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Summary
Prospects in a common basin are likely to share geologic features.
For example, if hydrocarbons are found at one location, they may
be more likely to be found at other nearby locations. When making
drilling decisions, we should be able to exploit this dependence
and use drilling results from one location to make more informed
decisions about other nearby prospects. Moreover, we should con-
sider these informational synergies when evaluating multiprospect
exploration opportunities. In this paper, we describe an approach
for modeling the dependence among prospects and determining an
optimal drilling strategy that takes this information into account.
We demonstrate this approach using an example involving five
prospects. This example demonstrates the value of modeling de-
pendence and the value of learning about individual geologic risk
factors (e.g., from doing a postmortem at a failed well) when
choosing a drilling strategy.

Introduction
When considering a new prospect, it is important to consider its
probability of success. In practice, this assessment is often decom-
posed into success probabilities for a number of underlying geo-
logic factors. For example, one might consider the probabilities
that the hydrocarbons were generated, whether the reservoir rocks
have the appropriate porosity and permeability, and whether the
identified structural trap has an appropriate seal [see, e.g., Magoon
and Dow (1994)]. The overall probability of success is the product
of these individual probabilities. Although these assessments
may be difficult, for a single prospect, this risk analysis process
is straightforward.

When considering multiple prospects in a common basin or
multiple target zones in a single well, in addition to considering the
probability of success for each prospect, we need to consider the
dependence among prospects. For example, if hydrocarbons are
found at one location, they may be much more likely to be found
at another nearby location. Conversely, if hydrocarbons are not
found at the first location, they may be less likely to be found at the
other. When evaluating opportunities with multiple prospects, we
should consider decision processes and workflows that exploit this
dependence and use results from early wells to make more in-
formed decisions about other locations. For example, if a postmor-
tem analysis of core samples from a failed well reveals that there
were no hydrocarbons present, then we may not want to continue
drilling at nearby sites. On the other hand, if the postmortem
analysis reveals that hydrocarbons were present, but the reservoir
lacked a seal, then we may want to continue to explore other
nearby sites. In this paper, we describe an approach for modeling
dependence among prospects and developing a drilling strategy
that exploits the information provided by early drilling results.

A Simple Two-Well Example. We can illustrate this problem by
considering an example involving two wells. To keep things
simple for now, we will assume that the wells simply succeed or
fail and we do not obtain postmortem information in the case of a

failure. We will assume that Well 1 has a 34.9% probability of
being successful and an expected value (net of drilling costs, etc.)
of $60 million US if the well is successful and an expected cost of
$35 million if the well fails. The overall expected value of drilling
this well is 0.349($60)+(1–0.349)(−$35)�−$1.86 million. Thus,
this well would not be attractive in isolation. Well 2 has a 48.9%
probability of success and an expected value of $15 million if
successful, and an expected cost of $20 million if a failure. The
overall expected value of Well 2 is −$2.88 million, so it also would
not be attractive in isolation.*

Now consider the possibility of drilling Well 1, observing its
results, and then deciding whether to drill Well 2; alternatively, we
could reverse the order and drill Well 2 first, observe its results,
and decide whether to drill Well 1. To evaluate these possibilities,
we need to consider what the results from Well 1 tell us about the
likelihood of success at Well 2: e.g., if Well 1 succeeds (or fails),
what is the probability that Well 2 will succeed? To properly
evaluate these possibilities, we need to consider the joint prob-
abilities for the outcomes of both wells. A joint probability distri-
bution for this example is shown in Table 1. The entries in the
table represent the probabilities of a particular combination of
outcomes for the wells. The probabilities shown at the right and
bottom of the table are the “marginal” probabilities of success or
failure for the individual wells; these are equal to the sum of the
row and column entries in the table. These marginal probabilities
for the individual wells must total one, and the joint probabilities
inside the table must also total one.

There are a number of ways to specify this joint distribution.
For example, one might assess the marginal probabilities of suc-
cess for individual wells. As noted earlier, these are 0.349 and
0.489 for Wells 1 and 2, respectively. We can then complete the
rest of the table by specifying one joint or one conditional prob-
ability. Here we will specify a conditional probability: suppose that
if Well 1 is successful, the probability that Well 2 is also successful
is 0.661. Note that our marginal probability that Well 2 is success-
ful is 0.489: thus knowing that Well 1 succeeded leads to higher
probability of success for Well 2. This conditional probability
assessment implies that the probability that both wells are success-
ful is p(Well 2 Succeeds|Well 1 Succeeds)×p(Well 1 Suc-
ceeds)�0.661×0.349�0.231; this appears in the upper left corner
of Table 1. The remaining joint probabilities for this two-well
example can then be determined using the fact that the table entries
must sum to the specified marginal probabilities.

We can then use this probability information in a decision tree
to consider the viability of different sequential drilling strategies;
see Fig. 1. Here the initial decision, represented by the square node
at the left, is whether to drill Well 1 or Well 2 first or to not drill
either well. If we drill Well 1 or 2 first, we then observe whether
it succeeds or fails. This uncertainty is represented by the next
layer of (circular) chance nodes. The probabilities for the outcomes
of the first well are simply the marginal probabilities in Table 1.
These probabilities are shown above the branches corresponding to
the outcomes; the values beneath the branches represent the pay-
offs received when that outcome occurs.

After observing the results of the first well, we then decide
whether to drill the other well. To make this second drilling
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decision, we need to consider the probabilities for Well 2 (or Well
1) success given the results of the first well. These conditional
probabilities may be calculated from Table 1. For example, the
probability that Well 2 is successful, given that Well 1 is success-
ful, is equal to the probability that both are successful (0.231)
divided by the probability that Well 1 is successful (0.349) and is
equal to 0.661. The other conditional probabilities may be calcu-
lated in the same way.

We can determine the optimal drilling strategy by working
backward through the decision tree. For example, suppose we have
drilled Well 1 first and it was successful. The expected value of
drilling Well 2 is then 0.661($15)+0.339(−$20)�$3.14. (These
expected values are shown beneath the chance nodes in the deci-
sion nodes in the tree; the expected values beneath to the decision
nodes represent the expected value of the most attractive alterna-
tive.) Thus, Well 2 is profitable given positive results at Well 1. On
the other hand, if Well 1 fails, we revise the probability of success
at Well 2 down to 0.397 and the expected value of drilling is
−$6.11, and we would decide to quit. Now that we know the action
we would take and the corresponding “continuation value” for
each possible Well 1 outcome, we can calculate the expected value
of drilling Well 1 first as 0.349($60+$3.14)+0.651(−$35+$0)�
−$0.76. A similar calculation yields an expected value of $1.91 for
the strategy of drilling Well 2 first. Thus, the optimal strategy is to
drill Well 2 first and then, if Well 2 is successful, to drill Well 1;
if Well 2 fails, then we should quit. Though neither well is attrac-
tive in isolation, we see that we can exploit the dependence be-
tween the two wells to make the pair of wells attractive.

The General Problem. This simple example illustrates the nature
of the problem we study, but it does not demonstrate its scale or
complexity. In practice, explorationists will frequently consider
plays with more than two prospects and, as indicated earlier, they
will typically decompose the assessment of success probabilities
into several underlying factors. For example, if we consider five
prospects where each well may be either a success or a failure, the
joint probability distribution corresponding to Table 1 will have
five dimensions with 25�32 possible outcomes whose probabili-
ties must be specified. Many of these probabilities will be difficult
to assess. For example, what is the chance that a well at location
5 would be productive, given that Wells 1 and 4 failed and 2 and
3 succeeded? If we have five wells and decompose the individual
risk assessments into three underlying geologic factors each of
which may succeed or fail, the full joint distribution must consider
(2×2×2)5≈33,000 different possible outcomes.

If we did somehow manage to specify a joint probability dis-
tribution over all of the possible outcomes, we then need to build
a decision tree to determine the optimal drilling sequence. The
structure of the tree is straightforward—we decide which well to
drill first, if any; we then observe the results for that well and
decide which well (if any) to drill next and so on, for all possible
well outcomes and possible sequences of wells—but there are
many possible scenarios to consider. For example with five wells,
if we only learn whether a well succeeded or failed, the decision
tree would include a total of 9,496 scenarios. If we consider a more
detailed model that considers the success or failure of three un-
derlying geologic factors, then each well would have 23 different
possible outcomes (all possible combinations of success or failure
on the three individual factors) and, with five wells, the decision
tree would contain approximately 5,000,000 scenarios.

Our goal in this paper is to develop a practical approach for
modeling dependence among prospects and determining an opti-
mal drilling strategy that exploits the information provided by
early drilling results; our interest in this problem stems from a
consulting project the first and third authors did for a large oil and
gas company. To accomplish this goal we must (1) simplify the
assessment of the required joint probabilities, while still capturing
important dependencies, and (2) develop a decision model that can
efficiently solve for the optimal exploration strategy in situations
involving a realistic number of wells. Specifically, we will assume
that the explorationists can provide marginal probabilities of suc-
cess for each well on each factor and pairwise assessments like
those in the two-well example, but cannot provide more complex
assessments involving the outcomes of three or more wells. We
then use techniques from the field of information theory to esti-
mate a complete joint probability distribution that is consistent with
these assessments. Finally, we develop a “dynamic programming”
model that carries out the same calculations as in the decision tree of
Fig. 1, but takes advantage of the fact that different paths through the
tree will lead to exactly the same state of information.

The remainder of the paper is organized as follows. After re-
viewing related literature in the remainder of this section, in the
next section, we introduce an example involving five wells and

Fig. 1—Decision tree for the two-well example.
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three geologic factors that we will use to demonstrate our proposed
approach; although this example is disguised, it captures the es-
sential features of the actual application that motivated this re-
search. In the third section, we describe our technique for con-
structing a joint probability distribution. In the fourth section, we
describe our dynamic programming model for determining an op-
timal drilling strategy. The final section discusses some possible
extensions of this basic model and offers some concluding re-
marks. An Excel spreadsheet that implements the procedures de-
scribed in this paper is available free of charge from the authors.*

Literature Review. The problem of modeling dependence in mul-
tiprospect drilling programs has long been of interest in the petro-
leum engineering literature. For example, Newendorp (1975) ar-
gued that wells in a common basin are typically dependent and
discussed some of the challenges in modeling this dependence.
Megill (1984) described how to calculate the probability of geo-
logic success in a multireservoir prospect when the reservoirs are
either independent or perfectly correlated. Lerche (1992) used
Bayes’ theorem to update the probability of an underlying geologic
success factor (reservoir fracturing) at one prospect within a basin,
given the drilling results at two other prospects.

More recently, Murtha (1996) discussed modeling dependence
among features of a prospect with multiple layers, suggesting that
one assess the full joint distribution. Stabell (2000), Delfiner
(2003), and Keefer (2004) discussed the complexity of this general
approach and described frameworks that distinguish between risks
that are shared (i.e., perfectly correlated across prospects or tar-
gets) and those that are assumed to be independent. Wang et al.
(2000) proposed a simple model that assumes all wells are “ex-
changeable,” meaning the wells all have identical probabilities of
success and the conditional probabilities for later wells depend on
how many wells have succeeded or failed, but not on which wells
succeeded or failed. Although these shared risk or exchangeable
models may be appropriate in certain settings, these models are
fairly restrictive and inappropriate for modeling sequential drilling
decisions in general.

Murtha and Petersen (2001) proposed assessing pairwise cor-
relations and use of the “black box” correlation procedures that
come with commercial Monte Carlo simulation packages to gen-
erate correlated samples. However, as these authors note, in the
binary variable setting that we consider, the correlation procedure
[Iman and Conover (1982)] that is typically used in these Monte
Carlo simulation packages does not actually generate samples that
match the specified correlation coefficients. Moreover, the Monte
Carlo framework is not well suited for determining optimal drilling
strategies. Monte Carlo analyses of multiprospect exploration op-
portunities typically consider some fixed sequence or strategy. For
example, Moore and Mudford (1999) assumed that drilling stops
after three failures; Kokolis et. al. (1999) require the user to
specify “if-then-else” logic to simulate the decisions that would be
made during exploration.

The approach we describe here is based on Bickel and Smith
(2006). The information-theoretic approach we use to construct the

joint probability distribution can be traced to the seminal paper by
Jaynes (1968) and has been used in the decision analysis literature
by Smith (1993) and Abbas (2006), among others. Genrich and
Sommer (1989) used information-theoretic techniques to study the
reduction of uncertainty in reservoir properties within the context
of a waterflooding example. Information-theoretic approaches
have been shown to lead to reasonable distributions in a variety of
contexts and possesses many desirable theoretical properties [see,
e.g., Jaynes (1982) or Cover and Thomas (1991)]. Dynamic pro-
gramming is a standard modeling technique in operations research
dating back to Bellman (1957) and used extensively in “real op-
tions” analysis and in other contexts. Here, we extend Bickel and
Smith (2006) to consider the possibility of learning about the un-
derlying geologic factors; Bickel and Smith consider the success or
failure of a well without considering underlying geologic factors.
Our discussion here is self-contained though the interested reader
will be referred to Bickel and Smith for some more technical
discussions and extensions, as well as a study of the accuracy of
the approach.

A Five-Well Example

Suppose we have obtained a 3D seismic survey and are consider-
ing drilling wells at five locations that are known to have suitable
traps. The probability of success at each location is decomposed
into the assessment of three independent geologic factors: hydro-
carbon charge (C), reservoir rock (R), and seal (S). We will assume
that these three geologic factors are independent, so that the prob-
ability of overall geologic success at Well i is given by the product
of probabilities for these individual factors. Table 2 shows our
assumed probabilities for each location. The expected values of the
well given geologic success or failure are also shown there; these
expected values are in millions of dollars and represent the net
present value (NPV) of a successful or failed well. The intrinsic
values shown in Table 2 are the unconditional expected values for
each prospect: For example, for Well 1, the probability of geologic
success is 0.73×0.81×0.59�0.349 and the intrinsic value is
0.349×($60)+(1-0.349)×(−$35)�−$1.86 million. This intrinsic
value represents the value of the well if it were considered in
isolation of the other wells. In this example, these intrinsic values
are all negative—none of these prospects would be attractive by
itself. (Note that the assumptions for Wells 1 and 2 here match the
assumptions in the simple two-well example considered in the
introduction.)

To model the dependence among these five prospects, we must
specify a joint probability distribution over the 25�32 possible
outcomes for each geologic factor. Though it would likely be
difficult to assess all of these probabilities, it is not too difficult to
assess pairwise conditional probabilities for each factor. For ex-
ample, one might assess the probability of finding a charge at
prospect i given a charge at prospect j for each pair of prospects.
There are a total of 10 such pairs of assessments for each factor.
Table 3 shows a complete set of such assessments for our ex-
ample. Alternatively, one could assess pairwise correlation coef-
ficients and then calculate the required conditional or joint prob-
abilities. The correlation coefficients corresponding to the condi-* The spreadsheet is available at both the first and second authors’ university websites.
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tional probabilities of Table 3 are shown in Table 4.* Generally,
given n prospects, n(n−1)/2 pairwise assessments of correlations or
conditional probabilities will be required. (We will discuss the
possibility of omitting some of these assessments later in
the paper.)

The pairwise conditional probabilities of Table 3 or correlation
coefficients of Table 4, together with the marginal probabilities
given in Table 2, are sufficient to specify the joint probability
distribution for the possible outcomes for any pair of prospects, but
are not sufficient to specify the full joint distribution for all com-
binations of outcomes for all five locations. In the next section, we
describe an approach for constructing a complete joint probability
distribution based on these marginal and pairwise probability as-
sessments. We then describe how to use this joint probability
distribution to determine an optimal drilling strategy.

Constructing a Joint Probability Distribution
We will construct a joint probability distribution by making the
well results as close as possible to independent while respecting
the given marginal and conditional assessments. By choosing a
joint distribution to minimize dependence in this way, we are being
conservative about what we assume about how much information
each well provides about the other prospects. We will measure
how close we are to independence by considering the relative
entropy or Kullback-Leibler (KL) distance between the con-
structed joint distribution and the joint distribution one would ob-
tain if the wells were assumed to be independent. More specifi-
cally, our goal is to construct a joint distribution according to the
following criteria:

• Minimize the KL distance between our distribution and the
independent joint distribution subject to the constraints that the
joint probabilities:

• Sum to one.
• Match the specified marginal probabilities for each well.
• Match the specified pairwise probabilities.
Because we have assumed independence among the geologic

factors, we will construct three separate joint distributions (one for
each factor) using this information-theoretic approach. The full
joint distribution is then given by the product of these three factor-
specific joint distributions.

Method. To describe our approach more formally, we need to
introduce some notation; we will adopt a generic notation that is
applicable to each geologic factor. We let wi be a binary variable
such that wi�1 if Well i succeeds on this factor (e.g., the geologic
feature is present) and wi�0 otherwise. We let w�(w1, . . . ,wn) be
a vector of n binary random variables. For instance, in our five-
well example w�(1,0,0,1,1) would denote a scenario where Wells
1, 4, and 5 succeeded on this factor and Wells 2 and 3 failed. Our
goal in this section will be to construct a joint probability distri-
bution �(w) over the set of all possible values of w.*

We will assume that we are given the n marginal probabilities
pi≡p(wi�1) and the n(n−1)/2 pairwise joint probabilities
pij≡p(wi�1,wj�1). These pairwise joint probabilities can be
calculated from the marginal and conditional probabilities
shown in Tables 2 and 3. For example, the probability of the
charge being present at both locations 1 and 2 is given by

* The correlation between binary random variables A and B is

�AB =
p�A��p�B|A� − p�B��

�p�A��1 − p�A��p�B��1 − p�B��

where p(A) is the probability of success at A and p(B| A) is the probability of success at B
given success at A.

* To streamline our notation, we will not explicitly list the ranges for w in our summations
below: the vector w will range over the 2n possible combinations of outcomes of the
n propsects. Similarly, the marginal probabilities pi and corresponding Lagrange multi-
pliers (introduced later) will range from i=1, . . . , n, i.e., over the prospects. Similarly, the
pairwise joint probabilities pij and corresponding Lagrange multipliers will range over
the n(n−1)/2 unique pairs of prospects, which may be indexed as i=1, . . . , n−1 and
j=i+1, . . . , n.
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p(C2|C1)×p(C1)�0.80×0.73�0.584. We will assume these as-
sessments are consistent in that 0<pi<1 and 0<pij<pi, but make no
other specific assumptions about the specified probabilities.

The KL distance between � and the independent joint prob-
ability distribution �0(w) is formally defined as:

KL��, �0� ≡ �
w

��w� ln� ��w�

�0�w��, . . . . . . . . . . . . . . . . . . . . . . (1)

where:

�0�w� ≡ �
i

�pi�
wi�1 − pi�

1−wi. . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

If the binary events are independent under � (i.e., ���0), we will
have KL(�, �0)�0; otherwise KL(�,�0)>0. [For more on KL and
information theory, see, e.g., Cover and Thomas (1991)].

In the two-well example using the probabilities of Table 1, Eq.
1 becomes:

KL��, �0� = 0.231 ln� 0.231

0.489 × 0.349� + 0.258 ln� 0.258

0.489 × 0.651�
+ 0.118 ln� 0.118

0.511 × 0.349� + 0.393 ln� 0.393

0.511 × 0.651�
= 0.032.

Here the ws range over the cells inside Table 1 and the �(w) are the
table entries. The independent joint distribution �0(w) (appearing
in the denominator above) is given by multiplying the row and
column marginal probabilities for each cell.

Our goal then is to choose a joint distribution � to minimize the
KL distance KL(�,�0) subject to the constraint of matching the
specified marginal and pairwise joint probabilities. To formalize
this optimization problem, we define the following probability
constraint functions:

�0�w� = 1

�i�w� = wi for all i

�ij�w� = wiwj for all i, j.

We let E�[f(w)] denote the expected value of a function f(w) when
w has distribution �. Using this notation, the constraint that that
probabilities must sum to one, for example, is written as
E�[�0(w)]�1 and we can formulate our optimization problem as

min
� �

w

��w� ln� ��w�

�0�w��, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

subject to: E���0�w�� = 1

E���i�w�� = pi for all i

E���ij�w�� = pij for all i,j.

These constraints ensure that the probabilities sum to one, and
match the specified marginal and pairwise probabilities. For in-
stance, with the probabilities in the two-well example, the second
constraint given previously is:

��1, 1� × 1 + ��1, 0� × 1 + ��0, 1� × 0 + ��0, 0� × 0 = p1 = 0.349,

��1, 1� × 1 + ��1, 0� × 1 + ��0, 1� × 1 + ��0, 0� × 0 = p2 = 0.489.

In Table 1, this corresponds to requiring the sum of the probabili-
ties in the “successful” row and column to match the marginal
probabilities shown on the right and bottom, respectively.

Bickel and Smith (2006) show that this optimization problem
leads to a optimal joint probability distribution of the form:

�*�w, �� = �0�w� exp�−1 + �0 + �
i

�i�i�w� + �
i,j

�ij�ij�w��,

. . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

where �0, �i, and �ij denote the “Lagrange multipliers” associated
with the constraints in Eq. 3; we let � denote the vector of these

Lagrange multipliers. These Lagrange multipliers may be found by
solving a simpler optimization problem:

max
�
�−�

w

�*�w, �� + �0 + �
i

�ipi + �
i,j

�ijpij�. . . . . . . . . . (5)

This optimization problem has 1+n+n(n−1)/2 decision variables
(the Lagrange multipliers), has no constraints, is concave in �, and
is straightforward to solve numerically. In our example with n�5
wells, this optimization problem can be solved in one or two
seconds using Solver® in Excel.

The distribution �*(w, �) in Eq. 4 has a nice intuitive structure:
the exponential term in Eq. 4 multiplies, or “boosts,” the indepen-
dent probabilities (�0(w)) based on how the other wells turn out.
Such multiplicative “boosts” to the independent probabilities are
commonly proposed as a simple way to adjust probabilities to take
into success or failure at nearby wells; Murtha (1996) and Delfiner
(2003) discuss some of the problems with simply using a constant
multiplier (e.g., 2 or 1.25) to take into account nearby successes.
Here, our process of calculating the optimal Lagrange multipliers
ensures that the resulting distribution is consistent and avoids
these difficulties.

Letting w−i denote the vector of outcomes for all wells other
than Well i, from Eq. 4 we find that the conditional log-odds for
success at well i can be written as

ln� p�wi = 1|w−i�

1 − p�wi = 1|w−i�
� = ln� pi

1 − pi
� + �i + �

j�i

�ijwj. . . . . . . . (6)

Here, ln(pi /(1−pi)) is the prior log-odds for Well i, i.e., the loga-
rithm of the odds of success when we do not know the outcome of
any other well and ln(p(wi�1|w−i)/(1−p(wi�1|w−i))) are the log-
odds for well i conditional on the outcome of all the other wells.
Eq. 6 shows that learning the outcome of other wells has a linear
effect on these log-odds. The marginal Lagrange multipliers �i

(which are typically negative) describe the adjustment to the prior
log-odds in the scenario that all other wells fail. The joint Lagrange
multipliers �ij describe the increase in the log-odds of success for
Well i because of success at Well j. These joint Lagrange multi-
pliers �ij should be positive if success at one well increases the
probability of success at the others.

To summarize, the workflow associated with our method for
constructing a joint probability distribution is as follows. For
each factor:

(1) Specify marginal probabilities pi describing the probability
of succeeding on this factor at Well i. In the example, these are
shown in Table 2 and repeated in the right margin in Table 3.

(2) Specify pairwise joint probabilities pij describing the prob-
ability of success on this factor at both prospects i and j. These
probabilities can be calculated using the marginal probabilities pi

with either the conditional probabilities (e.g., those shown in Table
3) or the pairwise correlation coefficients (shown in Table 4).

(3) Solve the optimization problem (Eq. 5) to determine the
optimal Lagrange multipliers. For problems of reasonable size (up
to, say, 15 wells), this can be done using standard spreadsheet-
based optimization packages such as Excel’s Solver.

(4) Given these Lagrange multipliers, we have fully specified
the joint probability distribution �*(w, �) of Eq. 4 and can calcu-
late the probability of any combination of outcomes for all pros-
pects w.

We illustrate the results of this procedure in our five-well ex-
ample and then describe how to use these joint probability distri-
butions to determine an optimal drilling sequence. These calcula-
tions are available in the authors’ previously mentioned spreadsheet.

Example Results. Table 5 shows the Lagrange multipliers asso-
ciated with our five-well example. Notice that the pairwise
Lagrange multipliers are all positive. Following Eq. 6, this implies
that the outcomes of all the individual wells are positively related,
meaning success (failure) on a particular geologic factor at one well
increases the probability of success (failure) at the other locations.

356 April 2008 SPE Reservoir Evaluation & Engineering



Table 6 shows an example of a conditional probability calcu-
lation for Well 5 in the scenario in which Wells 1 and 2 succeeded
on rock (R) and seal (S) but failed on charge (C); Well 3 succeeded
on C an R but failed on S, and Well 4 succeeded on all three
factors. Using Eq. 6 and the Lagrange multipliers from Table 5, we
find the posterior odds and probabilities shown on the right side of
Table 6. For example, for Charge shown in the first row of the
table, the posterior log odds that Well 5 succeeds on this factor are
given by Eq. 6 as:

ln� 0.58

1 − 0.58� + −1.98 + 0.48 × 0 + 0.66 × 0 + 0.69 × 1 + 0.95

× 1 = −0.14,

which implies that, given these two negative results and two posi-
tive results at the other wells, the posterior probability that Well 5
succeeds on Charge is 0.47, somewhat lower than the original
(prior) probability of 0.55.

Comparing the initial and final probabilities for the other fac-
tors in Table 6, we see that these well results lead us to revise the
probability of success on Rock and Seal upwards from 0.57 (for
both Rock and Seal) to 0.77 and 0.84, respectively. The overall
probability of geologic success, given as the product of these factor
probabilities, increases from 0.18 to 0.30. Note that in this ex-
ample, the probability of success for Well 5 has increased despite
having failed at three of the four earlier wells! In this case, the
impact of these failures on Well 5’s probability of success is miti-
gated because the wells failed for different reasons and we suc-
ceeded fully on the well (Well 4) with the strongest relationship
with Well 5: for each factor, the Lagrange multiplier �45 is larger
than the other Lagrange multipliers �i5 involving Well 5.

Comparing Tables 4 and 5, we see that pairs of locations that
have larger correlation coefficients tend to have larger Lagrange
multipliers. However, the relationship between correlations and
Lagrange multipliers is not perfect. For example, with Rock, the
correlation between Wells 2 and 4 is 0.66 and between Wells 4 and
5 is 0.54, yet the corresponding Lagrange multipliers are 2.49 and
3.61, respectively. These differences should not be surprising be-
cause the two measures of pairwise dependence are different. In
fact, as shown in Bickel and Smith (2006), it is quite possible to
have positive pairwise correlation coefficients between two wells
and a negative Lagrange multiplier for this pair.

In some cases, one may wish to omit certain pairwise assess-
ments because of lack of time or resources for providing assess-
ments. For example, Murtha and Peterson (2001) suggest desig-
nating a “key prospect” and assessing only the pairwise correlation
coefficients involving this prospect. In their approach, the other
correlations are implicitly chosen by the Monte Carlo simulation
software. We can similarly omit correlations or conditional prob-
ability assessments by dropping the constraints in minimization
problem (Eq. 3). If we omit a pairwise probability constraint, the
optimal distribution (Eq. 4) assigns �ij�0 to these omitted assess-
ments. This implies that the two outcomes are conditionally inde-
pendent given the outcomes of the other wells, but need not (and
in general will not) imply that the pairwise correlation coefficient
�ij is zero. Instead of assuming conditional independence as a
“default,” one might instead use the log-odds interpretation of Eq.
6 to specify default multipliers directly or develop a statistical
model that relates these parameters to the distance between wells
or some other measure of similarity between prospects. Such a
model might be analogous to kriging models that are commonly
used in geostatistics to relate covariances among geologic attrib-
utes at different locations to the distances between locations [see,
e.g., Goovaerts (1997)].

Determining the Optimal Exploration Strategy
Now suppose we have specified a joint probability distribution for
each geologic factor. How do we determine the optimal drilling
strategy? As discussed in the introduction, a standard decision tree
model of the problem would be quite complex, even with moderate
numbers of wells. We can, however, simplify the model by rec-
ognizing that many different early paths lead to the same state of
information and future cash flows. For example, if we have drilled
Wells 1 and 3, and Well 3 was successful but Well 1 failed because
it had no seal, the future probabilities and cash flows are the same
regardless of whether we drilled Well 1 or Well 3 first. In this
section, we will describe a dynamic-programming-based solution
procedure that exploits this recombining structure.
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The logic of the dynamic programming model is exactly the
same as that in the decision tree model of Fig. 1: we determine the
optimal drilling strategy by first considering scenarios where all
but one well has been drilled; these are at the right side of the tree.
To figure out what to do in these scenarios, we need to determine
the probabilities for the outcomes of that well conditioned on the
outcomes of the previous wells. We then work backward through
the tree to determine the optimal actions in earlier states. The
conditional probabilities that describe the probability of moving
from one state to another when drilling a well are referred to as
transition probabilities.

To describe this procedure precisely, we introduce some nota-
tion to denote the possible scenarios or states of information that
may be encountered. We focus on the case with five wells and
three geologic factors, labeling the factors as the x, y, and z factors.
We let the vectors x, y, and z describe the state of each of these
three factors across the 5 wells. Focusing on factor x, x�(x1, . . . ,
xi, . . . , x5) where xi�0, 1 or, “−” depending on whether the first
factor fails (0), succeeds (1) or “−” if the well has not been drilled
and the result has not yet been observed. For example, the initial
state is x�(-, -, -, -, -) when no wells have been drilled. The vector
x�(0, -, 1, -, -) represents the state in which Wells 1 and 3 have
been drilled and the x-factor was present at Well 3 and absent at
Well 1. The state vectors for the other factors are defined in the
same way.

To calculate these transition probabilities, it is helpful to first
define a total probability function. Let �x, �y, and �z denote the
joint probability distribution for the three geologic factors. (These
joint probability distributions may be constructed using the method
from the previous section or another method.) The total probability
�x(x) associated with the vector x is constructed by summing �x(x)
over the possible scenarios for the unknown outcomes. For ex-
ample in the case of five wells, for x�(0, -, 1, -, -),

�x�0, -, 1, -, -� = �
x2,x4,x5

�x�0, x2, 1, x4, x5�, . . . . . . . . . . . . . . . . (7)

where x2, x4, and x5 range over {0,1}; this summation would
involve 23 probabilities. This is the probability that that the first
well would fail and third well succeed on factor x (if both wells are
drilled). The total probability functions �y and �z for the other
factors are defined in the same way.

The transition probabilities required for the dynamic program-
ming model can then be computed from this total probability func-
tion. Suppose that we start in a state where well i has not been
drilled (thus xi, yi, and zi are all equal to “−”). If we drill well i, the
probability that well i succeeds on the x-factor is equal to �x(x

1
i )/

�x(x) where x1
i is identical to x except xi�1. The probability that

Well i fails on factor x is �x(x
0
i )/�x(x) where x0

i is identical to x
except xi�0. This calculation is exactly analogous to the calcula-
tions in the two-well example, where the conditional probabilities
were given as a joint probability divided by a marginal probability.

The dynamic programming model can now be formalized as
follows: Let v(x, y, z) denote the expected NPV of future cash
flows (the continuation value) given that we start in state (x, y, z).
In this value calculation, we include the expected value for a
successful or failed well when the well is drilled, and discount
future cash flows using a discount factor � that corresponds to the
time required to drill a well.

The expected NPVs and optimal strategies are calculated re-
cursively, in the same way as in the decision tree of Fig. 1. If all
of the wells have been drilled (i.e., x, y, and z are all vectors of
zeros and ones), then there are no future cash flows and v(x, y,
z)�0. For earlier states, the expected NPV associated with drill-
ing Well i is given by the expected sum of the reward associated
with Well i and the (discounted) continuation value associated
with starting the next stage in the randomly determined next pe-
riod state:

vi�x, y, z� = �
j=0

1

�
k=0

1

�
l=0

1 ��x�xi
j��y�yi

k��z�zi
l�

�x�x��y�y��z�z�
��ri�j, k, l�

+ �v�xi
j, yi

k, zi
l��, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

where j, k, and l range over {0,1} and denote the outcomes of the
three geologic factors. The �x(x

j
i)/�x(x) term represents the prob-

ability of transitioning from x to state xj
i (similarly for the other

factors) and ri(j, k, l) describes the reward associated with a par-
ticular outcome of that well. In our example, we will take ri(1, 1,
1) to denote the value of a successful well shown in Table 2. For
other (j, k, l), we will take ri(j, k, l) to be the value of a failed well
shown in Table 2. The optimal action in state (x, y, z) is to drill the
well with the largest vi(x, y, z) or, if no well has a positive value,
to not drill at all. The optimal value v(x, y, z) is thus max{vi(x, y,
z), 0} where the maximum is taken over all available wells and not
drilling (0).

To summarize, given joint probability distributions for each
factor (�x, �y, and �z), the workflow for determining an optimal
drilling strategy requires two steps:

(1) Construct the total probability functions for each factor (�x,
�y, and �z) using formulas of the form of Eq. 7.

(2) Determine the optimal values (v(x, y, z)) and optimal strat-
egy using the recursive procedure outlined previously.
In our spreadsheet implementation, the total probabilities are cal-
culated using matrix multiplication and the dynamic programming
recursion is implemented using Visual Basic for Applications
(VBA) in Microsoft Excel. Our five-well example takes approxi-
mately 5 seconds to evaluate on a PC.

Example Results. In our example, we assume a discount rate of
1% per stage, which implies ��1/(1+0.01)≈0.99. This discount
rate would correspond to a rate of approximately 9% per year if the
wells each take 6 weeks to drill.

Fig. 2 shows the initial stages of the optimal drilling strategy
for this example. The expected value of this drilling strategy is
$21.17 MM and we should begin by drilling Well 2. If we drill
Well 2, there is a 48.9% chance that this well will be successful.
If Well 2 is successful, we should then drill Well 3; the value
starting in this state (with Well 2 drilled and successful) would
then be $46.83MM. With the success of Well 2, Well 3 then has
a 66.7% chance of success, compared to the prior probability of
53% (shown in Table 2). If Well 3 succeeds, we should continue
on to Well 4.

The drilling strategies in the unsuccessful cases depend on why
the well failed. If the first well drilled (Well 2) failed because it

Fig. 2—The optimal drilling strategy.
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had no charge, but the drilling results show that the location had
good rock and a good seal, then we should continue by drilling
Well 4 next. If, however, the rock or seal failed at Well 2, we
should stop drilling after this first failed well. The later drilling
decisions similarly depend on the results for the individual geo-
logic factors. As shown in Fig. 2, there are some scenarios where
we should quit after failing on one well, and others where we
should continue to drill a fourth well despite having failed on our
first three wells. In total, this optimal strategy leads to a 46%
chance of drilling four or more wells and a 34% chance of drilling
all five wells.

As discussed before in Eq. 8, the continuation values shown
in Fig. 2 include current and future payoffs, but not past ones. For
example, the continuation value of $46.83MM if Well 2 suc-
ceeds (the top branch of Fig. 2) includes the expected value of
Well 3 and any future wells, but does not include the value of
the successful Well 2. The initial value $21.17MM is given by
Eq. 8 in terms of these continuation values as 0.489×($15+�
$46.83)+0.146×(−$20+�$9.52)+0.365×(−$20+�$0), where $15
and −$20 are the rewards (ri) associated with success and failure,
respectively, at Well 2 and ��1/(1+0.01) is the discount factor. To
determine that it is optimal to drill Well 2 first, we must compare
this value to those given by similar calculations starting with the
other wells.

As is evident in Fig. 2, the drilling strategies that exploit de-
pendence and the information about geologic factors can be quite
complicated. What is the benefit of pursuing such a complicated
strategy? First, recall that all of the wells in this example have
negative intrinsic values and therefore would not be attractive if
considered in isolation. Here, the optimal dynamic strategy that
exploits dependence leads to an expected value of over $21MM.
Thus, by taking advantage of this information, we can make five
prospects that are individually unattractive into an attractive mul-
tiprospect play!

Could we do as well by following some simpler strategy? Al-
though we have not explored all “simple” strategies, the optimal
policy in this example confounds many plausible rules for se-
quencing prospects. For example, it is not optimal to drill the well
with the largest intrinsic value first; that would be Well 4 in this
example. Nor it is optimal to drill the well with the highest prob-
ability of geologic success first (Well 3) or the cheapest first
(Wells 2, 4, and 5 all have the same cost). Nor is it optimal to
follow a rule that calls for quitting after some fixed number of
failed wells: here we sometimes quit after one failure and other
times continue despite having failed three times in three attempts.

Such simple heuristic strategies can capture some of the benefit
of dependence, but perform worse than the optimal strategies. For
example, we might consider a heuristic strategy of drilling the
wells in order of their probability of success (well order: 3-2-1-4-
5) and stopping whenever there have been two failures. If we can
sample from a joint probability distribution that captures the de-
pendence among prospects, we can evaluate such a heuristic strat-
egy using Monte Carlo simulation with “if-then-else” logic for
stopping. With this particular strategy, we would have an expected
NPV of $11.71MM, compared $21.17MM for the optimal strat-
egy. If we used the same drilling order, but instead always stop
after the first or third failure we would have expected NPVs of
$11.35MM or $4.11MM, respectively. Thus, these simple heuristic
strategies can capture some of the potential benefit associated with
dependence among the prospects, but are much less effective than
the optimal strategy given by our dynamic programming approach.

A simpler strategy that is interesting to consider is an optimal
dynamic strategy that considers whether a well succeeds or fails,
but does not consider which geologic factors succeeded or failed.
The recursive structure of the solution in this case is similar to that
of Eq. 8 but simpler: rather than having to consider 95 different
possible well states (each of the five wells could succeed or fail on
three factors or not have been drilled yet, for a total of nine states
per well), in this simpler model, we need only consider 35 states
(each well succeeds or fails or has not been drilled). The difference
in results between these two models highlights the value of post-

mortem analysis learning about the geologic factors and identify-
ing why each well failed.

Applying this simpler dynamic programming model in our ex-
ample, we find the optimal strategy shown in Fig. 3.* Comparing
this strategy to that in Fig. 2, we see that, as before, we begin by
drilling Well 2. However, the value of the optimal strategy is now
$18.32MM, approximately $3MM less than before. Thus, the
value of learning about the underlying geologic factors is worth
approximately $3MM in this example.

The increase in value associated with the more detailed infor-
mation about the geologic factors comes from following a different
drilling strategy. Without the detailed information about the geo-
logic factors, if we succeed on Well 2, we would drill Well 4 next.
If we have more detailed information in this case, it is slightly
better to drill Well 3 next instead (the value is $46.83MM for
drilling well 3 vs. $46.62MM for drilling Well 4). The more sig-
nificant difference is what happens if we fail on Well 2. Without
detailed information about the individual geologic factors, it is
optimal to quit in this scenario. With more detailed information, if
Well 2 fails only because of the lack of a hydrocarbon charge, then
it is optimal to drill Well 4 rather than quit. Intuitively, because the
presence of the hydrocarbon charge was assumed to be less cor-
related between prospects (see Table 4), failing for this reason is
less damning than other causes of failure. There is a 15% chance
of failing for this reason and the difference in expected values
in this scenario ($9.52MM for continuing and $0 for quitting) is
quite significant.

Fig. 4 compares the cumulative probability distributions for the
NPV given by following the optimal strategies with and without
learning about the geologic factors. The probabilities associated
with the good outcomes (on the far right of the cumulative prob-
ability distribution) are quite similar. In these scenarios, the initial
wells succeed and many (or all) of the subsequent wells also suc-
ceed and the detailed information about which factors failed has
relatively little impact. The main differences in the strategies are in
middle and negative ranges of outcomes. Without learning about
the factors, the probability of having a negative NPV is approxi-
mately 70% and the worst possible outcome is a loss of $40MM
which occurs if we succeed on Well 2 and then fail on both Wells
4 and 3. With learning about factors, the probability of a negative
NPV is reduced to approximately 60%, but we could lose a total of
$110MM in the very unlikely (probability≈0.3%) scenario in
which we drill Wells 2, 4, 1, and 3 and fail on all of them. The
larger potential losses associated with following the “factor learn-
ing” strategy are more than offset in expected value terms by
higher probabilities of positive outcomes. In total, without factor
learning, we have an expected NPV of $18.32MM with a standard
deviation of approximately $73MM. With factor learning, we have

* The joint distribution used in this simplified dynamic programming model was calculated
from the joint distribution used in the more complex model that considered individual
factors. The difference in results is thus entirely due to having more or less detailed
information about why the wells failed.

Fig. 3—Optimal strategy without factor learning (partial).
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a higher expected NPV of $21.17MM and a slightly higher stan-
dard deviation of approximately $76MM.*

Although we have focused here on choosing strategies to maxi-
mize the expected NPV, Bickel and Smith discuss an extension of
the dynamic programming model that incorporates risk aversion. If
we use a risk-averse criterion to choose strategies, we might be
somewhat less aggressive and not take the risk of losing these
large amounts.

In this particular example, the more detailed information about
geologic factors leads to more aggressive drilling decisions. In
other cases however, the more detailed information may obtain
higher values by quitting in scenarios where we would have con-
tinued if we did not have more detailed information. For example,
following the optimal strategy without factor learning (in Fig. 3),
if we drill Well 2 first and succeed, we then drill Well 4. We then
continue to drill regardless of how Well 4 turns out: if Well 4
succeeds, it is optimal to drill five, and if Well 4 fails, it is optimal
to drill Well 3. In contrast, with more detailed factor learning, if
Well 2 succeeds and we drill Well 4 next and it fails, the decision
to continue drilling depends on why Well 4 failed. Specifically, if
Well 4 failed on Rock or any two factors, then it is optimal to quit
drilling. Thus, in this scenario, the more detailed information leads
to less aggressive drilling strategies.

Conclusions
The approach we describe for modeling dependence among pros-
pects represents the combination of two different techniques, each
of which could be used independently in other applications. The
models can also be extended or modified in a variety of ways.

The information-theoretic technique we used for constructing a
joint probability from a limited number of assessments could ob-
viously be applied to another set of geologic factors: there is noth-
ing special about the Charge, Rock, and Seal decomposition con-
sidered here. It is also not difficult to extend the approach to
consider more factors or factors that have more than two outcomes.
Although we have focused on the use of this joint probability
distribution to determine optimal drilling strategies by dynamic
programming, one could use this form of distribution in other
models. For example, it could be used in a simulation model that
includes other uncertainties (e.g., production rates and product
prices) and studies the overall financial risks of a multiprospect
opportunity. To accurately capture the total risks in such a setting,
it is important to accurately model the dependence among pros-
pects. As noted earlier, the “black box” correlation routines used in

the standard Monte Carlo packages do not generate appropriately
correlated samples in this setting. Though we have not discussed
the accuracy of our approach for approximating complex distribu-
tions here, Bickel and Smith (2006) provide some preliminary
results along these lines that are quite encouraging.

Just as the probability model could be used independently from
the dynamic programming model, the dynamic programming
model could also be used with joint probability distributions de-
termined using other approaches or with different sets of geologic
factors. The dynamic programming model can also be extended in
several useful directions. For example, though we have focused on
a case where the “rewards” correspond to the success or failure of
individual wells, it is not difficult to incorporate reward functions
that reflect economies of scale or synergies in development or
drilling costs among prospects. Although we have focused on
choosing strategies to maximize the expected NPV, Bickel and
Smith14 describe an extension of the dynamic programming model
that incorporates risk aversion.

Taken together, our information-theoretic approach to con-
structing a joint distribution and our dynamic-programming model
for determining optimal drilling strategies allows us to address a
problem that should be of interest to many explorationists: How
should we incorporate our evolving knowledge of the underlying
geologic factors into our drilling decisions? Moreover, how can we
evaluate multiprospect plays in a way that takes this learning into
account? Our illustrative example demonstrates the benefits of
modeling dependence and considering dynamic strategies that ex-
ploit this dependence. In this example, we can exploit the infor-
mational synergies among prospects to make five individually un-
attractive prospects into an attractive exploration opportunity. In
this and many other cases, modeling and exploiting dependence
among prospects may help firms understand and realize the full
value of a complex exploration program.

Nomenclature
C � hydrocarbon charge (0�failure,

1�success)
E�[f] � expectation of function f using distribution

�
KL(�, �0) � Kullback-Leibler distance between

probability distributions � and �0

n � number of prospects
p(A) � marginal probability of event A

p(A|B) � conditional probability of event A given
event B

ri(j, k, l) � immediate reward if well i is drilled and
with outcomes j, k, l, (0�failure
1�success) on the three geologic factors.

R � appropriate reservoir rock (0�failure,
1�success)

S � appropriate seal (0�failure, 1�success)
v(x, y, z) � expected NPV of future cash flows given

current state of factors is x, y, z, assuming
an optimal drilling strategy is used.

vi(x, y, z) � expected NPV of future cash flows, or the
continuation value, if well i is drilled
given current state of factors is x, y, z

wi � binary variable representing success(�1)/
failure(�0) of geologic factor at location
i

w � vector of n binary factor variables
w−i � vector of factor outcomes omitting

location i
xi, yi, zi � state (0�failure, 1�success,

“−”�unknown) of factor x, y, z at
location i

x, y, z � n-vectors representing state of factors xi,
yi, zi at each location i

* The heuristic strategy discussed earlier, where we drill wells in order of their probability of
success and stops after two failures, has an expected value of $11.71MM and a standard
deviation of approximately $83MM; a lower mean and a higher standard deviation than
both of these optimal strategies. The heuristic strategy where we use this same order but
stop after one failure has a mean of $11.35MM and a standard deviation of approximately
$67MM.

Fig. 4—Comparison of risks with and without factor learning.
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x0
i , y0

i , z0
i � identical to x, y, z except xi�0, yi�0,

zi�0, respectively
x1

i , y1
i , z1

i � identical to x, y, z except xi�1, yi�1,
zi�1, respectively

� � single period discount factor
�0 � Lagrange multiplier for unit probability

constraint
�i � Lagrange multiplier for marginal

probability constraint at location i
�ij � Lagrange multiplier for pairwise

probability constraint for locations i and j
� � vector of Lagrange multipliers

�x(x), �y(y), �z(z) � total probability functions for vectors x, y,
and z

�0 � independent joint probability distribution
� � joint probability distribution

�x, �y, and �z � joint probability distributions for factors x,
y, and z

�* � optimal joint probability distribution
�AB � correlation between A and B
�0 � unit probability constraint function
�i � marginal probability constraint function

for location i
�ij � pairwise probability constraint function

for locations i and j
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