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On Uncertainty in Medical Testing

Robert L. Winkler, PhD, James E. Smith, PhD

There is confusion in the medical decision-making literature
about how to handle uncertainty in medical tests. In this arti-
cle, the authors consider the situation in which there is uncer-
tainty about the pretest probability of a disease in a patient as
well as uncertainty about the sensitivity and specificity of a
diagnostic test for that disease. They discuss how to calculate
posttest probabilities of a disease under such uncertainty and
how to calculate a distribution for a posttest probability. They
show that given certain independence assumptions, uncer-

tainty about these parameters need not complicate the calcu-
lation of patient positive predictive values: One can simply
use the expected values of the parameters in the standard
Bayesian formula for posttest probabilities. The discussion
on how to calculate distributions for positive predictive val-
ues corrects a common and potentially important error. Key
words: predictive value of tests; sensitivity and specificity;
Bayesian analysis; Bayes’ theorem; uncertainty. (Med Decis
Making 2004;24:654-658)

Bayes’ rule is widely recognized as a useful tool for
interpreting clinical test results.1–3 In most appli-

cations, the sensitivity and specificity of the test and
prior (pretest) probability are taken to be fixed parame-
ters. Clinicians and researchers have long worried
about the impact of uncertainty in these parameters
and the effects of this uncertainty on the calculated
posterior probabilities and clinical decision making.
For example, Baron4(p49) argued that “it is unlikely that
great precision in operating characteristics [of a test]
can be achieved” and concluded that because of this
uncertainty in operating characteristics, positive pre-
dictive values (PPVs) may not be useful for individual
patients. Mossman and Berger5 and Zou6 described
methods for calculating confidence intervals for
posttest probabilities, quantifying the uncertainty in
PPVs due to uncertainty about the parameters.

Mossman and Berger motivated their analysis with
an example that considers a hypothetical case of a sta-
tistically sophisticated patient, Mr Smith, asking his
doctor, Dr Jones, to interpret a positive test result for a
condition D:

The published estimates of prevalence, sensitivity and
specificity are subject to random sampling error, so
what I want to know is this: What is the 95% confi-
dence interval for my probability of having D given my
positive test result and the imprecision in the esti-
mates? Knowing whether the interval is narrow or
broad might affect my decisions about getting other
tests or choosing treatment.5(p498–9)

Mossman and Berger noted that these intervals may be
quite wide: In the Smith-Jones example, a 95% confi-
dence interval for the PPV is (0.431, 0.887).

In this article, we consider the calculation of PPVs
and distributions for PPVs when there is uncertainty
about a test’s characteristics or the prevalence of a dis-
ease. First, we show that, given certain independence
assumptions, uncertainty about these parameters does
not really change the way to calculate a PPV for a par-
ticular patient: We can use the standard Bayesian for-
mula for posttest probabilities, replacing the parame-
ters with their expected values. Next, we describe how
to calculate distributions for PPVs that reflect the un-
certainty in parameters, clarifying some confusion
about this in the literature. Our focus is on PPVs, al-
though the same issues and techniques apply with
negative predictive values.

Our interest in this problem was motivated by a par-
ticularly extreme case of uncertainty about a test that
involved Casey Smith, the newborn daughter of one of
the authors. Casey was the first ever to test positive for a
rare enzyme deficiency in an experimental screening
program that had tested some 13,000 newborns; the
result turned out to be a false positive. Our analysis
of that problem focused on uncertainty in the false-
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positive rate and is discussed elsewhere.7,8 Here we
consider the problem with more generality with the
goal of clarifying how one should proceed when there
is uncertainty about a test’s characteristics or the preva-
lence of a disease.

CALCULATING PPVs

Let p represent the prevalence of a disease D in the
relevant population or the prior (pretest) probability
that the patient has D, and suppose that a diagnostic
test yields a positive or negative result about D. Let s
represent the sensitivity or true-positive rate, the prob-
ability of a positive result for a member of the popula-
tion who has D. Let t represent the specificity or true-
negative rate, the probability of a negative result for a
member of the population who does not have D (i.e.,
who has D). Given p, s, and t, the PPV, the posttest prob-
ability that the patient has D if the test result is positive,
is, from Bayes’ rule,
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As Baron4 demonstrated, this posterior probability is a
highly nonlinear function of the parameters, and small
changes in p, s, and t may lead to large changes in PPVs.
For example, Figure 1, adapted from Baron, shows
PPVs as a function of the prior probability p for a vari-
ety of different specificities t, holding the sensitivity s
fixed at 0.95. Here we see that with a small p, small
changes in p or t can lead to large changes in the
posterior probability.

What if we are uncertain about p, s, and t? In a
Bayesian framework, we can describe this uncertainty
by assigning a probability distribution over these pa-
rameters. Sometimes we have data about p, s, and t in
the form of samples from the relevant population that
can be used to determine distributions for p, s, and t. In-
formation about p, s, and t may also come in other
forms. For example, if a patient is suspected of having
coronary heart disease, we might use age and risk fac-
tors together with a logistic regression model (perhaps
one based on the Framingham heart study9) to estimate
the probability p that the patient has the condition. Un-
certainty in p may include that due to residual error in
the logistic regression model and/or uncertainty about
the presence of particular risk factors in the patient. In-
formation about p, s, and t may also come in more sub-
jective forms: Does the patient have a condition that
might predispose him or her toward a positive reading
on the test even if he or she does not have D? Are there

biases in the estimates of the test characteristics be-
cause of selection biases in clinical evaluations of the
test?1,10 Such information can have a significant effect
on the PPV and should be reflected in the prior distri-
butions for p, s, and t, even if it requires subjective
judgment.

If ƒ(p, s, t) denotes the joint density for the parame-
ters, we can find the PPV for a particular patient in sev-
eral different ways. First, using the definition of condi-
tional probability,
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where P(D, +) and P(D, +) may be found by taking the
expected value of ps and (1 – p)(1 – t), integrating out
the uncertainty in p, s, and t:

P(D, +) = ∫∫∫P(D, + |p, s, t)ƒ(p, s, t)dp ds dt
= ∫∫∫psf (p, s, t)dp ds dt

(3)

and

P(D, +) = ∫∫∫P(D, + |p, s, t)ƒ(p, s, t)dp ds dt
= ∫∫∫(1 – p)(1 – t)ƒ(p, s, t)dp ds dt.

(4)

If p is independent of s and t so that the joint distri-
bution ƒ(p, s, t) may be factored as ƒ(p)ƒ(s, t), we can fur-
ther simplify the calculation of the PPV by writing
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Figure 1 Variation in positive predictive values with variation in
prior probability (p) and specificity (t) when sensitivity (s) is 0.95.



Equations 3 and 4 as P(D, +) = E(s)E(p) and P(D, +) = [1 –
E(p)][1 – E(t)], where E(p), E(s), and E(t) denote the ex-
pected values of p, s, and t. In this case, Equation 2
becomes

( ) ( ) ( )
( ) ( ) ( )[ ] ( )[ ]P D

E p E s
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+ =
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.

(5)

Comparing Equations 5 and 1, we see that we have sim-
ply replaced the uncertain parameters (p, s, and t) ap-
pearing in Equation 1 with their expected values. Thus,
the presence of uncertainty in the prevalence or test pa-
rameters does not really complicate the calculation of
patient PPVs.

CALCULATING DISTRIBUTIONS
FOR PPVs

Although the PPV for a particular patient is a single
number that can be calculated using Equation 5, we can
also think of the PPV as an uncertain quantity that re-
flects the uncertainty in p, s, and t. We can construct the
probability distribution for PPVs by generating random
samples of (p, s, t) and calculating q ≡ P(D|+, p, s, t)
from Equation 1 for each sample. We can then average
these sample qs to find the expected q, which would be
the PPV for a particular patient. The full distribution
for PPVs may also be useful for other purposes, such as
constructing confidence intervals or generating ranges
to be used in sensitivity analyses in decision-making
studies.

This simulation procedure has been implemented
in the literature3,5 to construct a distribution for PPVs
and similar distributions by generating random sam-
ples of (p, s, t) from ƒ(p, s, t), effectively using the fol-
lowing formula for the patient PPV:

P(D|+) = ∫∫∫P(D|+, p, s, t)ƒ(p, s, t)dp ds dt. (6)

Several readers of our papers about Casey’s problem7,8

suggested that we should have calculated the expected
PPV this way rather than relying on Equation 5, which
we used without discussion or derivation. However,
this approach for calculating distributions for PPVs is
incorrect because it fails to recognize that the test result
itself provides information about the parameters p, s,
and t. Intuitively, the distributions ƒ(p, s, t|+) and ƒ(p,
s, t) differ because the occurrence of the positive test re-
sult not only tells us about the probability that the pa-
tient has the disease but could also indicate a higher

prevalence and a higher sensitivity (if it is a true posi-
tive) or a lower prevalence and a lower specificity (if it
is a false positive).

A correct way to calculate P(D|+) by integrating out
the uncertainty in p, s, and t in Equation 1 is to
determine

P(D|+) = ∫∫∫P(D|+, p, s, t)ƒ(p, s, t|+)dp ds dt, (7)

with P(D|+, p, s, t) given by Equation 1 and ƒ(p, s, t|+)
given by Bayes’ rule as
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where

P(+|p, s, t) = ps + (1 – p)(1 – t)

is the denominator of Equation 1. These formulas fol-
low directly from the definition of a conditional proba-
bility and do not rely on any independence assump-
tions. To see that Equations 2 and 7 are equivalent, note
that substituting Equation 8 into 7, we have
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Since P(D|+, p, s, t)P(+|p, s, t) = P(D, +|p, s, t), the nu-
merator of Equation 9 corresponds to P(D, +) as speci-
fied by Equation 3. The denominator similarly corre-
sponds to P(+).

We can calculate the distribution for PPVs and eval-
uate Equation 7 using simulation. With many of the
distributions encountered in practice, the simulations
are easier if we represent ƒ(p, s, t|+) as a mixture of the
distributions, ƒ(p, s, t|D, +) and ƒ(p, s, t|D, +), that we
would have if we knew the patient had D or D, respec-
tively. The mixing probabilities are P(D|+) and P(D|+):

ƒ(p, s, t|+) = ƒ(p, s, t|D, +)P(D|+)
+ ƒ(p, s, t|D, +)P(D| +).

(10)

To sample from ƒ(p, s, t|+), we first find P(D|+) from
Equation 2 or 5 and then draw a uniform random num-
ber from [0,1]. If the random number is less than or
equal to P(D|+), we take the positive result to be a true
positive and draw (p, s, t) from f (p, s, t|D, +); otherwise,
we take the positive to be a false positive and draw (p, s,
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t) from ƒ(p, s, t|D, +). Then we find q = P(D|+, p, s, t)
from (p, s, t) via Equation 1 and repeat this process a
large number of times to construct the distribution of q.
Averaging these qs gives P(D|+) via Equation 7.

To illustrate, let us consider the Mr Smith/Dr Jones
example from Mossman and Berger. In their “objective
Bayesian method,” ƒ(p, s, t) is a product of 3 (independ-
ent) beta densities:

ƒ(p, s, t) = ƒβ( p|10.5, 40.5)ƒβ(s|36.5, 4.5)ƒβ(t|36.5, 4.5),

where

ƒβ(x|a, b) ∝ xa–1(1 – x)b–1.

Information about the parameters is assumed to come
from 3 separate samples. The distribution for preva-
lence, ƒβ( p|10.5, 40.5), is based on an initial nonin-
formative prior followed by a sample of 50 patients, 10
of whom are found to have D and 40 who have D. The
prior is proportional to [p(1 – p)]–1/2, which is known as
a Jeffreys’ prior or reference prior.11,12 The evidence
about p can be interpreted as equivalent to having seen
10.5 cases with the disease (D) and 40.5 cases without
the disease (D) in a sample of 51 patients; the 10 and 40
come from the sample, and the additional 0.5 and 0.5
come from the Jeffreys’ prior. Similarly, the distribu-
tions for s and t can be interpreted as the test having
correctly categorized 36.5 of 41 patients having the dis-
ease and 36.5 of 41 patients not having the disease.
With these assumptions, E(p) = 10.5/51, E(s) = 36.5/41,
and E(t) = 36.5/41.

We can then calculate Mr Smith’s probability using
Equation 5:

( ) ( )( )
( )( ) ( )( )

P D + =
+

=
105 51 365 41

105 51 365 41 405 51 45 41
0678

. .

. . . .
. .

Having seen a positive reading but not knowing if
Mr Smith has D, our updated joint probability distribu-
tion for prevalence and test statistics, ƒ(p, s, t|+), is a
mixture of 2 densities, as given by Equation 10:

ƒ(p, s, t|+) =
0.678ƒβ(p|11.5, 40.5)ƒβ(s|37.5, 4.5) ƒβ(t|36.5, 4.5)
+ 0.322 fβ(p|10.5, 41.5) ƒβ(s|36.5, 4.5)ƒβ(t|36.5, 5.5).

(11)

The first term on the right-hand side of Equation 11
considers the possibility that Mr Smith has D and
therefore increases the count for the prevalence (10.5
cases of D becomes 11.5) and the sensitivity (36.5 D
cases correctly identified becomes 37.5). The 2nd term

corresponds to Mr Smith’s not having D, in which case
we increase the counts of patients not having the dis-
ease (from 40.5 to 41.5) and the number of patients
without the disease who have been categorized incor-
rectly (from 4.5 to 5.5). Simulating 250,000 values from
f (p, s, t | +) and finding q for each value from Equation
1 results in the density for q given in Figure 2.

Although the errors due to using ƒ(p, s, t) and the er-
roneous Equation 6 instead of ƒ(p, s, t|+) and Equation
7 to determine the distribution for q and its mean,
P(D|+), are small in this example, the errors can be
much larger in other cases. For instance, Figure 3
shows ƒ(q) based on ƒ(p, s, t) and ƒ(p, s, t|+) when

ƒ(p, s, t) = ƒβ(p|10.5, 990.5)ƒβ(s|20.5. 0.5)ƒβ(t|19.5, 1.5).

The mean for q is 0.13 from ƒ(p, s, t|+) and 0.20 from
ƒ(p, s, t), and the corresponding 95th percentiles are
0.33 and 0.54. In Casey’s problem,7,8 we took p and s to
be certain with p = 1/250,000 and s = 999/1000 and as-
sumed t had a beta distribution ƒβ(t|13999, 1). In this
case, the correct mean for q from ƒ(p, s, t|+) is 0.05,
whereas the incorrect mean for q from ƒ(p, s, t) is 0.14.
Such differences in PPVs could lead to different treat-
ments, and the differences in 95th percentiles should
be very disturbing for those who worry about the
uncertainty in PPVs.

DISCUSSION

Uncertainty in test characteristics or prevalence
may make it harder to determine posttest probabilities
of a disease, but in our view, it does not suggest aban-
doning the Bayesian methodology. Indeed, such uncer-
tainty suggests redoubling our attention to Bayesian
principles, thinking carefully about what we know
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Figure 2 Distribution of positive predictive values (PPVs) for the
Smith-Jones example.



about the disease and the test, and incorporating this
information into our inferences and predictions. Our
analysis of the impact of uncertainty about test charac-
teristics or prevalence is fully Bayesian and demon-
strates that we can generally calculate the PPV for a
particular patient using the standard Bayesian formula
for posttest probabilities, simply replacing the parame-
ters with their expected values. This implies that un-
certainty about the parameters does not really change
the calculation of PPVs. For those interested in how pa-
rameter uncertainty translates into uncertainty about
PPVs, we show how to calculate a distribution for a
posttest probability correctly, thereby clarifying some
confusion about this in the literature. The key insight is
that the newly observed test result itself provides
information about the parameters that must be
incorporated in the distribution of PPVs.

Having been in the shoes of Mossman and Berger’s
“Mr Smith” when Casey was the first to test positive in
an experimental screening program, we confess to hav-
ing worried a great deal about uncertainty about the

test characteristics. In our analysis,6,7 this “worry” took
the form of performing sensitivity analysis to under-
stand how changes in the assumptions about the test af-
fected the PPV and ultimately led us to develop a
Bayesian model of specificity to understand the impli-
cations of 13,000 negative results. Although the only
output of this model used in the PPV calculation was
the expected specificity, considering this uncertainty
and constructing the model gave us more confidence in
our assessment of this key probability and hence in the
calculated result.
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