, as shown in Section 3, we
can also use simple, direct arguments to establish the key information
relaxation duality results without considering mixed policies or LP
duality results.

We view this information relaxation approach as a complement to
the use of simulation methods and approximate dynamic programming



252 Introduction

methods for studying DPs (see, for example, Bertsekas and Tsitsik-
lis, 1996; de Farias and Van Roy, 2003; Powell, 2007; Adelman and
Mersereau, 2008). As mentioned earlier, given a candidate policy (per-
haps identified using a heuristic reasoning or using approximate DP
techniques), we can use standard simulation techniques to estimate the
expected value with this policy and thereby generate a lower bound on
the expected reward with an optimal policy. The information relaxation
performance bound can often be estimated with little additional effort
in the same simulation and, as discussed, can help determine whether
the proposed policy is “good enough” or if we should continue searching
for a better policy, perhaps using more complex ADP techniques.

“Hindsight bounds” – perfect information bounds with no penalties
– are popular in the theoretical computer science literature (see, for
example, Feldman et al., 2010). These bounds are used to establish theo-
retical guarantees, for example showing that an algorithm is guaranteed
to produce a solution that is within, say, 50% of the optimal solution. As
we will see in our numerical examples, perfect information bounds with
no penalty are often quite weak. Balseiro and Brown (2019) show how
one can incorporate penalties in such theoretical studies and improve
the theoretical guarantees to show, for example, that an algorithm or
policy is asymptotically optimal in a given setting (see Section 9 for
more).



2
Basic Framework

We take a high-level and abstract view of a DP that emphasizes the
role of information; this approach allows us to formalize information
structures and relaxations and treat the information structure as a
“variable” in our framework. Uncertainty in the DP is described by
a probability space (Ω,F ,P) where Ω is the set of possible scenarios
(with typical element ω), F is a σ-algebra that describes the set of
all possible events (an event is a subset of Ω), and P is a probability
measure describing the likelihoods of the various events.

Time is discrete and indexed by t = 0, . . . , T . The DM’s state of
information evolves over time and is described by a filtration F = (F0,

. . . ,FT ) where the σ-algebra Ft describes the DM’s state of information
at the beginning of period t, i.e., Ft is the set of events that will be
known to be true or false at time t. We will refer to F as the natural
filtration. We require all filtrations to satisfy Ft ⊆ Ft+1 ⊆ F for all t < T

so the DM does not forget what they once knew. We will assume that
F0 = {∅,Ω}, so the DM initially “knows nothing.” A function (or random
variable) f defined on Ω is measurable with respect to a σ-algebra Ft if,
for every Borel set R in the range of f , we have {ω: f(ω) ∈ R} ∈ Ft; we
can interpret f being Ft-measurable as meaning the value of f depends
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only on the information known in period t. A sequence of functions (f0,

. . . , fT ) is said to be adapted to a filtration F (or F-adapted) if each
function ft is Ft-measurable.

In the DP model, the DM will choose an action at in period t from
the set At; we let A(ω) ⊆ A0 × · · · × AT = A denote the set of all
physically feasible action sequences a = (a0, . . . , aT ) in scenario ω. The
DM’s choice of actions is described by a policy α that selects a sequence
of actions a in A for each scenario ω in Ω (i.e., α: Ω→ A). To ensure
the DM knows the feasible set when choosing actions in period t, we
assume that the set of actions available in period t depends on the prior
actions at−1 = (a0, . . . , at−1) and is Ft-measurable for each set of prior
actions. We let A denote the set of all physically feasible policies, i.e.,
those that ensure that α(ω) is in A(ω).

In the primal DP, we assume that the DM’s choices are temporally
feasible (or nonanticipative) in that the choice of action at in period t
depends only on what is known at the beginning of period t; that is,
we require policies to be adapted to the natural filtration F. We let AF
be the set of all temporally and physically feasible – or just feasible –
policies.

The goal of the DP is to select a feasible policy α to maximize
the expected total reward. The rewards are defined by a sequence of
reward functions (r0(a0, ω), . . . , rT (aT , ω)) where the reward in period
t depends on the action sequence at selected up to period t and the
scenario ω. We let r(a, ω) =

∑T
t=0 rt(at, ω) denote the total reward;

discounting can be incorporated into the period reward function rt. The
primal DP is then:

sup
α∈AF

E[r(α)] . (2.1)

Here E[r(α)] could be written more explicitly as E[r(α(ω), ω)] where
policy α selects an action sequence that depends on the random scenario
ω and the rewards r depend on the action sequence selected by α and
the scenario ω. We will typically suppress the dependence on ω and
interpret r(α) as a random variable representing the reward generated
with policy α. A policy α is optimal if it is feasible (α ∈ AF) and it
attains the supremum in (2.1).
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It is instructive to write the primal DP (2.1) in the form of a Bellman-
style recursion. Let At(at−1) denote the subset of period-t actions At
that are feasible given the prior choice of actions at−1. We take the
terminal value function V ∗T+1(aT ) = 0 and, for t = 0, . . . , T , we define

V ∗t (at−1) = sup
at∈At(at−1)

E
[
rt(at) + V ∗t+1(at)

∣∣Ft] . (2.2)

Here both sides are random variables (and therefore implicitly functions
of the scenario ω) and we select an optimal action at for each scenario
ω.1 Since the expected continuation values are conditioned on Ft and
thus Ft-measurable, the objective function on the right is Ft-measurable
for each sequence of actions at. Given that the feasible actions At(at−1)
are assumed to be Ft-measurable, the supremum over actions at is
also Ft-measurable which implies Vt is Ft-measurable. There is no loss
in restricting the choice of actions at to be Ft-measurable; so, if the
suprema on the right side of (2.2) are attained, we can construct a
temporally feasible optimal policy using this recursion. The final value
V0 is equal to the optimal value of (2.1).

Note that this formulation begins with an exogenous probability
measure P, implying the probabilities in the model are independent of
the actions selected by the DM. Problems with action-dependent prob-
abilities can be recast as equivalent problems with action-independent
probabilities, sometimes quite naturally. For example, we could think of
the dynamic assortment problem of Section 7 as having state transition
probabilities that depend on the display decisions. Alternatively, we
can formulate this problem (as we will) with demand as uncertain and
independent of the actions. More generally, one could take the scenario
ω to be a series (U0, . . . , UT ) of uniform random numbers where Ut is
revealed in period t; using inverse transform sampling, we could then
calculate the period-t state from these uniform random numbers and

1In many problems modeled as DPs, it is standard to define a notion of a state
and write the problem as a Markov decision process (MDP) as in, for example,
Bertsekas (2017). We deliberately avoid defining states in our framework: when we
consider different information relaxations and penalties, the relevant state space
needed to solve the relaxation as a DP may differ from that considered in the primal
DP formulation. To avoid this complication, we write the DP using this random
variable formulation instead.
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the chosen actions at. There are a variety of ways one can formulate a
DP model to have action-independent probabilities and, in principle,
the assumption that probabilities are independent of the actions in the
primal DP is without loss of generality. However, different formulations
may lead to different information relaxations and performance bounds.



3
Main Results

In this section, we review the main results underlying the information
relaxation approach. Our presentation follows BSS (2010) and the main
results are stated in a format that mimics standard presentations of
linear programming duality (see, for example, Bertsimas and Tsitsiklis,
1997; Luenberger and Ye, 2016).

3.1 Duality Results

In the information relaxation approach to the DP (2.1), we relax the
constraint that the policies must be temporally feasible and impose
penalties that punish violations of these constraints. We define relax-
ations of the temporal feasibility requirement by considering alternative
information structures: a filtration G = (G0, . . . ,GT ) is a relaxation of
another filtration F = (F0, . . . ,FT ) if, for each t, Ft ⊆ Gt ⊆ F ; that is,
the DM knows more in every period under G than is known under F. We
abbreviate this by writing F ⊆ G. The perfect information relaxation is
I = (F , . . . ,F), meaning the DM knows the scenario ω before making
any decisions. We let AG denote the set of policies that are adapted
to G. For any relaxation G of F, we have AF ⊆ AG ⊆ AI = A; thus, as
we relax the filtration, we expand the set of feasible policies.
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The set of penalties Π is the set of all functions π(a, ω) that, like
the total rewards, depend on the action sequence a and the scenario ω.
As with rewards, we will typically write penalties as action-dependent
random variables π(a) (=π(a, ω)) or policy-dependent random variables
π(α) (=π(α(ω), ω)), suppressing the dependence on the scenario ω. We
define the set ΠF of dual feasible penalties to be those penalties that do
not penalize (in expectation) temporally feasible policies:

ΠF = {π ∈ Π: E[π(αF)] ≤ 0 ∀αF ∈ AF}.

Policies that are not temporally feasible may have positive expected
penalties and we will use this to “punish” the DM for using information
that would not be known in the natural filtration F.

We can derive an upper bound on the expected reward associated
with any feasible policy by relaxing the temporal feasibility constraints
on policies and imposing a dual feasible penalty. This simple result
is analogous to “weak duality” in linear programming and is the key
result for applications. The proof follows directly from the definitions
of information relaxations and dual feasible penalties.

Theorem 3.1 (Weak Duality, BSS (2010)). If αF and π are primal and
dual feasible respectively (i.e., αF ∈ AF and π ∈ ΠF) and G is a
relaxation of F, then

E[r(αF)] ≤ sup
αG∈AG

E[r(αG)− π(αG)] . (3.1)

Proof. With π, αF , and G as defined in the theorem statement, we have

E[r(αF)] ≤ E[r(αF)− π(αF)] ≤ sup
αG∈AG

E[r(αG)− π(αG)] .

The first inequality holds because π ∈ ΠF (thus E[π(αF)] ≤ 0 for any
αF ∈ AF) and the second because αF ∈ AF ⊆ AG.

Thus any information relaxation with any dual feasible penalty will
provide an upper bound on all feasible DP policies – including the
optimal policy – thereby providing a performance bound.

With a fixed penalty π, weaker relaxations G lead to larger sets of
feasible policies AG and weaker bounds.
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Corollary 3.1 (Tighter Relaxations). If F ⊆ G ⊆ G′, then

E[r(αF)] ≤ sup
αG∈AG

E[r(αG)− π(αG)] ≤ sup
αG∈AG′

E[r(αG)− π(αG)] .

For example, as we will see in the “world driven” inventory control
example of Section 6.4, the bounds given by one penalty may be “good
enough” with one information relaxation but not “good enough” with a
looser relaxation.

If we consider the perfect information relaxation I, the set of relaxed
policies AI is simply the set of all physically feasible policies A and all
actions are selected knowing the scenario ω. Weak duality then implies
that for any αF in AF and π in ΠF,

E[r(αF)] ≤ sup
α∈A

E[r(α)− π(α)] = E
[

sup
a∈A(ω)

{r(a, ω)− π(a, ω)}
]
.

(3.2)
The perfect information upper bound (3.2) is in a form that is convenient
for Monte Carlo simulation: we can estimate the expected value on the
right side of (3.2) by randomly generating scenarios ω and solving a
deterministic “inner problem” where we choose a feasible action sequence
a ∈ A(ω) to maximize the penalized objective r(a, ω) − π(a, ω) for
the given ω. For instance, in our portfolio optimization example in
Section 8, the perfect information relaxation assumes the DM knows
all asset returns before making any trading decisions. We estimate
the information relaxation performance bound by randomly generating
return scenarios and solving a deterministic inner problem that chooses
optimal trading decisions in each return scenario given a particular form
of penalty.

We can write the dual DP on the right side of (3.1) in a recursive
form analogous to that for the primal DP (2.2). The terminal case is
V G
T+1(aT ) = 0, and, for t = 0, . . . , T , we have

V G
t (at−1) = sup

at∈At(at−1)
E[rt(at)− πt(at) + V G

t+1(at) | Gt]. (3.3)

As discussed following (2.2), this recursion leads to G-adapted policies
and value functions. The expectation of initial value, E[V G

0 ], provides
an upper bound on the primal DP (2.1) or (2.2).
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With an imperfect information relaxation, the resulting “inner prob-
lems” may be stochastic DPs that ideally are easier to solve than the
primal DP. For example, BSS (2010) considers an option-pricing prob-
lem where stock prices, interest rates, and volatilities are all uncertain
and evolving over time. An imperfect information relaxation considered
there treats stock prices as uncertain and interest rates and volatilities
as known: i.e., Gt in (3.3) includes knowledge of all interest rates and
volatilities through period T and stock prices up to period t− 1. The
resulting inner problem is a standard option-pricing problem which can
be solved using, for example, a binomial or trinomial lattice to value an
option with known, but time-varying interest rates and volatilities. The
information relaxation bounds are estimated by Monte Carlo simulation
where these inner problems are repeatedly solved for randomly gener-
ated sequences of interest rates and volatilities. In practice, the choice
of information relaxation must be made with careful consideration of
the complexity of the resulting inner problems; see Section 5 for more
discussion on this point. The inventory management and dynamic as-
sortment problems of Sections 6–7 also consider imperfect information
relaxations.

If we minimize over dual feasible penalties in (3.1), we obtain the
dual of the primal DP (2.1):

inf
π∈ΠF

{
sup

αG∈AG

E[r(αG)− π(αG)]
}
. (3.4)

By weak duality, if we identify a policy αF and penalty π that are
primal and dual feasible, respectively, such that equality holds in (3.1),
then αF and π must be optimal for their respective problems. In such a
case, there would be no gap between the values given by these primal
and dual solutions. If the primal solution is bounded, there is always
a dual feasible penalty that yields no gap. For example, consider the
penalty π∗(a) = r(a)− v∗ where v∗ is the optimal value of the primal
DP (2.1). This π∗ is dual feasible (since E[r(αF)] ≤ v∗ for all αF ∈ AF)
and trivially optimal: no matter what policy is selected, the penalized
objective function r(α)− π∗(α) is equal to v∗. Of course, the existence
of this trivially optimal penalty is not helpful in practice because it
requires knowing the optimal value v∗ of the primal DP. It does, however,
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show that there is no gap between the solutions to the primal and
dual problems and that, in principle, we could determine the maximal
expected reward in the primal DP (2.1) by solving the dual problem
(3.4). This result is analogous to the strong duality theorem of linear
programming.

Theorem 3.2 (Strong Duality, BSS (2010)). Let G be a relaxation of F.
Then

sup
αF∈AF

E[r(αF)] = inf
π∈ΠF

{
sup

αG∈AG

E[r(αG)− π(αG)]
}
. (3.5)

Furthermore, if the primal problem on the left is bounded, the dual
problem on the right has an optimal solution π∗ ∈ ΠF that achieves
this bound.

In Section 3.2, we will consider a penalty that we call the “ideal penalty”
that is also optimal in (3.5) and gives more insight into penalties that
are likely to perform well in practice.

Finally, as in linear programming, the complementary slackness
condition characterizes the relationship between the primal and dual
problems, saying that for a primal-dual pair (α∗F , π∗) to be optimal, it
is necessary and sufficient for α∗F to have zero expected penalty with
penalty π∗ and for α∗F to solve the dual problem in the following sense.

Theorem 3.3 (Complementary Slackness, BSS (2010)). Let α∗F and π∗
be feasible solutions for the primal and dual problems respectively (i.e.,
α∗F ∈ AF and π∗ ∈ ΠF) with information relaxation G. A necessary and
sufficient condition for these to be optimal solutions for their respective
problems is that E[π∗(α∗F)] = 0 and

E[r(α∗F)− π∗(α∗F)] = sup
αG∈AG

E[r(αG)− π∗(αG)] . (3.6)

Proof. We first consider sufficiency. Consider any α∗F ∈ AF and π∗ ∈ ΠF
and suppose (3.6) holds and E[π∗(α∗F)] = 0. Then we can rewrite the
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dual problem (on the right side of (3.1)) with this penalty as

sup
αG∈AG

E[r(α)− π∗(α)] = E[r(α∗F)− π∗(α∗F)] (using (3.6))

= E[r(α∗F)] (since E[π∗(α∗F)] = 0).

Then, by weak duality, α∗F and π∗ must be optimal.
To show necessity, first note that for any α∗F ∈ AF and π∗ ∈ ΠF, we

have:

sup
αG∈AG

E[r(αG)− π∗(αG)] ≥ sup
αF∈AF

E[r(αF)− π∗(αF)]

(because AF ⊆ AG)
≥ E[r(α∗F)− π∗(α∗F)] (because α∗F ∈ AF)
≥ E[r(α∗F)] (because π∗ ∈ ΠF).

If α∗F ∈ AF and π∗ ∈ ΠF are primal and dual optimal (respectively),
then, by the strong duality theorem, the first and last terms above are
equal which implies the intervening inequalities hold with equality and
we have E[π∗(α∗F)] = 0 and (3.6).

Equation (3.6) can be interpreted as implying that with an optimal
penalty, in the dual problem the DM will be content to choose a policy
that is temporally feasible even though they have the option of choosing
a policy that is not. In applications, we can study the differences between
the action selected by the heuristic policies αF used to compute a lower
bound and the policies αG selected in the dual problem to see if we can
identify some way to improve the heuristic policy and/or dual bound.
BSS (2010) demonstrates this idea in two examples. In an inventory
management problem with a demand distribution that depends on an
unobservable market state which changes stochastically over time, the
myopic policies (αF) tend to order too much given the possibility of
decreased future demand whereas the dual policy (αG) “cheats” and
orders less before demand actually drops (something that would not
be known in the natural filtration) and thereby avoids the cost of
holding too much inventory in a low demand state. This observation
suggested using an improved myopic value model that recognizes the
possibility of reduced future demand (see Section 3.6 of BSS (2010)).



3.2. Good Penalties 263

Similar comparisons in an option pricing example lead to an improved
exercise policy (see Section 4.6 of BSS (2010)).

3.2 Good Penalties

In our discussion so far, we have considered the set of all dual feasible
penalties. We now focus on identifying “good” penalties that are likely
to be useful in practice. The method we will use to generate penalties
is described in the following proposition.

Proposition 3.1 (Constructing Good Penalties, BSS (2010)). Let
(w0(a0, ω), . . . , wT (aT , ω)) be a sequence of generating functions de-
fined on A× Ω where each wt depends only on the first t+ 1 actions
at = (a0, . . . , at) of a. Similarly, let αt denote the first t + 1 actions
selected by policy α. Define

πt(at) = wt(at)− E[wt(at) | Ft] (3.7)

and π(a) =
∑T
t=0 πt(at). Then, for all α in AF, we have E[πt(αt) | Ft] =

0 (almost surely) for all t and E[π(α)] = 0. Thus π is dual feasible (i.e.,
π ∈ ΠF).

This proposition implies that the penalties π generated using (3.7)
will always be dual feasible in that E[π(αF)] ≤ 0 for αF in AF, but
is stronger in that it implies the inequality defining feasibility holds
with equality. The complementary slackness condition (Theorem 3.3)
shows that an optimal penalty π∗ will assign zero expected penalty to
an optimal primal policy α∗. Penalties generated using Proposition 3.1
will assign zero expected penalty to all temporally feasible policies.1

The proof of Proposition 3.1 relies on the following lemma which
we state without proof (for a proof, see Lemma A.1 of BSS (2010)).

1Note that BSS (2010) defines “good penalties” as having the form πt(at) =
E[wt(at) | Gt] − E[wt(at) | Ft] rather than the form of Equation (3.7). Leaving out
the G-conditional expectations as done in (3.7) makes no difference in applications
because we take G-expectations of the penalties in the relaxed problem (e.g., in (3.3)),
but it is simpler to define penalties independently of the information relaxation as
we do here.
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Lemma 3.1. Let zt(a) = E[wt(a) | Ft]. If wt(a) depends on the first
t+ 1 actions in a and α is F-adapted, then zt(α) = E[wt(α) | Ft], almost
surely.

Note that the result of this lemma need not hold for policies that
are not F-adapted. In zt(α) (with zt(a) as defined in the lemma), we
calculate the “Ft-average” in the conditional expectation and then
select averaged values for actions selected according to policy α. In
E[wt(α) | Ft], we select values wt(a) for actions according to the policy
α first and then calculate the Ft-average. In these terms, the lemma
says that if α is F-adapted, Ft-averaging and then selecting actions is
equivalent to selecting actions and then Ft-averaging. If the policy α
is not F-adapted, selecting then Ft-averaging may not be the same as
averaging then selecting.

Proof of Proposition 3.1. Given an F-adapted policy α, using
Lemma 3.1 and the law of iterated expectations, we have

E[πt(αt) | Ft] = E[wt(αt) | Ft]− E[E[wt(αt) | Ft] | Ft] = 0
(almost surely).

Here the law of iterated expectations implies E[E[wt(αt) | Ft] | Ft] =
E[wt(αt) | Ft], almost surely. Summing πt over time and using the
law of iterated expectations again (to establish E[E[πt(αt) | Ft]] =
E[πt(αt)]), we have E[π(α)] = 0, as stated in the second claim of the
proposition.

We can construct an ideal penalty using Proposition 3.1 by taking the
generating functions wt to be based on the optimal DP value function
(2.2) as

wt(at) = rt(at) + V ∗t+1(at). (3.8)

Given a relaxation G of F, the dual value function (3.3) with this penalty
then becomes

V G
t (at−1) = sup

at∈At(at−1)
E
[
E[rt(at) + V ∗t+1(at) | Ft]

− V ∗t+1(at) + V G
t+1(at) | Gt

]
. (3.9)
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It is easy to show by induction that with this choice of generating
function, the dual value functions are equal to the corresponding primal
value functions, i.e., V G

t = V ∗t . This is trivially true for the terminal
values (both are zero). If we assume that V G

t+1 = V ∗t+1, terms cancel
and, noting that E[E[· | Ft] | Gt] = E[· | Ft] (since F ⊆ G), the expression
for V G

t (at−1) above reduces to the expression for V ∗t given in Equa-
tion (2.2). Thus, with this choice of generating function, we obtain
an optimal penalty for any information relaxation G. The following
theorem summarizes this result and adds a bit more.

Theorem 3.4 (Ideal Penalties, BSS (2010)). Let G be a relaxation
of F and let π∗ be defined as in Proposition 3.1 by taking wt(at) =
r(at) + V ∗t+1(at). Then π∗ is dual feasible and optimal in that

V ∗0 = sup
αF∈AF

E[r(αF)] = sup
αG∈AG

E[r(αG)− π∗(αG)] . (3.10)

Moreover, if α∗F ∈ AF achieves the supremum for the primal problem on
the left side of (3.10) (i.e., is optimal), then α∗F is also optimal for the
dual problem on the right. Finally, if α∗G ∈ AG is an optimal policy for
the dual problem, then for almost all ω,

r(α∗G, ω)− π∗(α∗G, ω) = V ∗0 . (3.11)

The last part of the result could alternatively be stated as r(α∗G) −
π∗(α∗G) = V ∗0 , almost surely, meaning the set of scenarios ω where
this equality (or (3.11) does not hold) has probability zero. Informally,
the “almost” here stems from the fact that optimal policies may be
“suboptimal” on sets with probability zero and still be optimal and,
similarly, versions of the conditional expectations E[· | Ft] (used in
defining the ideal penalties) may differ on sets with probability zero.

Proof. The fact that π∗ is dual feasible follows from Proposition 3.1
and the fact that it is optimal for the dual problem follows from the
inductive argument in the text preceding the statement of the theorem.
The fact that any α∗F ∈ AF that is optimal for the primal problem is
also optimal for the dual problem then follows by the complementary
slackness result, Theorem 3.3.
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To establish the last part of the theorem, let us abuse notation a
bit and write V ∗t (a) in place of V ∗t (at−1) with the understanding that
the subsequence of actions at = (a0, . . . , at) is selected from the full
sequence of actions a; similarly with the rewards rt and penalties π∗t . If
α∗G ∈ AG is optimal for the dual problem, we then have

r(α∗G)− π∗(α∗G) =
T∑
t=0

rt(α∗G)− π∗t (α∗G)

=
T∑
t=0

E
[
rt(α∗G) + V ∗t+1(α∗G)

∣∣Ft]− V ∗t+1(α∗G)

=
T∑
t=0

V ∗t (α∗G)− V ∗t+1(α∗G) (almost surely) (3.12)

= V ∗0 .

The first and second equalities above follow from the definition of r and
π∗ and Lemma 3.1. With an ideal penalty, an optimal policy α∗G for the
dual problem almost surely satisfies (see Equations (3.3) and (3.9))

V G
t (at−1) = sup

at∈At(at−1)
E
[
E
[
rt(at) + V ∗t+1(at)

∣∣Ft] ∣∣Gt]
= sup

at∈At(at−1)
E
[
rt(at) + V ∗t+1(at)

∣∣Ft]
= V ∗t (at−1).

Here we use the fact that E[E[· | Ft] | Gt] = E[· | Ft] (since F ⊆ G) and
the definition of V ∗t in Equation (2.2). (Note this equality may fail on a
set of measure zero for an optimal policy α∗G.) This establishes (3.12)
above. Continuing after (3.12), we find that adjacent terms in (3.12)
cancel and (3.12) reduces to V ∗0 (α∗G)−V ∗T+1(α∗G). Here V ∗T+1 was defined
to be 0 and V ∗0 (α∗G) is equal to V ∗0 .

The last part of Theorem 3.4 notes that not only does the ideal
penalty result in a dual problem (on the right side of (3.10)) whose
expected value matches that of the primal DP (on the left side of
(3.10)), the dual problem yields the optimal value of the primal DP
in every scenario. For example, with a perfect information relaxation
dual problem (3.2), if we were to estimate this bound with Monte



3.2. Good Penalties 267

Carlo simulation using an ideal penalty, the simulation would return
the optimal expected value for the primal DP in every sampled scenario
and the estimate would have zero variance.

Note that if the period-t reward functions rt are Ft-measurable (as
was assumed in BSS (2010)), then the reward function can be omitted
from the definition of the ideal penalty, i.e., we can take the generating
function to be

wt(at) = V ∗t+1(at) (3.13)

rather than (3.8) because rt(at) = E[rt(at) | Ft] and the reward terms
cancel in the definition of the penalty (3.7).

Of course, the optimal value functions will not be known in the
applications of interest (if the value functions were known, we would not
need performance bounds) and in such cases, the ideal penalty will not
be available. However, the form of the ideal penalty π∗ illustrates what
we would like to approximate with our choice of penalties. In practice,
we will typically take the generating functions in Proposition 3.1 to be
based on approximate value functions V̂t+1 and consider penalties with
period-t terms of the form:

π̂t(at) = rt(at) + V̂t+1(at)− E[rt(at) + V̂t+1(at) | Ft]. (3.14)

Proposition 3.1 ensures the penalty π̂ =
∑T
t=0 π̂t is dual feasible and

thus leads to an upper bound on V0. The key to obtaining a good bound
from such an approximate value function is for the differences in (3.14)
to provide a good approximation of the differences

rt(at) + V ∗t+1(at)− E
[
rt(at) + V ∗t+1(at)

∣∣Ft]
based on the true value function V ∗t . For example, penalties based on
limited-lookahead approximate value functions may do well: though
the limited-lookahead approximations do not approximate the value
functions very well (because they include only a few periods of rewards),
they may approximate the differences in true values well. For example,
we will see that a myopic “smoothing penalty” performs well in the
inventory example of Section 6.

These “good penalties” may also be helpful as control variates when
estimating the expected reward associated with a heuristic policy, i.e., in
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estimating a primal lower bound. For example, given a heuristic policy
α̂ that is feasible for the primal DP (2.1), we can write the expected
total reward as

E[r(α̂)] = E
[
T∑
t=0

rt(α̂t)
]

= E
[ T∑
t=0

rt(α̂t)− (rt(α̂t) + V̂t+1(α̂t)

− E[rt(α̂t) + V̂t+1(α̂t) | Ft])
]
, (3.15)

where the last expression incorporates a zero-mean penalty term (3.14)
as a control variate. This control variate is of the form considered in
the “approximating martingale-process method” for variance reduction
developed in Henderson and Glynn (2002). If the value functions V̂t
are value functions corresponding to policy α̂ (so V̂t(α̂t−1) = rt(α̂t) +
E[V̂t+1(α̂t) | Ft]) adjacent terms in (3.15) cancel and the expectations
reduce to the expectation of a constant, E[V̂0] = V̂0. In this case,
when estimating values by simulation, we would obtain a zero-variance
estimate of the expected reward associated with policy α̂. If the functions
V̂t approximate the values given by the policy α̂ (or, more precisely,
approximate the differences in values appearing in (3.15) well), we would
expect to obtain low variance estimates of the value associated with a
given policy.

3.3 Properties of Information Relaxation Bounds

Although the approximate value function V̂t+1 in (3.14) can be any
function satisfying the conditions of Proposition 3.1, we can say more
in the case where the approximate value function is an optimal value
function for an approximating DP. Specifically, consider a DP defined on
the same probability space (Ω,F ,P) and filtration F as in the original
model (as described in Section 2), but with total rewards r̂ instead of r
and constraint set Â instead of A. We say this approximate model is
a (physical) relaxation of the original model if r(a, ω) ≤ r̂(a, ω) holds
for all a in A and for all ω (i.e., for all actions that are feasible for the
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original model) and A(ω) ⊆ Â(ω) for all scenarios ω; we will abbreviate
this by writing r ≤ r̂ and A ⊆ Â, respectively. Such relaxations arise
naturally in many settings. For example, the relaxation may come
from relaxing physical constraints, such as a Lagrangian relaxation
of a weakly coupled DP as in the dynamic assortment problem (see
Section 7) or by considering a “frictionless” approximation that, for
example, ignores transaction costs or taxes in portfolio optimization
(see Section 8). Because the rewards and feasible sets are no smaller in
the relaxed model, the relaxed model must be an upper bound on the
optimal value in the original model, i.e.,

V0 = sup
α∈AF

E[r(α)] ≤ V̂0 = sup
α∈ÂF

E[r̂(α)] , (3.16)

where ÂF denotes the set of feasible policies for the relaxed problem.
What is perhaps not obvious is that the information relaxation bound
based on the penalty (3.14) from this relaxed value function V̂t will be
tighter than the bound (3.16) provided by the relaxed model itself. Part
(ii) shows the same result holds with penalties generated by a superso-
lution to a DP (see, for example, Puterman, 1994, Proposition 5.3.1).

Proposition 3.2 (Improving Bounds).

(i) (Brown and Smith, 2014b) Let π̂ be the penalty given by (3.14)
for approximate value functions V̂t. If the value functions V̂t are
the optimal value functions for a relaxed model with A ⊆ Â and
r ≤ r̂, then,

sup
αG∈AG

E[r(αG)− π̂(αG)] ≤ V̂0.

Moreover, for almost every scenario ω:

sup
a∈A(ω)

{r(a, ω)− π̂(a, ω)} ≤ V̂0. (3.17)

(ii) (Brown and Haugh, 2017; Desai et al., 2011) The conclusions of (i)
also hold if the approximate value function V̂t is a supersolution
to the Bellman equation: that is, if V̂t satisfies (2.2) with an
inequality (≥) rather than equality.
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Proof. (i) Using the ideal penalty result (Theorem 3.4) with the relaxed
model, we know that, for almost every scenario ω,

sup
a∈Â(ω)

{r̂(a, ω)− π̂(a, ω)} = V̂0.

Since r(a, ω) ≤ r̂(a, ω) and A(ω) ⊆ Â(ω), we have

sup
a∈A(ω)

{r(a, ω)− π̂(a, ω)} ≤ sup
a∈Â(ω)

{r̂(a, ω)− π̂(a, ω)} = V̂0.

(ii) This result follows from an induction argument similar to that
used to establish the optimality of the ideal penalty (Theorem 3.4).
Specifically, we show that V G

t (at−1) ≤ V̂t(at−1) for almost every scenario.
Taking V̂T+1(aT ) = 0 establishes the base case. Now assume the result
holds for period t+ 1. Following (3.13) we have

V G
t (at−1) = sup

at∈At(at−1)
E
[
E[rt(at) + V̂t+1(at) | Ft]

− V̂t+1(at) + V G
t+1(at) | Gt

]
≤ sup

at∈At(at−1)
E[E[rt(at) + V̂t+1(at) | Ft] | Gt]

= sup
at∈At(at−1)

E[rt(at) + V̂t+1(at) | Ft]

≤ V̂t(at−1),

where the first inequality follows from the induction assumption and the
second inequality follows from the fact that V̂t is a supersolution.

The two results of the proposition are closely related: for example,
the Lagrangian relaxation and frictionless model considered in Sections 7
and 8 are physical relaxations that satisfy the conditions of the first result
and generate approximate value functions that satisfy the supersolution
condition of the second result. The fact that the bound (3.17) holds in
every scenario is a useful diagnostic for checking results when estimating
bounds using Monte Carlo simulation and suggests that information
bounds generated by using penalties based on good physical relaxations
(or supersolutions) will yield high-quality, low-variance performance
bounds.
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The information relaxation approach also allows us to exploit struc-
tural properties of the optimal policy for the primal problem: if we
can simplify the primal problem by focusing on some subset of policies,
we can restrict the dual problem to focus on policies in this same set.
For example, if we know the optimal policy for the primal problem is
myopic or has a threshold structure, we can simplify the dual problem
by considering only policies that have the same structure. This leads to
dual bounds that are at least as tight and perhaps easier to compute
than the dual bounds that do not include such structural constraints.
We summarize this property as follows.

Proposition 3.3 (Structured Policies, BSS (2010)). If for some S ⊆ A we
have supαF∈AF E[r(αF)] = supαF∈SF E[r(αF)] then, for any dual feasible
π, we have

sup
αF∈AF

E[r(αF)] ≤ sup
αG∈SG

E[r(αG)− π(αG)] ≤ sup
αG∈AG

E[r(αG)− π(αG)] .

(3.18)
Moreover, the inequalities also hold for all π such that E[π(αF)] ≤ 0 for
all αF in SF.

Proof. The first inequality in (3.18) follows from applying the weak
duality result (Theorem 3.1) with the restricted policy space S in place
of the full policy space A. Note that, by definition, any dual feasible
penalty π for the original problem with A satisfies E[π(αF)] ≤ 0 for
all αF in AF. Since S ⊆ A, any such penalty will also be dual feasible
with a restricted policy space, i.e., E[π(αF)] ≤ 0 for all αF in SF. This
set of dual feasible penalties in the restricted policy space is larger
than the set of dual feasible penalties in original space. Thus this first
inequality holds on the larger set of penalties that are dual feasible with
the restricted penalties.

The second inequality in (3.18) follows from the fact that
SG ⊆ AG.

We will illustrate the use of this result in the assortment planning
example of Section 7 where the retailer chooses Nt products to display
in period t. In that example, if products are a priori identical, then in
the first period it does not matter which products are displayed. Thus
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there is no loss in optimality in imposing a restriction that the first
N0 products (in index order) are displayed in the first period. With a
relaxed filtration, the products may no longer be identical in the first
period, but we can obtain tighter bounds by imposing this restriction.

In practice, there will often be a trade-off between the quality of the
bound and the computational effort required to compute it. As discussed
earlier (see Corollary 3.1 and discussion after), we can control this trade-
off through our choice of information relaxation G and penalty. We can
also sometimes use the following result to simplify the calculation of
“good penalties” when E[wt(at) | Ft] is difficult to evaluate.

Proposition 3.4 (Simplifying Good Penalties, BSS (2010)). Let F′ be
filtration satisfying F ⊆ F′ and let (w0, . . . , wT ) be a sequence of gener-
ating functions satisfying the conditions of Proposition 3.1. The penalty
π given by πt(at) = wt(at)− E[wt(at) | F ′t] satisfies the conclusions of
Proposition 3.1 and thus is dual feasible (i.e., π ∈ ΠF).

Proof. From Lemma 3.1 (since αF being F-adapted implies αF is also
F′-adapted) and the law of iterated expectations (since Ft ⊆ F ′t), we
have

E[πt(αt) | Ft] = E[wt(αt) | Ft]− E
[
E
[
wt(αt)

∣∣F ′t] ∣∣Ft] = 0
(almost surely).

The rest of the proof then proceeds as in the proof of Proposition 3.1.

This result can be helpful if the natural filtration includes elements
that are partially observed. For instance in the option pricing exam-
ple with stochastic volatility in BSS (2010), the volatility is assumed
to be not observed in the natural filtration. A correct calculation of
E[wt(at) | Ft] would require keeping track of a probability distribution
on volatility which would be updated over time using Bayes rule, based
on observed stock prices and interest rates. Using the result above, we
can simplify the computation by calculating penalties using a filtration
F′ that assumes the volatility is observed. A similar situation arises in
the inventory management example with uncertainty about the “state
of the world” (see Section 6.4) if the state is not fully observed.
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Proposition 4.3 of BSS (2010) has some additional results about
information relaxations and penalties. One result can be interpreted as
a continuity property implying that penalties that are “close” to the
ideal penalty, yield bounds that are close to the optimal value. Another
result shows that if we estimate penalties using simulation methods
(e.g., as in Haugh and Kogan, 2004; Andersen and Broadie, 2004), we
obtain estimates of the bounds that are weaker than the bounds given
by using the penalty itself.



4
Convex Dynamic Programs

Though the results of Section 3 hold for all DPs, our focus in this
section will be on the case where the DP or its approximating model
has a convex structure. The dynamic portfolio optimization example of
Section 8 is an example of a convex DP as are many problems using
linear systems and concave rewards (or convex costs), such as linear-
quadratic control problems (see, e.g., Bertsekas, 2017, Section 4.2). We
will follow Brown and Smith (2014b) (hereafter BS (2014)) and restrict
our attention to perfect information relaxations and assume that the
actions in each period at are vectors of real numbers, i.e., in Rnt for some
finite nt.

A convex dynamic program is a DP where the reward functions
rt(at, ω) are concave functions of the actions at for each ω and the
feasible set of actions A(ω) is convex for each ω. With a convex DP,
the primal DP (2.1) can be viewed as a large convex optimization
problem with decision variables corresponding to choices of actions a
for each scenario ω and a concave objective function, a convex set of
constraintsA(ω) for each scenario, and a large set of equality constraints
that link actions across scenarios and represent the temporal feasibility
constraints. We can also show by induction that for a convex DP, the
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optimal value functions Vt given by the Bellman recursion (2.2) will be
concave in actions; see BS (2014).

With convex DPs, though the rewards are concave and constraint
sets are convex, with penalties like (3.14) based on approximate value
functions (or the true value function), the penalized objective r(a)−π̂(a)
involves differences of concave functions, may not be concave in a and,
consequently, the resulting inner problem in (3.2) may be difficult to
solve. A natural way to address this issue is to replace the penalties
with a first-order linear approximation so these differences are linear
and the objective in the inner problems will be concave. To simplify
the discussion here, we will focus on the case where the approximate
value functions are differentiable. In practice, many approximate value
functions are nondifferentiable (e.g., arising from piecewise linear ap-
proximations); see BS (2014) for the nondifferentiable case. We also
focus on the case where the period-t reward functions rt are F-adapted
so the ideal penalties (and approximations thereof) can be defined
using generating functions (3.13) that do not include the reward func-
tions. This is for notational convenience and is true in the portfolio
optimization example in Section 7.

Assuming the approximate value functions V̂t are concave and dif-
ferentiable in actions, we can take a first-order linear approximation
around the nonanticipative (or F-adapted) policy α̂:

V̂t+1(at) ≈ ∇V̂t+1(α̂t)
ᵀ(at − α̂t) + V̂t+1(α̂t),

where ∇V̂t+1(at) denotes the gradient of V̂t+1(at) with respect to the
first t+ 1 actions, evaluated at at and α̂t denotes the first t+ 1 actions
selected under policy α̂. Note that V̂t+1(α̂t) is a random variable (written
more explicitly as V̂t+1(α̂t(ω), ω)), the gradients are evaluated for each
ω, and the resulting approximation is a random variable for each action
sequence at. We can then use this approximation as a generating
function, taking

wt(at) = ∇V̂t+1(α̂t)
ᵀ(at − α̂t) + V̂t+1(α̂t) (4.1)
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in Proposition 3.1 to generate the gradient penalty:

π̂∇(a) =
T∑
t=0

(
(∇V̂t+1(α̂t)− E[∇V̂t+1(α̂t) | Ft])

ᵀ(at − α̂t)

+ (V̂t+1(α̂t)− E[V̂t+1(α̂t) | Ft])
)
. (4.2)

(We use the assumption that α̂t is Ft-measurable to move α̂t outside of
the expectation.) This penalty is affine in actions a and, given a problem
with concave rewards and convex action sets, the inner problem (3.2)
with this penalty is a convex optimization problem. The final terms
(inside the parentheses) are constant with respect to a and play the
role of control variates, similar to the last terms in (3.15): they have
zero mean and thus do not affect the expected value in the bound (3.2).
However, these terms may be correlated with the reward terms in (3.2)
and, as discussed in Section 3.2, including them in the penalty may help
reduce the variance when estimating the bounds using Monte Carlo
simulation.

What is striking about these gradient penalties is that the linear ap-
proximation, in principle, entails no loss in functionality when working
with convex DPs. The gradient penalties are dual feasible (by construc-
tion) and hence generate valid bounds by weak duality (Theorem 3.1).
Strong duality also holds: there exists a gradient penalty that generates
a zero-variance, tight bound. Moreover, when working with an approx-
imate value function from a relaxed model that is a convex DP, the
gradient penalty will improve on the bound given by the relaxed model
in every scenario. We formalize these results for the differentiable case
as follows.

Proposition 4.1 (Properties of Gradient Penalties, BS (2014)). Suppose
the approximate value functions V̂t are concave in actions and differ-
entiable. Let π̂∇ denote the gradient penalty defined by linearizing V̂t
around a F-adapted policy α̂ as in (4.2).

(i) (Strong Duality) If the original model is a convex DP and the
approximate value functions V̂t and policies α̂ are the optimal
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value functions and an optimal policy for this model, then, for
almost every scenario ω,

max
a∈A(ω)

{r(a, ω)− π̂∇(a, ω)} = V0.

(ii) (Improving Bounds from Other Relaxations) If the approximate
value functions V̂t are the optimal value functions for a relaxed
model that is a convex DP with A ⊆ Â and r ≤ r̂ and α̂ is
an optimal policy for this relaxed model, then, for almost every
scenario ω:

max
a∈A(ω)

{r(a, ω)− π̂∇(a, ω)} ≤ V̂0.

Note that the results above hold “pathwise” (i.e., for almost every
scenario ω), which implies the dual bounds given by taking expectations
over scenarios,

E
[

max
a∈A(ω)

{r(a, ω)− π∇(a, ω)}
]
,

will be equal to V0 in part (i) and less than or equal to V̂0 in part (ii).

Proof. (i) To simplify the discussion, we will assume that the action
choices are unconstrained; see BS (2014) for a full proof. Consider a
gradient penalty π̂∇ defined by linearizing V̂t around policy α̂, as in
(4.2). If we omit the terms inside the parentheses that are constant in
actions (which, as discussed earlier, serve as control variates), the inner
problem for a given scenario reduces to

max
a

{
T∑
t=0

rt(at)− (∇V̂t+1(α̂t)− E[∇V̂t+1(α̂t) | Ft])
ᵀ(at − α̂t)

}

= max
a

{
T∑
t=0

rt(at)−
((
∇V̂t(α̂t−1)

0

)
− E[∇V̂t+1(α̂t) | Ft]

)ᵀ

(at − α̂t)
}
.

(4.3)

Here, in rearranging terms, we use the fact that V̂T+1 = 0 and thus
∇V̂T+1 = 0. In this expression,∇V̂t has dimension corresponding to at−1
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and, hence, its gradient needs to be padded with a 0 of the dimension
of at to match the dimensionality of ∇V̂t+1, which corresponds to at.

Now, if α̂ is an optimal policy and V̂t are the optimal value functions
and the choices of actions are unconstrained, we know that

V̂t(α̂t−1) = rt(α̂t) + E[V̂t+1(α̂t) | Ft]
= max

at
{rt(α̂t−1, at) + E[V̂t+1(α̂t−1, at) | Ft]}. (4.4)

The “envelope theorem” and the first-order conditions for optimality
then imply (

∇V̂t(α̂t−1)
0

)
= ∇rt(α̂t) + E[∇V̂t+1(α̂t) | Ft]. (4.5)

Using this “consistency condition,” we can rewrite the reduced inner
problem (4.3) as

max
a

{
T∑
t=0

rt(at)−∇rt(α̂t)
ᵀ(at − α̂t)

}
,

which, given the concavity of rt, is maximized by taking at = α̂t for
all t. Thus, the reduced inner problem (4.3) yields an optimal value of∑T
t=0 rt(α̂t). Using this and incorporating the control variate terms that

were omitted in the reduced inner problem (4.3), the inner problem in
this case is

max
a
{r(a)− π∇(a)} =

T∑
t=0

rt(α̂t)− (V̂t+1(α̂t)− E[V̂t+1(α̂t) | Ft])

= V̂0 +
T∑
t=0

rt(α̂t)− V̂t(α̂t−1) + E[V̂t+1(α̂t) | Ft]

= V̂0.

Here, in the second equality, we use V̂T+1 = 0 and rearrange terms.
In the third equality, we use the fact that α̂t is optimal (so the first
equality in (4.4) holds). Thus using a gradient penalty based on the
optimal value function will generate a zero-variance, tight bound.

(ii) The second result follows from the first result as in Proposi-
tion 3.2(i) above.
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In practice, with gradient penalties based on approximate value func-
tions, the optimality conditions (4.4) and (4.5) in the proof of optimality
above may be approximated and the quality of the resulting bounds will
depend on the quality of the approximations. For a gradient penalty to
provide good bounds, it is important that the linear approximations of
the approximate value functions closely approximate the differences in
the true value functions, i.e.,

Vt+1(at)− E[Vt+1(at) | Ft]
≈ (∇V̂t+1(α̂t)− E[∇V̂t+1(α̂t) | Ft])

ᵀ(at − α̂t)
+ (V̂t+1(α̂t)− E[V̂t+1(α̂t) | Ft]).

In particular, it is important for the difference in gradients to
approximate

∇Vt+1(αt)− E[∇Vt+1(αt) | Ft]

well. In this case, the optimal solutions in the inner problem will match
or closely approximate those of the true optimal solutions. Errors in
the constant terms (Vt+1(αt)− E[Vt+1(αt) | Ft]) are less important, as
they will average zero when calculating the bounds.

The result of Proposition 4.1 generalizes directly to the setting of
nondifferentiable value functions but there is an added complication of
selecting appropriate gradients: with nondifferentiable value functions,
there may be multiple (super)gradients. Any gradient selection will
generate a valid bound. However, the equalities of Proposition 4.1
will hold for some gradient selection, but not all gradient selections.
With nondifferentiable value functions, the choice of gradients can
have a significant impact on the quality of the resulting information
relaxation performance bounds. See BS (2014) for further discussion of
the nondifferentiable case and example applications.



5
Summary of the Information

Relaxation Approach

Before turning to examples, we informally summarize the steps involved
in the information relaxation approach. Given a DP, we:

(i) Identify a heuristic policy that can be used in a simulation study
to estimate a lower bound on the optimal value (or upper bound
on the optimal cost) for the problem.

(ii) Choose an information relaxation that makes it “easy” to deter-
mine optimal decisions given the additional information in the
relaxation. It is often natural to start by considering a perfect in-
formation relaxation which leads to deterministic inner problems,
though in some problems there may be other natural starting
points.

(iii) Find a penalty that does not greatly complicate the calculation
of optimal decisions with the chosen information relaxation.

(a) We can start with zero penalty, but this often leads to weak
upper bounds.

(b) Identify an approximate value function that can be used as a
generating function in Proposition 3.1. As discussed following
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that proposition, the key to obtaining a good bound is for
the differences in (3.14) to provide a good approximation of
the differences rt(at) + V ∗t+1(at)− E

[
rt(at) + V ∗t+1(at)

∣∣Ft]
based on the true value function V ∗t . One can often use
“myopic” approximations of the value function, such as the
smoothing penalty in the inventory example of Section 6
and the dynamic assortment problem of Section 7. Simple
linear approximations of value functions can often be used
to generate penalties when the DP has a convex structure,
as discussed in Section 4.

(c) If the simple (e.g., myopic) approximations do not per-
form well, consider approximations that are more “forward-
looking,” taking into account the expected rewards over a
longer time horizon. This could be accomplished by adopting
a longer time horizon in the approximation or by adding
an approximation of these longer-term effects to the myopic
approximation.

(d) Alternatively, if the value function approximations are based
on an approximate DP where the value functions are ap-
proximated by linear combinations of basis functions, one
might attempt to improve the approximation by considering
a different set of basis functions.

(iv) Estimate lower and upper bounds on the optimal value. We will
typically estimate the upper and lower bounds simultaneously
in a single simulation, as many of the calculations involved in
implementing a heuristic are also used for the bound.

(v) If the gap between the performance of the heuristic and informa-
tion relaxation performance bound is sufficiently small, we may
conclude that the heuristic policy is “good enough” for use in
practice and we are done. If not, we can study the differences
between the heuristic policies and the dual policies (as discussed
following Theorem 3.3) and see if these suggest some ideas for
improving the heuristic policies, relaxations, or penalties. We
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may, for example, turn to better approximate value functions as
discussed in step (iii) above.

Though we have described this as a sequential process, there are
links between the steps in the process:

• The difficulty of solving the inner problem with a given information
relaxation is often linked to the choice of penalty. For example,
in the dynamic assortment problem of Section 7, the “censored
demands” relaxation leads to efficient computations in the inner
problem with zero penalty, but not with the other penalties we
consider. In addition, we sometimes simplify the inner problems by
introducing additional relaxations (e.g., relaxing the constraints,
perhaps with Lagrangian techniques as we do with the dynamic
assortment problem) to improve the tractability of the inner
problem.

• The choice of heuristic (in step (i)) and approximate value function
for use in generating a penalty (in step (iii)) are often paired. For
example, a heuristic that is a myopic policy may be paired with a
myopic value function to generate a penalty; more generally we
may use a heuristic that is “greedy” with respect to an approximate
value function and use that approximate value function to form
a penalty. We do this in the dynamic assortment example of
Section 7, where a Lagrangian relaxation of the primal DP leads
to an approximate value function used to generate a heuristic as
well as a penalty.

There is clearly some “art” in applying information relaxation meth-
ods and, in the authors’ experience, there is often some trial and error
and iteration (and learning!) in this process. In the next three sections,
we will study examples in detail and discuss issues involved in using
information relaxation techniques in these examples.



6
Example: Inventory Management

In this section, we apply the information relaxation approach to a
classic inventory management problem. We begin in Section 6.1 by
considering a standard inventory model where the only uncertainties are
the demands observed in each period; we focus on the perfect information
relaxation. In Section 6.4, we consider a “world-driven model” where
there is uncertainty about the costs and demand processes (as well
as demands) and consider imperfect as well as perfect information
relaxations. These examples are simple enough that the primal DP can
be solved to optimality; thus we do not need the performance bounds
in this problem. However, this simple setting provides an introduction
to the use of information relaxation methods and allows us to compare
the information relaxation performance bounds with optimal values to
assess the quality of the bounds.1

1This inventory management example was originally developed in the preparation
of BSS (2010) but did not appear in the published version of that paper. The authors
gratefully acknowledge the contributions of Peng Sun in the development of this
example.
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6.1 Standard Model

The goal is to find a policy for ordering goods over T + 1 periods to
minimize the expected total costs. The inventory level in period t is
denoted by xt and the amount ordered in period t is at. The demand
realized in period t is uncertain and denoted by dt. We assume the order
quantities and demands are nonnegative and, for convenience, assume
x0 = 0. The inventory level evolves according to xt+1 = xt + at − dt;
this evolution equation assumes that unmet demand is backordered and
appears as a negative inventory level entering the next period. The total
cost in period t is ct(at) + ft(xt+1) where ct(at) is the cost of ordering
at units of the good and ft(xt+1) is the cost of holding excess inventory
(if xt+1 is positive) or having backordered demand (if xt+1 is negative)
at the end-of-period t. In most of our discussion we will consider general
cost functions ct and ft, but we will also consider the special case of
“linear costs” where ct(at) = ktat and ft(xt+1) = max(htxt+1,−ptxt+1).

Placing this model in the general framework of Section 2, the actions
at are order quantities that may be restricted to be nonnegative integers
or particular lot sizes. The scenarios ω correspond to realized demands
d = (d0, . . . , dT ) and Ω ⊆ RT+1

+ . In the primal problem, we assume
that at the beginning of period t the DM knows the prior demands
dt−1 = (d0, . . . , dt−1); the period-t demand dt is revealed after the
period-t ordering decision. We define the natural filtration F accordingly.
Rather than maximizing expected rewards as in (2.1), here we minimize
costs where the period-t cost is given by

rt(at,dt) = ct(at) + ft(xt+1(at,dt))

Note that the period costs here are Ft+1-adapted but are not Ft-adapted
because of their dependence on the period-t demand. Also note that
the inventory level xt+1 depends on all prior orders at and demands dt.
The total cost is then r(a,d) =

∑T
t=0 rt(at,dt) and the primal DP can

be written as
inf

αF∈AF
E[r(αF)] .
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6.2 Information Relaxations and Penalties

We first consider the relaxed problem given by taking G to be the perfect
information relaxation Gt = F for all t, corresponding to knowing all
demands before making any ordering decisions. With a dual feasible
penalty π, the performance bound (3.1) is

E
[

inf
a∈A
{r(a,d)− π(a,d)}

]
(6.1)

where A denotes set of feasible orders a = (a0, . . . , aT ). Here, because
we are minimizing costs rather than maximizing profits, dual feasible
penalties must satisfy E[π(αF)] ≥ 0 (rather than ≤ 0) for all αF in AF
and the resulting performance bound is a lower bound on the minimal
costs.

If we use the penalty π = 0, we obtain the perfect information lower
bound on costs and the inner problem in (6.1) corresponds to choosing
an optimal ordering policy with full information about all demands.
This inner problem is known as a dynamic lot-sizing problem with
backorders (see, for example, Florian et al., 1980) where we solve

inf
a∈A

T∑
t=0
{ct(at) + ft(xt+1(at,dt))} (6.2)

with a known demand sequence d. This inner problem can be solved
efficiently as a deterministic DP or using specialized algorithms for
dynamic lot-sizing problems. We can estimate a lower bound on the
minimal costs by repeatedly solving these dynamic lot-sizing problems
with randomly generated demand sequences.

In the special case with linear costs, the perfect information bounds
simplify further: the inner dynamic lot-sizing problem (6.2) can be
formulated and solved as a shortest path problem (see, for example,
Ahuja et al., 1988). The solution leads to the determination of cost
coefficients k̂t that are independent of the specific demand levels. The
total cost given a demand sequence d is then given by

∑T
t=0 k̂tdt. Thus,

in the linear case, given these cost coefficients k̂t, the perfect information
lower bound can be written analytically as

∑T
t=0 k̂tE[dt]. If the ordering

costs are constant over time, these cost coefficients k̂t are simply the
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ordering costs kt. However, if the ordering costs are time-varying, it may
be cheaper to satisfy demand in a given period by ordering before (or
after) that period and paying the holding costs (or backorder costs). The
coefficients k̂t represent the cheapest way to meet the known demand
in period t.

Although these perfect information bounds are easy to compute,
as we will see, the bounds are rather loose. To obtain tighter bounds,
we consider a “smoothing” penalty that is straightforward to compute
and partially cancels the benefits of knowing demands in advance. We
define this penalty using the method of Proposition 3.1, taking the
generating functions wt to be the period rewards rt. This leads to a
period-t penalty

πt(at,dt) = rt(at,dt)− E[rt(at,dt) | Ft] ,

and the (total) penalty π(a,d) =
∑T
t=0 πt(a,d). Here the conditional ex-

pectations E[· | Ft] are taken knowing the demands dt−1 = (d0, . . . , dt−1)
in the first t periods. Intuitively, this penalty cancels the benefit of
precise knowledge of the demand in a given period, as the exact period-t
reward rt(at,dt) is replaced by the expected reward E[rt(at,dt) | Ft].
However, this cancellation is “myopic” in that, unlike the ideal penalty
constructed in Theorem 3.4, it cancels the effect of perfect information
on a single period’s reward rather than the effect on the total rewards.

With this smoothing penalty, the inner dual problem in (6.1)
becomes

inf
a∈A

T∑
t=0
{ct(at) + E[ft(xt+1(at,dt)) | Ft]} (6.3)

which can be written more explicitly as

inf
(a0,...,aT )∈A

T∑
t=0

{
ct(at) + E

[
ft

(
t−1∑
τ=0

(aτ − dτ ) + (at − d̃t)
) ∣∣∣∣∣dt−1

]}
.

In this case, the inner problem can still be viewed as a dynamic lot-
sizing problem as in (6.2) but the inventory cost function ft(xt+1) is
replaced by a smoothed version of it, f̂t(xt+1) = E[ft(xt+1) | Ft], that
takes expectation over the uncertain demand d̃t given a particular earlier
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demand sequence dt−1. As with the perfect information bound, we can
estimate a lower bound on the optimal costs by repeatedly solving
these dynamic lot-sizing problems with randomly generated demand
sequences. Note that if the demands are independent over time, these
smoothed cost functions f̂t need only be calculated once and stored.
However, with dependence in the demands, we need to consider different
smoothed cost functions f̂t for different demand scenarios.

The smoothing bound can also be simplified if we have linear costs. If
we drop the requirement that the order quantity at be nonnegative (i.e.,
relax this physical constraint), we obtain a weaker bound but the inner
dual problem decomposes into a series of simple newsvendor problems;
we call the resulting bound the newsvendor bounds. To describe this,
rather than choosing order quantities at, we instead (equivalently)
choose base stock levels yt = at + xt. The end-of-period inventory levels
are then given by xt+1 = yt−dt. If we drop the nonnegativity constraint
on the order quantity at, our choice of base stock levels is unconstrained
and the inner problem in (6.3) can be rewritten as

min
y

T∑
t=0
{kt(yt − yt−1 + dt−1) + E[ft(yt − d̃t) | Ft]}

=
T∑
t=0

{
ktdt−1 + min

yt
(yt(kt − kt+1) + E[ft(yt − d̃t) |dt−1])

}
, (6.4)

where, on the right side, we have gathered all terms involving yt into a
single summand; we take d−1 = 0 and kT+1 = 0. Examining (6.4), we
see that the inner problem requires the solution of period-specific mini-
mization problems that have the same form as the classical newsvendor
problem: the optimal base-stock levels yt in (6.4) are given by select-
ing an appropriate “critical fractile” as in the newsvendor model. We
can then take expectations over (6.4) to obtain a lower bound on the
total expected costs. If the demands are independent over time, we can
calculate these critical fractiles and expectations once: no simulation is
required to calculate the expectation of (6.4). If demands are dependent,
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Table 6.1: Assumptions for the standard inventory model example

Time-Varying Demand Constant Demand and
and Constant Costs Time-Varying Costs

Period t 0 1 2 3 4 0 1 2 3 4

Ordering costs kt 2 2 2 2 2 7 8 3 4 1.5
Holding costs ht 1 1 1 1 −1 1 1 1 1 −1
Backorder costs pt 9 9 9 9 11 9 9 9 9 11
Mean demand E[dt] 40 40 40 2 2 30 30 30 30 30

we need to find the critical fractiles for period t conditional on the prior
demands dt−1.2

6.3 Example Numerical Results

We illustrate these bounds by considering their performance in four
examples from Zipkin (2000, pp. 380–381). The examples involve two
different sets of assumptions – one with time-varying demand distri-
butions and constant costs and the other with time-varying costs and
constant demand distributions – and consider Poisson and geometric
demand distributions. The examples all involve 5 periods and assume
a linear cost model; the specific assumptions are shown in Table 6.1.
With both sets of assumptions, the final period inventory costs can be
viewed as including a salvage value where excess inventory is sold for
$2 per unit and unmet demand must be satisfied at $2 per unit.

Table 6.2 shows the results for the various bounds as well as optimal
values; since demands are independent and discrete in these examples,
the primal DP recursion has a finite, one-dimensional state space (repre-
senting the current inventory level) and is easy to solve. The smoothing
bounds were computed using Monte Carlo simulation with 10,000 sce-
narios; standard errors are reported for these results. The other bounds
were computed numerically without simulation.

2With independent demands, this newsvendor bound is equivalent to a bound
given in Zipkin (2000, p. 381).
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Table 6.2: Example bounds for the standard inventory model

Time-Varying Demand Constant Demand and
and Constant Costs Time-Varying Costs

Std. % of Std. % of
Cost Err. Opt. Cost Err. Opt.

Poisson Demand
Distributions

Optimal value 293.94 – – 752.45 – –
Smoothing bound 292.58 0.20 100% 752.42 0.53 100%
Newsvendor bound 287.84 – 98% 752.37 – 100%
Perfect info. bound 248.00 – 84% 705.00 – 94%

Geometric Demand
Distributions

Optimal value 607.14 – – 1092.10 – –
Smoothing bound 599.85 1.22 99% 1068.53 2.56 98%
Newsvendor bound 538.99 – 89% 956.17 – 88%
Perfect info. bound 248.00 – 41% 705.00 – 65%

Examining the results in Table 6.2, we see that:

• The perfect information bounds, though easy to compute, are
quite loose, as expected. With perfect information and no penalty,
the DM simply orders to match the actual demand in each period,
using the cheapest method available to do so (with costs given by
k̂t as discussed earlier).

• The newsvendor bounds are also easy to compute and are tight
when demands have a Poisson distribution. With a geometric
demand distribution, however, the newsvendor bounds are 11–
12% below the optimal value. In the newsvendor bounds, the DM
orders the newsvendor optimal quantities in each period, ignoring
the fact that this is not possible when the leftover inventory
exceeds the newsvendor-optimal quantity.

• The smoothing bound is somewhat harder to compute but does
very well in all cases. The nonnegative order quantity constraints
are respected in these inner problems and thus the bounds are
better than the newsvendor bounds.

The differences in performance in the Poisson and geometric cases are
due to the differences in variances: with a mean demand of 30 (as in
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the constant demand case), the standard deviations of the Poisson
and geometric distributions are 5.48 and 30.50, respectively. The higher
variance of the geometric distribution leads to higher inventory costs and
leads the perfect information and newsvendor bounds to perform much
worse. In this case, the constraint that is ignored in the newsvendor
bound (that the order quantities must be nonnegative) is more likely
to be binding and the newsvendor bounds are much worse than the
smoothing bounds.

6.4 With Uncertainty About the “State of the World”

A useful feature of the information relaxation approach is that it can
easily accommodate more complex inventory models where there are
uncertainties about costs, demand processes, and/or dependence among
the demands over time. Though these additional uncertainties may
make the primal DP significantly more complicated to solve, we can
easily incorporate these uncertainties into the relaxed problem. We
illustrate this by considering a “world-driven demand” inventory model
(as in Song and Zipkin, 1993) where the model structure is the same
as in Section 6.1 except now the cost and demand parameters depend
on an underlying “state of the world” st which evolves stochastically
over time.

As a specific example, we will consider an extension of the previous
numerical example but with uncertainty about the ordering costs (kt)
and the mean demand (E[dt]). There are three possible cost levels and
three possible mean demands and these evolve independently with the
values and transition probabilities specified in Figure 6.1; we assume
the costs and mean demands both start in period 0 in the middle
state. Considering all possible combinations of costs and mean demands
gives a total of nine possible states of the world st. The holding and
backorder costs (ht and pt) are the same as in the previous example (see
Table 6.1) and, as before, we will consider Poisson and geometric demand
distributions. Because the ordering costs kt depend on the state st, the
inventory rewards now depend on the state vector st = (s0, . . . , st) and
can be written as rt(at,dt, st) = kt(st)at + ft(xt+1(at,dt)). We assume
that in period t (before placing that period’s order) the DM knows the
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Figure 6.1: State transitions for the world-driven inventory model.

current state st as well as the prior demands dt−1 and states st−1 and
define the natural filtration F accordingly.

We will consider two relaxations of the natural filtration F. First,
as in Section 6.2, we consider the perfect information relaxation, which
now means the DM has perfect knowledge of the actual demands d and
states s before placing any orders. In this setting, the three bounds
considered previously continue to apply in the same way. The perfect
information bound given by taking π = 0 yields an inner problem that
is a deterministic lot-sizing problem as in (6.2). The smoothing bound
is given by taking the period-t penalty to be

πt(at,dt, st) = rt(at,dt, st)− E[rt(at,dt, st) | Ft]

where the conditional expectations E[· | Ft] are taken knowing the
period-t state and demand histories st and dt−1; this leads to an inner
problem that is the same as (6.3). Finally, this smoothing bound can be
simplified to yield a newsvendor bound with an inner problem like that
of Equation (6.4). In this case, however, because the mean demand and
the ordering costs change in each state st, we take expectations over
(6.4) to calculate the newsvendor bounds. The numerical results for
these three bounds are shown in Table 6.3, along with the exact value for
the primal problem. As with the standard inventory model, we find that



292 Example: Inventory Management

Table 6.3: Numerical results for the world-driven demand example

Poisson Demands Geometric Demands

Std. % of Std. % of
Cost Err. Opt. Cost Err. Opt.

Optimal value 348.69 – – 644.45 – –
Imperfect info. bound 346.15 0.75 99.3% 636.65 1.12 98.6%
Smoothing bound 347.23 0.79 99.6% 634.82 1.69 98.4%
Newsvendor bound 347.10 – 99.5% 628.43 – 97.4%
Perfect info. bound 300.00 – 86.0% 300.00 – 46.5%

the perfect information bounds with no penalty are rather loose, but the
newsvendor and smoothing bounds are tight with the Poisson demand
distributions and fairly tight with the geometric demand distribution.

Also shown in Table 6.3 are the results for an imperfect information
bound that considers a relaxation G of the natural filtration F that
assumes perfect information about all states (s0, . . . , st) before any deci-
sions are made, but assumes demand information is revealed sequentially
as in the natural filtration F. With no penalty, we have a dual problem
that can be solved by repeatedly randomly generating a vector of states
s and solving an inner problem that is standard stochastic inventory
model with known costs and demand distributions. The inner problem
is thus a stochastic DP, but it is simpler to solve than the primal DP
that reflects uncertainty about the states st. The computational effort
required to calculate these bounds will depend on how many scenarios
one chooses to simulate, but the effort required for any given scenario
is otherwise independent of the number of possible states st of the
world considered in the primal DP. As seen in Table 6.3, these bounds
with zero penalty are tighter with the imperfect information relaxation
than the perfect information relaxation, as one would expect based
on Corollary 3.1. One could incorporate nonzero penalties into these
imperfect information bounds, but these imperfect information bounds
are quite tight and we have little incentive to attempt to improve them.

We can modify the primal DP for this world-driven inventory model
by assuming that the cost component of the state is observed but the
demand component of the state (representing the mean demand) is not
observed before ordering in period t. In this case, the primal DP would
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be a partially observed Markov decision process: the DP state variable
would include a probability distribution over the possible demand states
and the DM would update his or her probability distribution on these
states based on the observed demands. This modification would signifi-
cantly complicate the primal DP and, with less information available to
the DM, would lead to costs somewhat higher than the optimal value
shown in Table 6.3. This modification is easily accommodated in the
information relaxation dual problem. Specifically, we can use the result
of Proposition 3.4 to simplify the calculation of penalties in the unob-
servable model (F) by using a looser information relaxation (F′) that
assumes the demand components and the cost components are observed
over time. This leads to the bounds we previously considered: though
the optimal costs for the partially observed model would be higher
than the costs for the fully observed model, the bounds we calculate
in Table 6.3 would be unchanged and provide performance bounds for
this partially observable model.

BSS (2010) present bounds for the adaptive inventory management
model of Treharne and Sox (2002) where demand is nonstationary and
partially observed, meaning the probability distribution for demand
changes over time and the true demand distribution is not known.
For the reasons discussed in the previous paragraph, the partially
observed primal problem there is much harder than the simple inventory
examples in Sections 6.1–6.4. BSS (2010) consider penalties based on
limited-lookahead value functions, generalizing the myopic “smoothing”
penalties considered in this simple inventory example.



7
Example: Dynamic Assortment Planning

In this section, we use information relaxation methods to study a
dynamic assortment problem (DAP) with demand learning, using the
model developed by Caro and Gallien (CG, 2007) and the heuristics
from Brown and Smith (BS, 2020). This example is significantly more
complicated than the previous one: it cannot be solved to optimality
and the heuristics rely on Lagrangian relaxations of the original DP, as
does the inner DP considered in the information relaxation bounds. We
describe the model in Section 7.1, a Lagrangian relaxation and associated
heuristic in Section 7.2, and information relaxation bounds in Section 7.3.
Section 7.4 provides illustrative numerical results. BS (2020) focus on
Lagrangian relaxations and corresponding Lagrangian index policies,
showing that the Lagrangian index policies are asymptotically optimal
given many products. Here we focus on using information relaxations
to generate performance bounds for a fixed number of products.

7.1 DAP: The Model

We consider a retailer who repeatedly chooses products to display from
a set of S products available, subject to a shelf-space constraint that
requires the number of products displayed in period t to be less than

294
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or equal to Nt. The demand rate for products is unknown and the DM
updates beliefs about these rates over time using Bayes’ rule. The de-
mand for product s follows a Poisson distribution with an unknown rate
γs. The demand rates are assumed to be independent across products
and to have a gamma prior with shape parameter ms and inverse scale
parameter βs (ms, βs > 0); this implies the mean of γs (and hence mean
demand) is ms/βs.

The assumed distributions are convenient because they lead to
nice forms for the demand distribution and Bayesian updating is easy.
If a product is displayed, the observed demand in that period has
a negative-binomial distribution (also known as the gamma-Poisson
mixture). Given a gamma prior with parameters (ms, βs), after observing
demand ds for product s, the posterior distribution for the demand rate
is a gamma distribution with parameters (ms + ds, βs + 1). If a product
is not displayed, its state is unchanged.

The retailer’s objective is to maximize the expected total profit
earned. If a product is displayed, its reward for that period is assumed
to be equal to the demand ds; i.e., the unit margin is normalized to be
one. If a product is not displayed, its reward is zero. We let as denote
the decision variables in each period, where as equals 1 if product s is
displayed and zero otherwise.

To streamline notation, we let m = (m1, . . . ,mS) and β = (β1,

. . . , βS) denote the vectors of parameters describing DM’s state of
information about the S products, a = (a1, . . . , aS) denote a vector of
display decisions, and d̃t = (d̃t,1, . . . , d̃t,S) denote a random vector of
product demands in period t. After displaying the selected products,
observing the demands for these products, and updating using Bayes’
rule, the next period state of information is given by updated parameter
vectorsm′ = m+a · d̃t (here “·” denotes componentwise multiplication)
and β′ = β + a. The shelf-space constraint requires a to be in

At ≡ {a ∈ {0, 1}S : 1ᵀ
a ≤ Nt}. (7.1)

where 1 is an S-vector of ones. Taking the terminal value V ∗T+1(m,β)
= 0, we can write the optimal value function as

V ∗t (m,β) = max
a∈At

E[aᵀ
d̃t + V ∗t+1(m+ a · d̃t, β + a) |m,β]. (7.2)
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Astute readers may notice that the natural filtration F here is action
dependent: that is, decisions made in period t will be based on observing
the history of demands for products that have been displayed, so the
period-t state of information Ft will depend on the sequence of display
decisions (a0, . . . ,at−1) in periods 0 to t− 1. In this setting, a filtration
G is an information relaxation of F if Ft ⊆ Gt for any such sequence of
actions.

7.2 DAP: Lagrangian Relaxations and Index Policies

The DP (7.2) is difficult to solve because the constraint (7.1) limiting the
number of products displayed links decisions across products: the display
decision for one product depends on the states of the other products.
With more than a few products, the state space would be unmanageably
large. In this subsection, we consider Lagrangian relaxations of (7.2)
where we relax this linking constraint and decompose the value functions
into computationally manageable subproblems. We then show how
this Lagrangian relaxation can be used to generate a heuristic display
policy as well as a bound on the performance with an optimal policy.
The key results on Lagrangian relaxations of DPs (summarized in
Proposition 7.1) are fairly standard in the literature on Lagrangian
relaxations of DPs (e.g., Hawkins, 2003; Adelman and Mersereau, 2008);
our discussion follows BS (2020).

Let λ = (λ1, . . . , λT ) ≥ 0 denote a vector of Lagrange multipliers
corresponding to the shelf-space constraints, requiring the DM to display
at mostNt products in period t. Taking LλT+1(m,β) = 0, the Lagrangian
DP has period-t value function given by

Lλt (m,β) = max
a∈{0,1}S

{
E[aᵀ

d̃t + Lλt+1(m+ a · d̃t, β + a) |m,β]

+ λt(Nt − 1 · a)
}
. (7.3)

Compared to the DP (7.2), we have made two changes. First, we have
incorporated the linking constraint (7.1) into the objective by adding
λt(Nt − 1ᵀ

a); with λt ≥ 0, this term is nonnegative for all policies
satisfying the linking constraint. Second, we have relaxed the linking
constraint, allowing the DM to display as many products as desired (we
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require a ∈ {0, 1}S rather than a ∈ At). Both of these changes can only
increase the optimal value so the Lagrangian value function provides
an upper bound on the true value function.

The following proposition summarizes some of the key properties of
this Lagrangian relaxation.

Proposition 7.1 (Properties of the Lagrangian, BS (2020)). For allm,β,
t, and λ ≥ 0,

(i) (Decomposition) The Lagrangian DP (7.3) can be decomposed
into product-specific value functions

Lλt (m,β) =
T∑
τ=t

λτNτ +
S∑
s=1

V λt,s(ms, βs) (7.4)

where V λt,s(ms, βs) is the value function for a product-specific DP:
V λT+1,s(ms, βs) = 0 and

V λt,s(ms, βs) = max
as∈{0,1}

E
[
as(d̃t,s − λt)

+ V λt+1,s(ms + asd̃t,s, βs + as) |ms, βs
]
.

(7.5)

(ii) (Weak Duality) V ∗t (m,β) ≤ Lλt (m,β).

(iii) (Convexity) Lλt (m,β) and V λt,s(ms, βs) are piecewise linear and
convex in λ.

The product-specific value functions (7.5) in the decomposed La-
grangian have a nice interpretation: intuitively, the period-t Lagrange
multiplier λt can be interpreted as a charge for using the constrained
resource in period t. Part (ii) of the Proposition says that Lλt (m,β)
can be used as a performance bound to assess the quality of a feasible
policy. Part (iii) of the Proposition says the Lagrangian dual problem,

min
λ≥0

Lλ1 (m,β), (7.6)

is a convex optimization problem that can be solved using, for example,
subgradient, linear programming, or cutting-plane methods. With an
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optimal set of Lagrange multipliers (i.e., solving (7.6)), the linking
constraint (7.1) will hold “on average” (or in expectation) rather than
in each state. See BS (2020) for further discussion of the Lagrangian
dual problem, its solution, and properties of an optimal solution.

The optimal policies for the Lagrangian DP may not be physically
feasible because they may violate the linking constraint (7.1). If, for
example, many products’ demands are higher than expected, more than
Nt products may be displayed if we evaluate the products independently
using the policies from the product-specific DPs (7.5). However, we
can use the Lagrangian relaxation to construct feasible policies that
can be used as heuristics. The Lagrangian index policy is based on a
priority index it,s(ms, βs) that indicates the relative attractiveness of
selecting product s in period t when the item is in state (ms, βs). This
index uses the product-specific value function (7.5) to approximate the
value added by selecting product s in period t when the item is in state
(ms, βs),

it,s(ms, βs) = E[d̃t,s + V λt+1,s(ms + d̃t,s, βs + 1) |ms, βs]− V λt+1,s(ms, βs).
(7.7)

Given priority indices for all products, the policies proceed as follows: (a)
if there are more than Nt products with nonnegative indices, select the
Nt products with the largest indices; (b) otherwise, select all products
with nonnegative indices. The linking constraints will thus be satisfied
and the Lagrangian index policies will be feasible. There may be cases
where the index values are the same for some products (which may
be in different states), leading to ambiguity in the choice of the “Nt

products with the largest indices” in step (a). In the DAP example, it is
fine to break such ties among products randomly but in other examples,
it is important to use more sophisticated methods to break these ties;
see BS (2020) for further discussion and examples.

In our numerical examples for the DAP, we will also consider a
benchmark policy that in each period t selects the Nt products with
the highest expected demand in the current state. This myopic policy
is also an index policy where V λt+1,s in (7.7) is replaced by 0.

Though we have described these policies as index policies, these
policies may also be viewed as being greedy with respect to a value
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function approximation. For example, the Lagrangian index policy
is equivalent to a policy that solves the original DP (7.2) with the
Lagrangian (7.3) as an approximate continuation value:

max
a∈At

E[aᵀ
d̃t,s + Lλt+1(m+ a · d̃t, β + a) |m,β]. (7.8)

Similarly, the myopic policy is greedy with respect to a value function
approximation that replaces the Lagrangian Lλt+1 in (7.8) with 0. The
process of selecting the Nt largest indices is equivalent to solving these
“greedy” optimization problems in each period.

7.3 DAP: Information Relaxation Bounds

Though the Lagrangian provides a performance bound (and optimal
Lagrange multipliers provide the best such bound) as discussed in Propo-
sition 3.2, we can improve on this Lagrangian bound using information
relaxations. In the DAP, the underlying uncertainties are the unknown
Poisson demand rates γs for each product and the demand realizations
dt,s for each product in each period. In the natural filtration F, the
demands dt,s are revealed for products after the products are displayed
(if they are displayed); the demand rates γs are never revealed.

We will consider four different information relaxations:

(i) Known demands (Gd): The DM knows all demands dt,s for all
products in all periods, before making any display decisions (i.e.,
the DM knows what demand would be if a product were to be
displayed); demands rates γs are never revealed.

(ii) Known rates (Gr): The DM knows the demand rates γs for all
products in advance, but product demands dt,s are revealed sequen-
tially if/when products are displayed, as in the natural filtration.

(iii) Perfect information (Gp): The DM knows both demands and
demand rates in advance.

(iv) Uncensored demands (Gu): Demands dt,s for products are revealed
sequentially, whether the products are displayed or not; demand
rates are never revealed.
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These are all relaxations of the natural filtration and perfect information
is the weakest of these four relaxations. The known-demands relaxation
is weaker than the uncensored demands relaxation. The known-rates
relaxation is neither weaker nor stronger than the known-demands
and uncensored-demand relaxations. That is, F ⊆ Gu ⊆ Gd ⊆ Gp and
F ⊆ Gr ⊆ Gp. As noted in Corollary 3.1, tighter relaxations will lead to
tighter bounds for any given penalty.

We will consider three different penalties πt given by different selec-
tions of generating functions wt in Proposition 3.1:

(i) Zero penalty: wt = 0, hence, πt = 0.

(ii) Smoothing penalty: wt = a
ᵀ
dt which leads to period-t penalty

πt = a
ᵀ(dt − E[d̃t |m,β]) and penalized period-t reward function

a
ᵀE[d̃t |m,β]. Thus the penalty “smooths out” the benefit of

knowing demand, as in the inventory example of Section 6.

(iii) Lagrangian penalty: Here we take wt = a
ᵀ
dt + Lλt+1(m,β). In

addition to “smoothing” demand as above, this penalty approxi-
mates the continuation value using the Lagrangian value function.
Although we could use any λ ≥ 0, in our numerical examples we
will take these to be optimal Lagrange multipliers λ∗ given by
solving the Lagrangian dual (7.6).

With these penalties, given knowledge of demands, the penalized rewards
do not depend on the demand rates. Thus the perfect information
relaxation Gp is equivalent to the known-demands relaxation Gd with
these penalties and will not be considered separately in our discussion
of computations or numerical results below. However, Gp and Gd could
lead to different results if the penalties used depend on the demand
rates.

The different information relaxations and penalties require somewhat
different computational approaches and we are not able to evaluate all
penalties with all relaxations. As discussed following Theorem 3.1, in all
cases the performance bound estimates are generated by Monte Carlo
simulation where we draw a sample scenario representing a particular
state of information for the DM and then we solve an inner problem given
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Table 7.1: Computational methods for inner problems with different relaxations
and penalties

Penalty

Information Relaxation Zero Smoothing Lagrangian

Known demands (Gd) Pick Nt best demands Deterministic inner DP
with LR relaxation

Known rates (Gr) Pick Nt best rates Stochastic inner DP
with LR relaxation

Uncensored Demands (Gu) Pick Nt best rates
given past demands Cannot be efficiently solved

that state of information; we average across these scenarios to obtain an
estimate of the performance bound. The nature of the inner problems
varies with the information relaxation and penalty; see Table 7.1 for
a summary. We discuss the inner problems with zero penalty first in
Section 7.3.1 and then consider non-zero penalties in Section 7.3.2. We
present numerical results in Section 7.4.

As noted in Proposition 3.3, if we can restrict attention to a subset
of the available policies AF in the original problem without loss of
optimality, we can impose these same restrictions on the policies AG
for the relaxed model. In this example, if all items are initially identical
we can restrict the policies to those that display the first (in label
index order) N0 products in the initial period (i.e., s ≤ N0) without
loss of optimality. More generally, we can restrict the DM to policies
that display products with s ≤

∑t
τ=0Nτ in period t. In our numerical

examples, we impose these restrictions on display decisions. Imposing
these restrictions can improve the information relaxation bound (i.e.,
lead to a lower value) because the information revealed in a particular
scenario may suggest displaying some products (e.g., those with the
highest demand in a given period) that are outside this restricted set.

7.3.1 Inner Problems with Zero Penalties

With zero penalties, the inner problems associated with the four re-
laxations described above are all easy to solve and the information-
relaxation performance bounds are easy to estimate using Monte Carlo
simulation. The key feature of these problems is that the (relaxed)
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state of information and rewards for any period are independent of all
previous display decisions. Thus we can solve the inner problems by
considering the display decisions in each period in isolation, without
concern for the downstream effects of these display decisions.
• With the known-demands information relaxation Gd, in the inner

problem, the DM simply displays Nt largest demands dt,s in each
period, in each scenario.

• With the known-rates relaxation Gr, the DM displays the Nt

products with the highest rates γs in each period, in each scenario.
In any particular scenario, the expected reward in each period is
the sum of the rates γs for the displayed products.

• With the uncensored demands relaxation Gu, the DM selects the
Nt products with the highest expected demands, conditional on
the history of demands for the product. In given demand scenario,
the expected reward in period t is the sum of mt,s/βt,s for the
selected products where mt,s and βt,s are the shape and scale
parameters for the gamma distribution on rates in period t:

mt,s = m0,s +
t∑

τ=0
dt,s (7.9)

βt,s = β0,s + t (7.10)
where m0,s and β0,s are the initial (period-0) shape and scale
parameters for product s.

Imposing the restrictions on policies where the DM is restricted to
displaying products with index s ≤

∑t
τ=0Nτ in period t (as discussed

above) leads to some straightforward modifications in the simulation
procedures just described (the choice of products must be from the
restricted set) in the periods where the constraint may be binding.
However, the zero-penalty performance bounds are still easy to estimate
with these restrictions.

7.3.2 Inner Problems with Non-Zero Penalties

Though the inner problems with zero penalty are easy to solve, the
inner problem with smoothing or Lagrangian penalties are difficult to
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solve because, like the original DP, the display constraint (7.1) links
decisions across products. We will use another Lagrangian relaxation to
simplify these inner problems.

We first focus the known-demands information relaxation Gd with
the Lagrangian penalty, i.e., taking the generating function in Propo-
sition 3.1 to wt = a

ᵀ
dt + Lλt+1(m,β). In this case, we can write the

inner problem (3.1) for a given demand scenario as a deterministic DP.
Given a demand scenario d = (d0, . . . ,dT ) with dt = (d0,t, . . . , dS,t), let
V̂T+1(m,β;d) = 0 and, for earlier t, we recursively define

V̂t(m,β;d) = max
a∈At
{aᵀ

dt−πt(m,β,a;dt) + V̂t+1(m+a ·dt,β+a;d)}
(7.11)

where

πt(m,β,a;dt) = a
ᵀ
dt + Lλt+1(m+ a · dt,β + a)

− E[aᵀ
d̃t + Lλt+1(m+ a · d̃t, β + a) |m,β]. (7.12)

Here the last term in (7.11) and the second term in (7.12) involve
deterministic state transitions because the DM knows the demand for
each product and each period. The expectation in (7.12), representing
the Ft-conditional expectation in (3.7), is calculated using the same
state-dependent negative-binomial distributions for demand that were
used in the original DP.

We now consider the inner DP (7.11) in more detail. First, note
that even though the information relaxation Gd reveals all demands
before making any decisions, we need to keep track of the DM’s state of
information (the parameters (m,β) of the demand distributions) over
time; this is needed to calculate the expectations in the penalty (7.12).
This inner DP is simpler than the original DP (7.2) because, for any
given set of display decisions a, we need only consider one possible next
period state rather than taking expectations over many possible next
period states. However, we still need to consider many possible (m,β)
states in each period in these deterministic DPs as these states may be
reached by some feasible sequences of display decisions.

Second, note that the penalty terms involving the Lagrangian Lλt+1
decompose into the sum of product-specific values, as in (7.4), so the
penalty πt can be decomposed across products. However, the inner DP
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(7.11) does not decompose into product-specific subproblems because
the constraint on the total number of products displayed (a ∈ At where
At is defined in (7.1)) links the decisions across items, as it did in the
original DP (7.2). Thus, the inner DP – though deterministic – is still
difficult to solve in problems with many items.

To decouple the inner DP (7.11), we relax the linking constraint in
the same way that we relaxed the original DP (7.2). Consider Lagrange
multipliers µ = (µ1, . . . , µT ) ≥ 0 and let L̂µT+1(m,β;d) = 0. The
period-t inner Lagrangian with demand realization d is then given
recursively as

L̂µt (m,β;d) = max
a∈{0,1}S

{
a

ᵀ
dt − πt(m,β,a;dt)

+ L̂µt+1(m+ a · dt,β + a;d) + µt(Nt − 1ᵀ
a)
}
.

This can be decomposed into product-specific DPs as

L̂µt (m,β;d) = Nt

T∑
τ=t

µτ +
S∑
s=1

V̂ µt,s(xs;ds)

where ds = (d1,s, . . . , dT,s) is the demand sequence for product s and
V̂ µt,s(xs;ds) is an inner product-specific value function with
V̂ µT+1,s(xs;ds) = 0 and

V̂ µt,s(ms, βs;ds)= max
as∈{0,1}

{
(ms/βs − µt)as − V λt+1,s(ms + asdt,s, βs + as)

+ E[V λt+1,s(ms + asd̃t,s, βs + as) |ms, βs]

+ V̂ µt+1,s(ms + asdt,s, βs + as;ds)
}
, (7.13)

where V λt,s is the value function for the product-specific DP (7.5). Note
that we have used the fact that E[d̃t,s |ms, βs] = ms/βs in the expression
above.

These inner product-specific DPs and the Lagrangian satisfy prop-
erties like those in Proposition 7.1. In particular, the Lagrangian is an
upper bound on the inner DP: V̂t(m,β;d) ≤ L̂µt (m,β;d) for all m,β,
t, d and µ ≥ 0. To ensure we have the best possible bound for a given
d and initial state (m,β), we can solve the inner dual problem,

min
µ≥0

L̂µ1 (m,β;d), (7.14)
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for an optimal µ∗(m,β,d). This is a convex optimization problem and
can be solved in a variety of ways (e.g., linear programming, subgra-
dient methods, or the cutting-plane method discussed in BS (2020)).
Moreover, if we take the inner Lagrange multipliers µ to be equal to
the “outer” Lagrange multipliers λ used to define the penalty, we can
use an induction argument to show that L̂λt (m,β;d) = Lλt (m,β) for
all t and d.1 Thus, since λ is feasible but not necessarily optimal for
the inner Lagrangian dual problem (7.14), we have

V̂1(m,β;d) ≤ L̂µ
∗(m,β,d)

1 (m,β;d) ≤ Lλ1 (m,β).

We now briefly consider the other combinations of relaxations and
non-zero penalties.

Known-demands relaxation Gd with smoothing penalty:
With the smoothing penalty (generating function wt = a

ᵀ
dt) instead of

the Lagrangian penalty (wt = a
ᵀ
dt+Lλt+1(m,β)), we proceed exactly as

above but without the Lagrangian terms Lλt . We still need to keep track
of the state (m,β) to calculate expected rewards in the penalty (7.12)
and still use the inner Lagrangian decomposition (the terms involving
µ) to decouple the inner DP. These inner DPs with the smoothing
penalty are thus about as difficult to solve as those with the Lagrangian
penalty.

Known-rates relaxation Gr: With the known-rates relaxation
and the Lagrangian penalty, the approach is similar to that for the
known-demands relaxation but the inner problems now require a stochas-
tic rather than deterministic DP. Specifically, the known demands DP
(7.11) now requires taking an expectation over demand, given the de-
mand rates γ = (γ1, . . . , γS) and becomes:

V̂t(m,β;γ) = max
a∈At

E[aᵀ
d̃t − πt(m,β,a; d̃t)

+ V̂t+1(m+ a · d̃t,β + a;d) |γ].

1Note that the V λ
t+1,s(·) and V̂ µ

t+1,s(·) terms in (7.13) cancel if µ = λ and we
have the induction hypothesis that V λ

t+1,s(·) = V̂ λ
t+1,s(·). Then (7.13) reduces to the

definition of V λ
t+1,s(·) in (7.5).
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The decomposition proceeds as before and the inner product-specific
value function (7.13) becomes

V̂ µt,s(ms, βs; γs)

= max
as∈{0,1}

{
(ms/βs − µt)as + E[V λt+1,s(ms + asd̃t,s, βs + as) |ms, βs]

−E[V λt+1,s(ms + asd̃t,s, βs + as)+V̂ µt+1,s(ms + asd̃t,s,βs+as;γs) | γs]
}
,

Here the first expectations over demand are the F-conditional expec-
tations in the penalty and are calculated using the negative-binomial
distribution with parameters (ms, βs), as before. The second expecta-
tions over demand are the Gr-conditional expectations in the relaxed
DP recursion (3.3) and are calculated using the Poisson distribution
with the known rate γs. These inner DPs are significantly more compli-
cated than those for the known-rates relaxation: not only are the inner
DPs stochastic rather than deterministic, but one must also consider a
broader range of (ms, βs) states in each period as more states may be
reached given uncertain demand realizations and feasible sequences of
display decisions. Using the smoothing penalty instead of the Lagrangian
penalty in the known-rates relaxations leads to some simplifications (as
in the known-demands relaxation), but results in a stochastic DP that
is about as difficult to solve as with the Lagrangian penalty.

Uncensored demands relaxation Gu: As in the known-rates
relaxation Gr just discussed, the uncensored demand relaxation also
results in a stochastic inner DP. This DP can also be decomposed using
an inner Lagrangian relaxation. However, with both the smoothing and
Lagrangian penalties, the resulting inner product-specific DPs are too
complex to be efficiently solved. The issue is that in these inner product-
specific DPs, not only one must keep track of the reachable (ms, βs)-
states to calculate the F-conditional expectations in the penalties, one
must also keep track of a different set of (ms, βs)-states (given by
(7.9) and (7.10)) to represent the DM’s stochastically evolving state of
information in the Gu-relaxation. The DP thus has a four-dimensional
state space and is too large to be efficiently solved.
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7.4 DAP: Numerical Experiments

In our numerical examples, we will consider parameters similar to those
in CG (2007) and BS (2020). We consider a horizon of T = 12. We
assume that all products are a priori identical with gamma distribution
parameters (ms, βs) = (1.0, 0.1) (so the mean and standard deviation
for the demand rate are both 10).2 We assume that the DM can display
20% of the products available in each period, i.e., Nt = 0.20S, and
consider the case when the total number of products S equals 5, 20,
and 50.

We will consider the myopic and Lagrangian index policies (described
in Section 7.2) and the information relaxations and penalties described
in Section 7.3 (summarized in Table 7.1). We use Monte Carlo simulation
to estimate the performance of the heuristics and bounds with 1,000
scenarios each, except for the known-rates bounds with smoothing and
Lagrangian penalties; these are more time-consuming to compute (for
the largest problems with S = 50, computing these bounds took about
about two minutes per scenario versus 0.1 seconds per scenario for the
known-demands bounds with smoothing and Lagrangian penalties) and
hence we use 100 scenarios instead. We use the cutting plane method
described in BS (2020)) to find the optimal Lagrange multipliers for
the Lagrangian dual problems that arise. All calculations were done on
a desktop PC using Matlab with the MOSEK Optimization Toolbox.

Table 7.2 provides a summary of the results. In terms of the policies,
the Lagrangian index policy performs much better than the myopic
index policy; this is not surprising, since the myopic policy ignores
the downstream benefits of learning about demands. In terms of the
information relaxation bounds, with zero penalty we see that the un-
censored relaxation provides the best performance bound in each case
but that these zero penalty performance bounds are all worse than the
performance bound from the Lagrangian relaxation. The smoothing
penalty improves upon the zero penalty in each case. The Lagrangian

2In our numerical examples, we truncate the demand distributions at d̄ = 150
(thereby including 99.9999% of the possible demand scenarios). In period t, there
are
∑t−1

τ=0((τ − 1)d̄+ 1)) possible states, representing the values of (m,β) that could
be obtained under some policy.
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penalty also improves upon the smoothing penalty in each case and,
as stated in Propositions 3.2, the corresponding information relaxation
bounds are tighter than the Lagrangian relaxation performance bound.

Because the information relaxations considered are ordered (recall
from Section 7.3 that F ⊆ Gu ⊆ Gd ⊆ Gp and F ⊆ Gr ⊆ Gp), we might
expect the performance bounds given by the same penalties to reflect
this ordering with weaker relaxations leading to weaker penalties, as
noted in Corollary 3.1. This ordering is reflected in the numerical results
of Table 7.2 for the zero penalty case. However, this order need not hold
for our numerical results for the smoothing and Lagrangian penalties
because we have used a Lagrangian relaxation to simplify the solution of
the inner problems. Our numerical results are thus upper bounds on the
performance bounds that we would find if we were able to solve these
inner problems exactly. These upper bounds on the performance bounds
need not be ordered in the way the exact performance bounds would be.
Indeed, in the numerical results in Table 7.2, we see that the reported
bounds with the smoothing penalty do not reflect the ordering of the
information relaxations. Specifically, the known rates Gr bounds are
worse than the perfect information Gp bounds (which are equal to the
known demand Gd), even though Gr ⊆ Gp. However, the bounds with
the Lagrangian penalty do reflect the information relaxation ordering.

The results with the Lagrangian penalty demonstrate the value
of the information relaxation bounds, especially for small values of S:
with S = 5, using the Lagrangian relaxation bound, we can conclude
the Lagrangian index policy is within (239.43/224.27 − 1) = 6.76%
of optimal, whereas the known-rates relaxation shows the Lagrangian
index policy is in fact within (225.71/224.27− 1) = 0.64% of optimal.
The relative improvement provided by the information relaxations is
somewhat less in the case of larger S; this reflects the fact that the
Lagrangian index policy and Lagrangian bound are asymptotically
optimal, with the relative gap between the two approaching zero as
S grows large (see Section 6 of BS (2020)). However, the information
relaxation bound reduces the gap between the policy and bound by
approximately one-half when S = 20 and S = 50. For example, with
S = 50, the Lagrangian performance bound shows that the Lagrangian
index policy is within (2394.31/2373.04−1) = 0.90% of optimal, whereas
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the known-rates relaxation shows the Lagrangian index policy is within
(2386.22/2373.04− 1) = 0.56% of optimal.



8
Example: Portfolio Optimization with

Transaction Costs

As an example of a convex DP, in this section, we study a dynamic port-
folio optimization problem with transaction costs, drawing on Brown
and Smith (2011) (BS (2011)). Here, the approximate model is a “fric-
tionless” portfolio optimization model that ignores transactions costs;
this is a (physical) relaxation of the original model and is not difficult to
solve to optimality. These frictionless value functions are differentiable
and hence the results of Proposition 4.1 apply and, in particular, by
part (ii) of that proposition, we can calculate information relaxation
bounds that improve on the bound provided by the frictionless model.

We begin by describing the portfolio optimization model in Sec-
tion 8.1, the information relaxation bounds in Section 8.2, and provide
some numerical examples in Section 8.3. We note that the construction
of the penalties in BS (2011) is different than our construction here; as
discussed in Brown and Smith (2014a), we could have done somewhat
better applying the approach of Proposition 4.1 (as we do here) instead.

8.1 Portfolio Optimization Model

There are n risky assets and a risk-free asset (cash). The risk-free rate
ρf is assumed to be known and constant over time. The returns of the

311
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risky assets are stochastic and denoted by ρt = (ρt,1, . . . , ρt,n) where
ρt,i ≥ 0 is the (gross) return on asset i from period t− 1 to period t.

The monetary values of the risky asset holdings at the beginning of
period t are described by the vector xt = (xt,1, . . . , xt,n); the cash posi-
tion in period t is denoted ct. We let the trade vector at = (at,1, . . . , at,n)
denote the amounts (also in monetary values) of risky assets bought (if
at,n > 0) or sold (if at,n < 0) in period t. The transaction costs associ-
ated with trade vector at are given by κ(at). In our general analysis
and approach, we will assume that κ(at) is a nonnegative and convex
function of the trades at with κ(0) = 0. In our numerical experiments,
we will focus on the special case of proportional transaction costs with

κ(at) =
n∑
i=1

(δ+
i a

+
t,i − δ

−
i a
−
t,i), (8.1)

where a+
t,i = max(at,i, 0) and a−t,i = min(at,i, 0) denote the positive and

negative components of the trades and δ+
i , δ

−
i ≥ 0 are the proportional

costs for buying and selling (respectively) asset i. Alternatively, we
could use a quadratic function for transaction costs to capture a “linear
price impact,” where trades lead to temporary linear changes in prices.
Many other forms are possible.

Taking transaction costs into account, the asset holdings and cash
position evolve according to:

xt+1 = ρt+1 · (xt + at),
ct+1 = rf (ct − 1ᵀ

at − κ(at)).

Here · denotes the componentwise product of two vectors (so xt+1,i =
ρt+1,i(xt,i + at,i)) and 1 is an n-vector of ones. The investor’s wealth wt
in period t is the sum of the risky asset and cash positions, i.e.,

wt = 1ᵀ
xt + ct.

The investor’s goal is to maximize the expected utility of terminal
wealth, E[U(wT )], where U is a nondecreasing and concave utility
function. Note that in this formulation, we define wealth in terms
of the market value of the portfolio. We could have instead defined
wealth in terms of the liquidation value of the portfolio, including the
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transaction costs associated with liquidation. In this case, we would
take wt = 1ᵀ

xt − κ(−xt) + ct. Our general approach works in either
case, though the numerical results would be somewhat different.

We will assume that the investor’s trades at in period t are restricted
to a closed, convex set At(xt, ct). In our numerical experiments, we
will focus on the case where the investor is not allowed to have short
positions in risky assets or cash, so given an asset position (xt, ct), the
allowed trades are

At(xt, ct) = {at ∈ Rn: xt + at ≥ 0, ct − 1ᵀ
at − κ(at) ≥ 0}. (8.2)

BS (2011) also consider numerical results for the case where short
positions are allowed, but there is a margin requirement that limits the
total (long or short) position in risky assets. In general, we consider sets
of allowed trades At(xt, ct) defined in terms of a set Ht of allowed final
positions (or holdings): at ∈ At(xt, ct) if and only if (xt+at, ct−1ᵀ

at−
κ(at)) ∈ Ht. We assume that the allowed set of final positions Ht is
closed, convex, and nondecreasing in ct (if (xt, c′t) ∈ Ht and c′t ≤ c′′t then
(xt, c′′t ) ∈ Ht). This implies that At(xt, ct) is convex for each (xt, ct).

We will allow the possibility that returns exhibit some degree of
predictability. To model this, we let zt denote a vector of observable
market state variables that provides information about the returns ρt+1
of the risky assets. We will assume that zt follows a Markov process. The
returns ρt+1 may depend on zt but, given zt, the returns are assumed
to be conditionally independent of prior returns and earlier values of
the market state variable.

This portfolio optimization problem can be formulated as a stochas-
tic dynamic program with state variables consisting of the current
positions in risky assets and cash (xt, ct) and the market state variable
(zt). We take the terminal value function to be the utility of terminal
wealth, V ∗T (xT , cT , zT ) = U(1ᵀ

xT + cT ), and earlier value functions V ∗t
are given recursively as

V ∗t (xt, ct, zt) = max
at∈At(xt,ct)

Wt(at,xt, ct, zt) (8.3)

Wt(at,xt, ct, zt) = E[V ∗t+1(ρ̃t+1 · (xt + at),
ρf (ct − 1ᵀ

at − κ(at)), z̃t+1) | zt]. (8.4)
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In (8.4), expectations are taken over the random asset returns ρ̃t+1
and the next-period market state z̃t+1. We will assume that these
expectations are well defined and that maxima in (8.3) are attained by
some set of trades.

The following proposition states some key properties of this portfolio
optimization model.

Proposition 8.1 (Properties of the Portfolio Optimization Model, BS
(2011)).

(i) For any market state zt, V ∗t (xt, ct, zt) is nondecreasing in cash ct
and jointly concave in the asset position (xt, ct).

(ii) For any market state zt, Wt(at,xt, ct, zt) is jointly concave in the
trades at and asset position (xt, ct).

Thus, for any given market state zt and asset and cash position
(xt, ct), the optimization problem (8.3) is convex: we are maximizing a
concave function over a convex set. Unfortunately, the dimension of the
state space makes the portfolio optimization problem very difficult to
solve, even with just a few risky assets. For example, suppose the market
state variable zt is one-dimensional. If we approximated the state space
using a grid with 20 points for this market state variable and 100 points
for each of the n+ 1 asset positions, the state space would consist of
20 × 100n+1 states. To determine the value function V ∗t (xt, ct, zt) on
this grid, we would have to solve the optimization problem (8.3) for each
of these 20× 100n+1 states in each period. In our numerical examples
with n = 3 risky assets and predictability, the state space would include
20 × 1004 = 2 billion elements. With n = 10 risky assets and no
predictability, the state space would include 10011 = 1022 elements.
Moreover, each of these optimization problems involves expectations
(8.4) over the (n+ 1)-dimensional space of (ρt+1, zt+1) scenarios and we
would have to somehow interpolate between grid points when solving
for the optimal trades.

If there are no transaction costs (κ = 0), the portfolio optimization
problem can be greatly simplified by taking the dynamic programming
state variables to be the current wealth (wt) and market state variable
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(zt); we no longer need to consider the specific asset positions (xt, ct). In
this simpler dynamic program, the decision variables are the post-trade
positions in risky assets x̂t = xt + at. Let Xt(wt) denote the set of
possible post-trade positions in risky assets given initial wealth wt; that
is Xt(wt) = {x̂t: (x̂t, wt−1ᵀ

x̂t) ∈ Ht}. For example with no transaction
costs, the case described by (8.2) where the investor is not allowed to
have short positions corresponds to a feasible set of post-trade asset
positions of the form

Xt(wt) = {x̂t ∈ Rn: x̂t ≥ 0, 1ᵀ
x̂t ≤ wt}.

We can then write the recursion for this “frictionless model” as follows:
The terminal value function is V f

T (wT , zT ) = U(wT ) and earlier value
functions are

V f
t (wt, zt) = max

x̂t∈Xt(wt)
W f
t (x̂t, wt, zt) ,

W f
t (x̂t, wt, zt) = E[V f

t+1(ρ̃ᵀ
t+1x̂t + ρf (wt − 1ᵀ

x̂t), z̃t+1 | zt]. (8.5)

This frictionless model also has a convex structure and its results can
be related to those of the more complicated model with transaction
costs.

Proposition 8.2 (Properties of the Frictionless Portfolio Optimization
Model, BS (2011)).

(i) For any market state zt, V f
t (wt, zt) is nondecreasing and concave

in wealth wt.

(ii) For any market state zt, W f
t (x̂t, wt, zt) is jointly concave in the

post-trade asset positions x̂t and wealth wt.

(iii) For any market state zt and asset position (xt, ct), V ∗t (xt, ct, zt) ≤
V f
t

(
1ᵀ
xt + ct, zt

)
.

Thus, to solve the frictionless model, we need to solve a convex opti-
mization problem for each market state zt and wealth wt. For example,
if the market state variable zt is one-dimensional, we could solve this
dynamic program on a two-dimensional grid involving zt and wt. The
expectations over (ρ̃t+1, z̃t+1) in (8.5) will still be high-dimensional if
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we have many assets but can be evaluated using various methods. In our
numerical experiments, we will approximate these expectations using
discrete approximations of the underlying distributions (see Section 5.1
of BS (2011) for details).

If the investor has a power utility function, the frictionless model
simplifies further. Specifically, suppose

U(wT ) = 1
1− γ w1−γ

T ,

where γ > 0 is the coefficient of relative risk aversion; in the case where
γ = 1, U(wT ) = ln(wT ). We can then write the value function as

V f
t (wt, zt) = 1

1− γ w1−γ
t φt(zt), (8.6)

where φt(zt) is defined recursively with φT (zT ) = 1 and
1

1− γφt(zt)

= max
θ̂t∈Xt(1)

E
[ 1

1− γ (ρ̃ᵀ
t+1θ̂t + ρf (1− 1ᵀ

θ̂t))1−γ φt+1(z̃t+1)
∣∣∣∣ zt] .

(8.7)

Here θ̂t = (θ̂1, . . . , θ̂n) are the post-trade fractions of wealth wt invested
in the risky assets. In this case, the dimension of the state space is equal
to the dimension of the market state variable zt.

8.2 Information Relaxation Bounds

Following the approach described in Section 4, we can use the frictionless
model as an approximate value function to construct a gradient penalty
of the form of (4.2). Let a = (a0, . . . ,aT−1) denote the vector of trades
made over all T periods and α̂∗ = (α̂∗0, . . . , α̂∗T−1) denote the vector of
trades over all T periods following an optimal policy in the frictionless
model. Given a return ρ = (ρ0, . . . ,ρT ) and market state scenario
z = (z0, . . . ,zT ), the period-t generating function for the gradient
penalty (4.1) is then

∇aV f
t+1(wft+1(α̂∗,ρ), zt+1)ᵀ (a− α̂∗) + V f

t+1(wft+1(α̂∗,ρ), zt+1) (8.8)
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where wft (a,ρ) denotes the wealth in the frictionless model at time t
given trades a and returns ρ. Given a power utility function, using (8.6)
and the chain rule, the gradient in (8.8) can be written as

∇aV f
t+1(wft+1(a,ρ), zt+1)

= (wft+1(a,ρ))−γφt+1(zt+1) ·


∇a0w

f
0 (a,ρ)
...

∇at+1w
f
t+1(a,ρ)

 , (8.9)

where

∇aτw
f
t (a,ρ) =

t+1∏
τ ′=τ+1

(ρτ ′ − ρf · 1). (8.10)

These gradients require some “bookkeeping” to keep track of the com-
pounding effects of earlier trades on period-t wealth, captured through
(8.9) and (8.10). However, the other terms involved, namely φt+1(zt+1)
and wft+1(α̂∗,ρ), are calculated when solving the frictionless model
(8.7), with wealth wft+1(α̂∗,ρ) being derived from the optimal trading
weights θ̂t found for the frictionless model. The gradient penalty (4.2)
is then

π̂∇(a,ρ, z)

=
T−1∑
t=0

(
(∇aV f

t+1(wft+1(α̂∗,ρ), zt+1)−E[∇aV f
t+1(wft+1(α̂∗,ρ), zt+1) | Ft])

ᵀ

· (a− α̂∗) +
(
V f
t+1(wft+1(α̂∗,ρ), zt+1)

− E[V f
t+1(wft+1(α̂∗,ρ), zt+1) | Ft]

))
. (8.11)

With this gradient penalty based on the frictionless model, for a
given scenario (described by returns ρ and market states z), the perfect
information inner problem (3.2) is

max
a∈A(ρ)

{U(wT (a,ρ))− π∇(a,ρ, z)}, (8.12)

where A(ρ) denotes the set of feasible trades and wT (a,ρ) the terminal
wealth given returns ρ, both taking transaction costs into account. Here,
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in the inner problem, the DM “knows” all future returns ρ and market
states z in advance and chooses trades a to maximize the utility of end-
of-horizon wealth U(wT (a,ρ)), paying penalty π∇(a,ρ, z). Since adding
a linear penalty to a concave objective preserves concavity, the inner
problem (8.12) is a convex optimization problem with n× T decision
variables, corresponding to the trades in each of n assets in each of T
periods. From Proposition 4.1(ii), using the gradient penalty based on
the frictionless model as in (8.11), the value of the inner problem will
be smaller than the value of the frictionless model in every scenario.

In our numerical examples, we will assume proportional transaction
costs given by (8.1) and a power utility function. In this case, we can
simplify the optimization problem by decomposing the trades a into
positive and negative components a = a+−a− where a+,a− ≥ 0. With
proportional transaction costs, the terminal wealth wT (a+ − a−,ρ) is
then linear in (a+,a−) and the inner problem has a “smooth” concave
objective function with 2× n× T decision variables corresponding to
the positive and negative components of each trade in each period.1

8.3 Numerical Examples

Table 8.1 shows results for the dynamic portfolio optimization model on
a set of examples using parameters from BS (2011). In these examples,
we take T = 12 and use n = 3 risky assets with a return predictability
model calibrated as in BS (2011). We use power utility with risk aversion
coefficient γ and proportional transaction costs with rate δ, varying γ
and δ each across three values, as in BS (2011). For feasible trading
policies, we consider the policies in BS (2011); these policies use various
forms of limited-lookahead approximations in selecting trades in each
period.

1As mentioned earlier, this is not the penalty construction used in BS (2011).
The gradient penalties in BS (2011) differ from the gradient penalties (8.11) in
that the penalties in BS (2011) consider only terminal wealth effects and do not
include the term involving the expectation under Ft. Although such gradient penalties
are dual feasible, it can be shown that the gradient penalties (8.11) lead to tighter
bounds than the gradient penalties in BS (2011) in every scenario; see Brown and
Smith (2014a) for a proof.
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The reported results are in terms of certainty equivalent returns:
given a time horizon of T months and a mean utility calculated in a
simulation of µ̂, the annualized certainty equivalent return is defined as
the constant annual return ρ̂ that yields utility µ̂, i.e., the ρ̂ that solves:

µ̂ = U(w0 · ρ̂T/12) (8.13)

where w0 is the initial wealth and U the power utility function. We
estimate mean standard errors for these certainty equivalent returns
and the duality gaps (the differences between upper and lower bounds
on optimal returns) using the “delta method” (see, for example, Casella
and Berger, 2002, p. 240) based on a first-order Taylor series expansion
of the certainty equivalent formula (i.e., the inverse of Equation (8.13)).

In Table 8.1, we see that the penalized information relaxation bounds
are quite tight, with the average gap between heuristic and bound
ranging from 13 basis points to 69 basis points, with higher transaction
cost rates leading to somewhat larger gaps. As required by Proposition
4.1(i), the penalized perfect information upper bounds are tighter than
the upper bounds from the frictionless model. The perfect information
bounds reduce the suboptimality gap implied by the frictionless model
by 34% to over 80%; the improvement from the frictionless model is
most pronounced in examples with lower risk aversion (e.g., γ = 1.5
here) which have more rebalancing in the frictionless model and more
transaction costs that are not reflected in the frictionless bound. The
information relaxation bounds involve solving a convex optimization
problem in every scenario; evaluating 1,000 scenarios took less than 10
seconds total on a desktop computer (see also Table 1 of BS (2011)).
Using the penalized perfect information bounds, it is clear that the best-
performing feasible policies are nearly optimal in each case, a conclusion
that is less clear from the frictionless bounds alone.



9
Advances in Methodology

In this section, we will briefly discuss some methodological advances
in information relaxation techniques. In the next section, we describe
applications that also frequently involve methodological advances but
tend to be more focused on a specific application.

9.1 Pathwise Optimization

Desai et al. (2012) study the use of perfect information relaxations on
high-dimensional optimal stopping problems and develop a pathwise
optimization approach that optimizes the penalty function. Specifically,
they consider a linear-programming-based approximate value function
(as in de Farias and Van Roy, 2003) where the value function is approxi-
mated as a weighted combination of a pre-specified set of basis functions.
They then use this approximation architecture to construct penalties
as in Proposition 3.1, choosing the weights to minimize the penalized
perfect information bound. They also use the optimized penalties to
suggest good heuristic (feasible) policies. Desai et al. (2012) show that
the pathwise optimization problem is a convex optimization problem
that can be solved by sample-based approximations and stochastic
subgradient methods. In a sense, this pathwise optimization process
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formalizes some of the trial and error in finding good heuristics and
penalties discussed in Section 5, though there are still significant oppor-
tunities for trial and error and iteration in, for example, selecting the
set of basis functions.

In addition to theoretical results on the quality of these approxima-
tions, Desai et al. (2012) show that the pathwise optimization approach
provides tighter performance bounds than those produced by approxi-
mate linear programming alone (see Proposition 3.2(ii) above). They
present numerical results for some examples of high-dimensional Bermu-
dan options and show that the pathwise problem can be solved in a few
seconds and produces high-quality policies and performance bounds.

Desai et al. (2011) generalize the pathwise optimization approach
to Markov decision processes (MDPs) and show that for linear-convex
control problems the pathwise optimization approach also leads to
convex optimization problems that can be efficiently solved. Recently,
Yang et al. (2020) extended the pathwise optimization approach to mer-
chant energy production problems and have developed preconditioning
methods that significantly improve the efficiency of the approach.

9.2 Infinite-Horizon Problems

Although the framework and theory described in Section 2 and Section 3
focus on finite-horizon DPs, in principle we can apply information
relaxation methods in infinite-horizon problems as well. From a practical
standpoint, this creates two related challenges. First, with a perfect
information relaxation, we need to generate finite scenarios for the inner
problems because we cannot perform computations with an infinitely
long, randomly generated series of states. We can use a finite-horizon
approximation in these cases but in many problems (e.g., average reward
problems or discounted problems with a discount factor close to one), a
long horizon may be necessary to obtain a good approximation. Second,
even with a perfect information relaxation, the resulting deterministic
inner problems may still be difficult to solve, particularly with long
time horizons.

Motivated by these challenges, Brown and Haugh (2017) study infor-
mation relaxation methods for infinite horizon MDPs with discounting.
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Building upon and generalizing an idea from Rogers (2007), Brown and
Haugh (2017) develop a general class of reformulations of the primal
MDP that involve changing the state transition function and correcting
for the change in transition probabilities by multiplying rewards by
likelihood ratio factors. The goal of these reformulations is to simplify
the resulting information relaxation inner problems and lead to finite-
horizon inner problems; the reformulations generalize the idea of using
a random stopping time to convert an infinite-horizon discounted MDP
to a finite-horizon DP (see, for example, Puterman, 1994, Proposition
5.3.1).

Brown and Haugh (2017) show that weak and strong duality (as in
Theorems 3.1 and 3.4) continues to hold when information relaxations
are applied to these reformulated MDPs. They also show that when the
penalty is generated as in Proposition 3.1 with a generating function
that is a “supersolution” of the MDP, the information relaxation upper
bound is tighter than the performance bound from the supersolution
itself (see Proposition 3.2(ii) above). This result is similar to Theorem 4
of Desai et al. (2011), though Brown and Haugh (2017) show the result
in a framework involving the reformulations they study.

9.3 Hindsight Analysis

Perfect information bounds without penalties have long been used in the
analysis of algorithms in the theoretical computer science and operations
research communities and are often referred to as “hindsight bounds” or
“offline optimal bounds.” In this work, the performance of a particular
algorithm is compared against that of a clairvoyant who makes decisions
with advance knowledge of all uncertainties. Typically the goal is to
prove the algorithm performs well either in terms of a constant factor
guarantee or in some asymptotic regime of interest. As a classic example,
Talluri and van Ryzin (1998) show that static bid-price policies are
asymptotically optimal in network revenue management problems as the
initial capacities and time horizon grow large; they also show that perfect
information bounds are asymptotically optimal in this setting. Although
hindsight (perfect information) bounds have been used successfully in
many other problems, as we saw in our numerical examples, with no
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penalty, the resulting bounds are often quite weak. Balseiro and Brown
(2019) consider the use of a penalty within the approach to strengthen
the bounds in the theoretical analysis of algorithms. Specifically, they
consider a general framework involving finite-horizon MDPs and use
an approximate value function (a “Q-factor”) in the construction of
Proposition 3.1 to generate both a feasible policy as well as a penalized
perfect information bound.

Balseiro and Brown (2019) demonstrate the technique on stochastic
knapsack problems (Dean et al., 2008), where the size of each item is
random and not revealed until an item is selected. They focus on an
approximate value function corresponding to a feasible “greedy” policy
that ranks items in order of their ratio of value over expected size. Using
this approximate value function to generate a penalty in the perfect
information problem, they show that the optimal solution in the inner
problem is close to the greedy policy in every scenario, which implies
the greedy policy is asymptotically optimal as the number of items and
capacity grow large. Balseiro and Brown (2019) also apply information
relaxations with penalties to show the asymptotic optimality of some
simple policies in stochastic scheduling with parallel machines and
optimal sequential search problems. Similarly, Balseiro et al. (2018)
show how to use information relaxations to analyze the performance of
static routing policies in stochastic scheduling problems on unrelated
machines. In all of these examples, the penalty is essential in the analysis:
the perfect information relaxation bound with zero penalty is not tight
in the asymptotic regime of interest.



10
Applications

In this section, we briefly discuss several application areas where re-
searchers have successfully applied information relaxation methods. In
each application area, we highlight one or two papers, and we briefly
describe the model and the use of information relaxations in the problem
and discuss some of the issues and challenges in the application. We also
typically list several related applications in the area without providing
details. This is a rapidly growing research area and, in this review, we
aim to be representative rather than exhaustive.

10.1 Energy and Commodity Applications

Many researchers have applied information relaxation methods to prob-
lems related to managing commodities, especially energy commodities.
As discussed in Section 1.2, Lai et al. (2010) consider the problem of
a merchant managing natural gas storage over time in the presence of
stochastic price dynamics where they may inject or withdraw a certain
amount of natural gas in each period. The problem is challenging because
the natural gas forward curve is represented using a high-dimensional
model which leads to a very large state space for the stochastic DP. Lai
et al. (2010) develop some policies based on approximations of the value
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function and use information relaxation methods to generate upper
bounds on the optimal value using penalties based on these approx-
imate value functions. In extensive numerical experiments, they find
that the performance bound using the penalized information relaxation
is typically quite close (within a few percent) of the performance of
their policy. In addition, they find that the penalty is essential: with no
penalty, the performance bounds are typically quite weak, sometimes a
factor of two or more larger than the penalized information relaxation
bound.

Information relaxation methods have also been applied to related
problems, including other problems in natural gas storage (Nadarajah
and Secomandi, 2018; Nadarajah et al., 2015, 2017; Secomandi, 2015),
optimal procurement, processing, and trade of commodities (Devalkar
et al., 2011), electricity generation and storage problems (Hinz and Yee,
2018; Lin et al., 2020), managing renewable power purchase agreements
(Trivella et al., 2018), and merchant energy production (Trivella et al.,
2021; Yang et al., 2020).

10.2 Sequential Exploration Problems

Though the applications above relate to the downstream oil and gas and
energy markets, Brown and Smith (2013) study an upstream application
in oil and gas exploration. In this model, there is a set of “target” sites in
a given geographical area. Each target may contain oil, gas, or be “dry,”
and there is a joint probability distribution described by a Bayesian
network that describes the probability of all possible outcomes at each
target and the dependence among them. Brown and Smith (2013)
decompose the network into smaller manageable “clusters” and consider
an imperfect information relaxation where each cluster has perfect
information about the outcomes for all other clusters. The resulting
inner problems are bandit superprocesses (Whittle, 1980) which are
still challenging to solve; Brown and Smith (2013) develop an easy-to-
compute upper bound of these information relaxation inner problems.
In numerical examples based on a model from a Norwegian oil company,
they find that the resulting performance bounds are quite close to the
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performance of a given feasible policy, also derived from the bandit
superprocess models.

10.3 Portfolio Optimization

Researchers have used information relaxation methods to evaluate the
performance of heuristic policies in other complex dynamic portfolio
optimization problems that are (at a high level) similar to the example
considered in Section 8. For example, Haugh et al. (2016) consider
dynamic portfolio optimization involving capital gains taxes. Computing
an optimal policy for such problems is very difficult because the prices
at which assets are bought and sold in each period must be tracked as
part of the state space. Haugh et al. (2016) develop a set of heuristic
policies and show how to apply information relaxations to assess the
performance of these policies. Specifically, they use gradient penalties as
discussed in Section 4 based on a frictionless model without taxes. The
resulting perfect information inner problems are still difficult to solve
(they involve the maximization of a nonconcave objective) but they
show how to obtain good upper bounds on these inner problems. On a
large set of numerical examples, they find that their heuristic policies
are typically within a few basis points of the information relaxation
bounds, thereby showing the policies are nearly optimal for this difficult
problem.

Other applications of information relaxation methods to portfolio
optimization include models with transaction costs (Brown and Smith,
2011, as discussed in Section 8; Broadie and Shen, 2016; Mei and No-
gales, 2018), models with high-dimensional market states (Broadie and
Shen, 2017), continuous-time models (Ye and Zhou, 2015), portfolio exe-
cution problems (Haugh and Wang, 2014a), multiple stopping problems
(Chandramouli and Haugh, 2012), stochastic regime-switching models
(Hinz and Yee, 2017), and bilateral counter-party risk models (Bender
et al., 2018).

There have also been numerous applications of information relax-
ation methods in pricing complex options, including the early work of
Haugh and Kogan (2004), Rogers (2002), and Andersen and Broadie
(2004) discussed in Section 1.2 (and reviewed in Glasserman (2003)),
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in BSS (2010), as well as Desai et al. (2011) which was discussed in
Section 9.1. There are many applications in option pricing that build
on this early work.

10.4 Inventory Management

There have also been numerous applications of information relaxation
methods in inventory settings. We highlight Bernstein et al. (2016)
which considers the problem of a retailer jointly managing inventory
levels and prices with a price-sensitive demand model and lead times.
With a lead time of L periods, the resulting stochastic DP involves an
L+1-dimensional state space reflecting supply due in each of the L next
periods as well as the inventory level. With significant lead times, the
state space can be quite large. The authors develop a myopic heuristic
policy for this joint inventory-pricing problem and use information
relaxation methods to provide performance bounds. The penalties they
use are like the gradient penalties of Section 4 and are based on a linear
approximation of a myopic value function used in their heuristic policy.
Their numerical experiments show that the policies and information
relaxation bounds are typically within a few percent of each other, with
the gaps growing with longer lead times.

As discussed at the end of Section 6, BSS (2010) consider information
relaxation performance bounds for the adaptive inventory model of Tre-
harne and Sox (2002) with uncertainty about the underlying demand dis-
tribution. Brown and Smith (2014b) consider an inventory problem with
lost sales and lead times (see, for example, Zipkin, 2008) and use the gra-
dient penalty construction described in Section 4 to generate penalties
that are linear in actions. In this setting, however, nondifferentiability
(induced by the lost sales) plays an important role and gradients must
be selected carefully to obtain good bounds. Other applications of infor-
mation relaxation methods to inventory management problems include
stochastic lot-sizing problems (Federgruen et al., 2015), Bayesian inven-
tory management with demand change-points (Wang and Mersereau,
2017), inventory management with autoregressive demand distribu-
tions (Brown and Haugh, 2017), perishable inventory models (Lin
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et al., 2020), and managing inventory for multi-dose vaccines such as
many COVID-19 vaccines (Shumsky et al., 2021).

10.5 Reinforcement Learning

Several researchers have recently applied information relaxations to
problems and algorithms that arise in the area of reinforcement learn-
ing. We highlight Min et al. (2019) which considers a finite-horizon,
Bayesian multi-armed bandit problem where a decision-maker has prior
beliefs about an unobservable parameter on each arm. In each period,
the decision-maker selects an arm to pull, collects a random reward,
and updates their beliefs about the arm’s parameters. Although this
problem has a known optimal solution in the infinite-horizon setting
with discounting (in each period, pull the arm with the highest Gittens
index), there is no known simple form for the optimal policy in the
finite-horizon setting. A classical approach to such problems – Thomp-
son sampling (TS) (Thompson, 1933) – involves information relaxations:
in each period, each arm’s parameter is fictitiously “sampled” from the
current priors and the arm with the highest resulting expected reward
is selected in that period.

Min et al. (2019) show that the TS policy and the TS clairvoyant
benchmark fits into an information relaxation framework with a par-
ticular penalty function; this penalty function effectively replaces the
realized rewards associated with each arm with their expected value
given the parameter (similar to the “smoothing” penalties considered
in the examples of Sections 6 and 7). The authors also develop three
other penalty functions that can be used to generate feasible policies
and also provide upper bounds. Min et al. (2019) (a) show that the
upper bounds using these three penalties are tighter than the upper
bound using Thompson sampling; (b) prove that the feasible policies
generated by two of the three penalties lead to similar regret as Thomp-
son sampling; and (c) in extensive numerical experiments demonstrate
strong empirical performance of these policies compared to TS.

As a second application area to highlight, we consider Monte Carlo
tree search (MCTS), MCTS is a widely studied algorithm used to
solve decision problems (including games) in the artificial intelligence
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literature. Roughly speaking, the MCTS algorithm works by maintaining
an approximation of a full decision tree (representing a finite-state and
finite-action Markov decision process) then progressively expanding
new nodes of the approximation. Although MCTS converges to an
optimal action in the current state, in the worst case this requires
a construction of the full decision tree. Jiang et al. (2020) develop
a primal-dual form of MCTS with improved performance that uses
information relaxation methods. Their method relies on generating
information relaxation bounds in the tree expansion steps to “prune”
parts of the tree that should not be visited by an optimal policy. Jiang
et al. (2020) show that this approach retains the theoretical convergence
behavior of MCTS and leads to improved performance empirically on
a challenging application in ride-sharing. In a similar vein, El Shar
and Jiang (2020) use information relaxation bounds to improve the
performance of Q-learning algorithms.

10.6 Other Applications

Information relaxation methods have also been applied to other problems
related to operations management, including vehicle routing
(Goodson et al., 2013; Kullman et al., 2021), network revenue manage-
ment (Brown and Smith, 2014b), queueing (Brown and Haugh, 2017;
Farahani et al., 2020), ambulance dispatch (Marla and Bassamboo,
2020), and repositioning of shipping containers (Lu et al., 2020). Other
more methodologically oriented application areas include control theory
(Desai et al., 2011; Haugh and Lim, 2012), partially observable Markov
decision processes (Haugh and Lacedelli, 2019), and game theory (Haugh
and Wang, 2014b; Kogan and Mitra, 2019).
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Conclusions

In this monograph, we have reviewed the information relaxation ap-
proach for obtaining performance bounds in stochastic DPs, describing
the fundamental ideas underlying the approach and how one can apply
it. We hope that this monograph will be useful to researchers looking to
learn about information relaxation techniques with the goal of advanc-
ing the methodology or applying it to new applications or theoretical
questions of interest.

Looking forward, there are many interesting directions for future re-
search related to information relaxation methods, including the
following:

(i) Methodological challenges remain in applying information relax-
ation techniques in some problems, particularly when the resulting
inner problems have large state spaces. For example, in the dy-
namic assortment examples in Section 7, the inner problems were
linked across products (by the linking constraint (7.1)) and we
used Lagrangian relaxations to relax this constraint and decom-
pose the problem across products. However, if we had rewards
based on choice models that capture substitution effects between
products (e.g., multinomial logit models), the inner problem could
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not be decomposed in this way. However, one could perhaps use the
reformulation techniques described in Rogers (2007) and Brown
and Haugh (2017) to reduce the number of states that need to be
considered in these inner problems. We believe that the design of
reformulations to obtain good bounds is an underexplored research
area.

(ii) The use of information relaxation techniques as a method for
refining “hindsight bounds” in theoretical analysis of algorithms
represents another exciting direction for future research. Balseiro
and Brown (2019) develop some results along these lines and illus-
trate these ideas on three examples. We believe similar techniques
can be applied in many other problems.

(iii) It would be interesting to develop methods that systematically gen-
erate feasible policies from information relaxations. As discussed
in Section 5, we have used information relaxations in applications
to improve feasible policies but typically this process requires
some trial and error. Could this be automated in some way? For
example, can information relaxation methods be used as part of a
“primal-dual” algorithm that progressively updates the policy (or
value function approximation) and penalty? The recent work of
Min et al. (2019), Trivella et al. (2018), and Chen et al. (2020)
provides some ideas along these lines.

(iv) Building upon the previous point, there are a number of interesting
connections to methods in reinforcement learning. The papers
described in Section 10.5 may serve as starting points for further
developments in this area.

Although the list of research areas above focuses on methodological
questions related to the information relaxation approach, we would also
like to continue to see applications of information relaxation techniques
in a wide variety of settings. Such applications will no doubt lead to
further methodological challenges and ideas for future research.
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