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A. Proofs

A.1. Proof of Proposition 2.1: Comparing Values and Policies

The proof of the last part of Proposition 2.1 relies on the following lemma.

Lemma A.1. Assume that the quality is almost certainly improving over time. For all k, ck and pk ≥ q2k ≥
q1k, we have

vrk(pk, ck, q
1
k)− vrk(pk, ck, q

2
k) +

1− δk

1− δ
q2k ≤ vsk(pk, ck, q

1
k).

Proof of Lemma A.1. The result is trivially true for k = 0. Assume inductively that this is true for k−1.
Then

vrk(pk, ck, q
1
k)− vrk(pk, ck, q

2
k) +

1− δk

1− δ
q2k

(1) = max

{
pk − ck + δE

[
vrk−1(p̃k−1, c̃k−1, pk) | pk, ck

]
,

q1k + δE
[
vrk−1(p̃k−1, c̃k−1, q

1
k) | pk, ck

]

−max

{
pk − ck + δE

[
vrk−1(p̃k−1, c̃k−1, pk) | pk, ck

]
,

q2k + δE
[
vrk−1(p̃k−1, c̃k−1, q

2
k) | pk, ck

] +
1− δk

1− δ
q2k

(2) = max

{
1−δk

1−δ
pk − ck,

q1k + δE
[

vrk−1(p̃k−1, c̃k−1, q
1
k)− vrk−1(p̃k−1, c̃k−1, pk) +

1−δk−1

1−δ
pk | pk, ck

]

−max

{
1−δk

1−δ
(pk − q2k)− ck,

δE
[

vrk−1(p̃k−1, c̃k−1, q
2
k)− vrk−1(p̃k−1, c̃k−1, pk) +

1−δk−1

1−δ
(pk − q2k) | pk, ck

]

(3) ≤ max

{
1−δk

1−δ
pk − ck,

q1k + δE
[

vrk−1(p̃k−1, c̃k−1, q
1
k)− vrk−1(p̃k−1, c̃k−1, pk) +

1−δk−1

1−δ
pk | pk, ck

]

(4) ≤ max

{
1−δk

1−δ
pk − ck,

q1k + δE
[
vsk−1(p̃k−1, c̃k−1, q

1
k) | pk, ck

]

(5) = vsk(pk, ck, q
1
k)

Equality (1) uses the definition of vrk. Equality (2) follows from adding δ 1−δk−1

1−δ
pk−δE[vrk(p̃k−1, c̃k−1, pk)|pk, ck]

to both maxima in (1) (this cancels, since the maxima have opposite signs) and rearranging. Since q2k ≤ pk,
by Proposition 2.2(3), the second (subtracted) maximum in (2) is nonnegative; this term is dropped to give
inequality (3). We then use the induction hypothesis to yield inequality (4). Equality (5) follows from the
definition of vsk.

We now present the proof of Proposition 2.1.

Proof of Proposition 2.1. 1. In the repeat-purchase model the consumer could always adopt once (as
in the single-purchase model) but may also choose to adopt new versions of the technology later if
this leads to a larger expected value. Similarly, in both the single- and repeat-purchase models, the
consumer could adopt the technology now and hold it for all remaining periods if that is optimal.

2. Here we give a proof for the repeat-purchase model, assuming ck ≥ 0. We will show that the value
from adoption is less than the value from waiting if the technology is not cost effective. Suppose the
technology in the market is not cost effective and pk ≤ qk. Because the optimal value function is
increasing in the quality of the technology owned both the rewards (since ck ≥ 0) and the continuation
value from waiting is higher than that of adoption.

Now suppose that the technology in the market is not cost effective but pk ≥ qk.

value from adoption = pk − ck + δE
[
vrk−1(p̃k−1, c̃k−1, pk)|pk, ck

]
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=
1− δk

1− δ
pk − ck + δE

[

vrk−1(p̃k−1, c̃k−1, pk)−
1− δk−1

1− δ
pk|pk, ck

]

≤
1− δk

1− δ
qk + δE

[

vrk−1(p̃k−1, c̃k−1, pk)−
1− δk−1

1− δ
pk|pk, ck

]

≤
1− δk

1− δ
qk + δE

[

vrk−1(p̃k−1, c̃k−1, qk)−
1− δk−1

1− δ
qk|pk, ck

]

= qk + δE
[
vrk−1(p̃k−1, c̃k−1, qk)|pk, ck

]

= value from waiting

The first inequality follows because the technology in the market is not cost effective; the second

inequality follows because pk ≥ qk and vk(pk, ck, qk)−
1−δk

1−δ
qk is decreasing in qk, as shown in Proposition

2.2(3).

3. pk − ck ≥ qk implies that pk ≥ qk if ck ≥ 0. Then, the value from adoption is higher than the value
from waiting because both the rewards and continuation values are higher (this follows because the
optimal value function is increasing in the quality of the technology owned).

4. To show our final result, it is sufficient to show that the value from adoption minus the value from
waiting is higher in the repeat-purchase model than in the single-purchase model. This implies that if it
is optimal to adopt in the single-purchase model, then it is also optimal to adopt in the repeat-purchase
model. We can write this as follows:

pk − ck − qk + δE
[
vrk−1(p̃k−1, c̃k−1, pk)− vrk−1(p̃k−1, c̃k−1, qk)|pk, ck

]

≥
1− δk

1− δ
pk − ck − qk − δE

[
vsk−1(p̃k−1, c̃k−1, qk)|pk, ck

]

This is equivalent to proving

E
[
vrk−1(p̃k−1, c̃k−1, qk)− vrk−1(p̃k−1, c̃k−1, pk)| pk, ck

]
+

1− δk−1

1− δ
pk ≤ E

[
vsk−1(p̃k−1, c̃k−1, qk) | pk, ck

]
.

With the assumption that the quality pk is almost certainly improving over time, this result follows
from Lemma A.1. With non-decreasing qualities, we need only consider cases where pk ≥ qk, since the
consumer cannot own a technology better than the current one on the market.

A.2. Proof of Proposition 2.2: Impact of Changing the Quality of the Technology Owned

Proof. 1. This result holds trivially for k = 0. Assume that it holds when there are k − 1 periods to
go. The value from waiting is increasing in qk because both the rewards and the continuation value is
increasing (this follows from the induction hypothesis and because the transitions do not depend on
qk); the value from adoption does not depend on qk, then, the optimal value functions are increasing
in qk because they are the maximum of increasing functions.

2. Proving the monotonicity of optimal policies is similar in all models. The value from adoption does not
depend on qk; any improvement in qk will only increase the value from waiting. Then, if it is optimal
to wait when the technology owned has quality q1k, it is also optimal to wait when the technology
currently owned has quality q2k ≥ q1k keeping everything else the same.

3. Here we give the proof for the repeat-purchase model, the proofs for the other models are similar. The

property holds trivially for k = 0. Assume that vrk−1(pk−1, ck−1, qk−1) −
1−δk−1

1−δ
qk−1 is decreasing in

qk−1. Then,

vrk(pk, ck, qk)−
1− δk

1− δ
qk = max

{

pk − ck −
1−δk

1−δ
qk + δE

[
vrk−1(p̃k−1, c̃k−1, pk)|pk, ck

]
,

δE
[

vrk−1(p̃k−1, c̃k−1, qk)−
1−δk−1

1−δ
qk|pk, ck

]
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The first argument inside the maximization statement is decreasing because the rewards are decreasing
in qk and the continuation value does not depend on qk. The second argument is also decreasing; this
follows from the induction hypothesis and the fact that the transitions do not depend on qk. Then,

vrk(pk, ck, qk)−
1−δk

1−δ
qk is decreasing in qk, because it is the maximum of decreasing functions.

A.3. Proof of Proposition 3.3: Equivalent Conditions for CI-Dominance

Proof. See Theorem 1 in ?. To relate our result, to the more general one in ?, we note that the CI partial
order is closed. In their result, equivalent condition (4) asserts the existence of (π̃2

k, ς̃
2
k) and (π̃1

k, ς̃
1
k) that are

equal in distribution to (p̃2k, c̃
2
k) and (p̃1k, c̃

1
k) and such that (π̃2

k, ς̃
2
k) ≥CI (π̃1

k, ς̃
1
k) almost surely. Given the

translation invariance of the CI-order, this is equivalent to condition (4) as stated in our proposition.

A.4. Proof that Additive Transitions Exhibit Diminishing Improvements

Proof. We show that the additive transitions of equation (1) exhibit diminishing improvements. Using
equation (1) and some algebra, we have

δE

[
1− δk−1

1− δ
p̃k−1 − c̃k−1|p

2
k, c

2
k

]

−

(
1− δk

1− δ
p2k − c2k

)

=

(

δ
1− δk−1

1− δ
−

1− δk

1− δ

)

p2k + (1− δ)c2k + δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

= −(1− δ)(
1

1 − δ
p2k − c2k) + δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

≤ −(1− δ)(
1

1 − δ
p1k − c1k) + δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

= δE

[
1− δk−1

1− δ
p̃k−1 − c̃k−1|p

1
k, c

1
k

]

−

(
1− δk

1− δ
p1k − c1k

)

.

The inequality follows because ( 1
1−δ

pk − ck) is CI-increasing

A.5. Proof of Simplified Representation with Additive Transitions.

Proof. We must show that equation (5) holds if transitions satisfy the additive model (1). The proof is by
induction. For k = 0, the proof is trivial. For the induction hypothesis, assume vrk−1(pk−1, ck−1, qk−1) =
1−δk−1

1−δ
qk−1 + hr

k−1(pk−1 − qk−1, ck−1). Then,

vrk(pk, ck, qk) = max

{
pk − ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]
,

qk + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, qk)

]

=
1− δk

1− δ
qk +max







1−δk

1−δ
(pk − qk)− ck + δE

[

vrk−1(pk + ũp
k−1, ck + ũc

k−1, pk)−
1−δk−1

1−δ
pk

]

,

δE
[

vrk−1(pk + ũp
k−1, ck + ũc

k−1, qk)−
1−δk−1

1−δ
qk

]

=
1− δk

1− δ
qk +max

{
1−δk

1−δ
(pk − qk)− ck + δE

[
hr
k−1(pk + ũp

k−1 − pk, ck + ũc
k−1)

]
,

δE
[
hr
k−1(pk − qk + ũp

k−1, ck + ũc
k−1)

]

=
1− δk

1− δ
qk + hr

k(pk − qk, ck)

where the third equality follows from the induction hypothesis.

A.6. Proof of Proposition 3.7: Independent Additive Increments: Repeat-Purchase Model

Proof of Proposition 3.7(1). Note that hr
k(∆k, ck) = vrk(∆k, ck, 0). Then, because additive transitions

are CI-increasing, the result follows from Proposition 3.4.

Our proof of part (2) of Proposition 3.7 relies on the following lemma.
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Lemma A.2. If transitions satisfy the additive model (1), then hr
k(∆k, ck)−

1−δk

1−δ
∆k is decreasing in ∆k

Proof of Lemma A.2. The property holds trivially for k = 0. Assume that hr
k−1(∆k−1, ck−1)−

1−δk−1

1−δ
∆k−1

is decreasing in ∆k−1. We then have:

hr
k(∆k, ck)−

1− δk

1− δ
∆k

= max

{
1−δk

1−δ
∆k − ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)
]

δE
[
hr
k−1(∆k + ũp

k−1, ck + ũc
k−1)

] −
1− δk

1− δ
∆k

= max

{
−ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)
]

−∆k + δ 1−δk−1

1−δ
E
[
ũp
k−1

]
+ δE

[

hr
k−1(∆k + ũp

k−1, ck + ũc
k−1)−

1−δk−1

1−δ
(∆k + ũp

k−1)
] .

The first expression inside the maximization statement does not depend on ∆k. The second term in the
maximization statement is decreasing in ∆k: the reward term is decreasing in ∆k and the expectation is
decreasing in ∆k by the induction hypothesis (the induction hypothesis holds for each realization of ũp

k−1

and ũc
k−1, then, it must also hold in expectation). Thus, both terms of the maximum are decreasing in ∆k

and hr
k(∆k, ck)−

1−δk

1−δ
∆k is decreasing in ∆k.

Proof of Proposition 3.7(2). Let gk(∆k, ck) be the difference between the value from adopting and the
value from waiting, i.e.,

gk(∆k, ck) =
1− δk

1− δ
∆k − ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)− hr
k−1(∆k + ũp

k−1, ck + ũc
k−1)

]
. (1)

After rearranging, we have

gk(∆k, ck) = ∆k − ck + δE

[

hr
k−1(ũ

p
k−1, ck + ũc

k−1)−

(

hr
k−1(∆k + ũp

k−1, ck + ũc
k−1)−

1− δk−1

1− δ
∆k

)]

.

By Lemma A.2, hr
k−1(∆k +up

k−1, ck +uc
k−1)−

1−δk−1

1−δ
∆k is decreasing in ∆k for each realization of up

k−1 and
uc
k−1. Taking expectations over this, we find that gk(∆k, ck) is increasing in ∆k.
If it is optimal to adopt with lag ∆1

k, then gk(∆
1
k, ck) ≥ 0. Because gk is increasing in ∆k, we have

gk(∆
2
k, ck) ≥ gk(∆

1
k, ck) ≥ 0 for ∆2

k ≥ ∆1
k. This implies that it is also optimal to adopt for any lag

∆2
k ≥ ∆1

k.

The proof of part (3) of Proposition 3.7 relies on the following lemma, in addition to Lemma 3.8 which
is given in the body of the paper and proven after the proof of the proposition.

Lemma A.3. Suppose that the quality of the technology is non-decreasing over time (ũp
k−1 ≥ 0 almost

certainly) and that transitions satisfy the additive model (1). Let (∆2
k, c

2
k) ≥CI (∆1

k, c
1
k) and c2k ≤ c1k (that

is, for changes in regions I or III of Figure 3). Then, for u ≥ 0, we have

1− δk

1− δ
∆1

k − c1k + hr
k(u, c

1
k)− hr

k(∆
1
k + u, c1k) ≤

1− δk

1− δ
∆2

k − c2k + hr
k(u, c

2
k)− hr

k(∆
2
k + u, c2k) (2)

Proof of Lemma A.3. The proof is by induction. The property holds trivially for k = 0. Assume that
(2) holds for period k-1. Then,

1− δk

1− δ
∆k − ck + hr

k(u, ck)− hr
k(∆k + u, ck) (3)
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= max

{
1−δk

1−δ
(∆k + u)− 2ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)
]

1−δk

1−δ
∆k − ck + δE

[
hr
k−1(u+ ũp

k−1, ck + ũc
k−1)

]

−max







1−δk

1−δ
(∆k + u)− ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)
]

δE
[
hr
k−1(u+ ũp

k−1, ck + ũc
k−1)

]

Subtracting 1−δk

1−δ
(∆k + u)− ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)
]
from all terms in the maxima (the subtraction

cancels in net), this is equal to:

= max

{

−ck

− 1−δk

1−δ
u+ δE

[
hr
k−1(u+ ũp

k−1, ck + ũc
k−1)− hr

k−1(ũ
p
k−1, ck + ũc

k−1)
] (4)

−max

{
0

−
(
1−δk

1−δ
(∆k + u)− ck

)

+ δE
[
hr
k−1(u+ ũp

k−1, ck + ũc
k−1)− hr

k−1(ũ
p
k−1, ck + ũc

k−1)
]

Note that both terms of the first maximum are independent of ∆k and both are decreasing in ck; the second
term is decreasing in ck because of Lemma 3.8(1) (recall that u ≥ 0). Now consider the second term in the
second (subtracted) maximum. We can rewrite this as

−

(
1− δk

1− δ
(∆k + u)− ck

)

+ δE
[
hr
k−1(u+ ũp

k−1, ck + ũc
k−1) − hr

k−1(ũ
p
k−1, ck + ũc

k−1)
]

= −(1− δ)

(
1

1− δ
(∆k + u)− ck

)

− δE

[
1− δk−1

1− δ
(∆k + u)− ck + hr

k−1(ũ
p
k−1, ck + ũc

k−1)− hr
k−1(u+ ũp

k−1, ck + ũc
k−1)

]

Now note the reward here is CI-decreasing in (∆k, ck) and, by the induction hypothesis, the continuation
value is decreasing for changes in regions I or III. Thus the first maximum in (4) is increasing for changes
in regions I or III and the second subtracted maximum in (4) is decreasing for such changes. Thus (4) and
hence (3) is increasing for changes in regions I or III.

Note that Lemma 3.8 can be stated in terms of hr
k rather than vrk as follows. Let ∆1

k ≥ ∆2
k. Then

(1) hr
k(∆

2
k, ck)− hr

k(∆
1
k, ck) is increasing in ck; and

(2) hr
k(∆

2
k, ck)− hr

k(∆
1
k, ck)− ck is decreasing in ck.

hr
k and vk differ by a term that involves qk but not ck; see equation (5). Thus the two forms are equivalent.

We will use the form involving hr
k in the proof below.

Proof of Proposition 3.7(3). We prove this result by considering changes in regions I, II and III of
Figure 3 separately.

First, consider changes in region I, with increases in ∆k and decreases in ck. In part (2) of Proposition 3.7,
we showed that the policies are increasing in ∆k for fixed ck. We now show that with the additional
assumption of non-decreasing quality, the policies are also decreasing in ck for fixed pk. Let gk(∆k, ck) be
the difference between buying and waiting as defined in (1). We can rewrite this as

gk(∆k, ck) =
1− δk

1− δ
∆k − (1 − δ)ck + δE

[
hr
k−1(ũ

p
k−1, ck + ũc

k−1)− hr
k−1(∆k + ũp

k−1, ck + ũc
k−1)− ck

]
.

This is decreasing in ck because, for each realization of ũp
k−1 and ũc

k−1, the expression inside the expectation
is decreasing in ck by Property (2) of Lemma 3.8. Thus gk(∆k, ck) is decreasing in ck for fixed pk as well
as increasing pk for fixed ck. Thus if, it is optimal to adopt at (∆1

k, c
1
k) (i.e., gk(∆

1
k, c

1
k) ≥ 0), then it is also

optimal to adopt at (∆2
k, c

2
k) (i.e., gk(∆

2
k, c

2
k) ≥ 0) when (∆2

k, c
2
k) ≥CI (∆1

k, c
1
k), ∆

2
k ≥ ∆1

k and c2k ≤ c1k, i.e.,
for changes in region I.
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Now consider changes in region II, i.e., (∆2
k, c

2
k) ≥CI (∆1

k, c
1
k) and c2k ≥ c1k. Let gk(∆k, ck) be the difference

between buying and waiting as defined in (1).

gk(∆
2
k, c

2
k) =

1− δk

1− δ
∆2

k − c2k + δE
[
hr
k−1(ũ

p
k−1, c

2
k + ũc

k−1)− hr
k−1(∆

2
k + ũp

k−1, c
2
k + ũc

k−1)
]

≥
1− δk

1− δ
∆2

k − c2k + δE
[
hr
k−1(ũ

p
k−1, c

1
k + ũc

k−1)− hr
k−1(∆

2
k + ũp

k−1, c
1
k + ũc

k−1)
]

= ∆2
k − c2k + δE

[

hr
k−1(ũ

p
k−1, c

1
k + ũc

k−1)−

(

hr
k−1(∆

2
k + ũp

k−1, c
1
k + ũc

k−1) +
1− δk−1

1− δ
∆2

k

)]

≥ ∆1
k − c1k + δE

[

hr
k−1(ũ

p
k−1, c

1
k + ũc

k−1)−

(

hr
k−1(∆

2
k + ũp

k−1, c
1
k + ũc

k−1) +
1− δk−1

1− δ
∆2

k

)]

≥ ∆1
k − c1k + δE

[

hr
k−1(ũ

p
k−1, c

1
k + ũc

k−1)−

(

hr
k−1(∆

1
k + ũp

k−1, c
1
k + ũc

k−1) +
1− δk−1

1− δ
∆1

k

)]

= gk(∆
1
k, c

1
k)

The first inequality follows from property (1) of Lemma 3.8, using the fact that c2k ≥ c1k for changes in region
II. The second inequality follows from the fact that (∆2

k, c
2
k) ≥CI (∆1

k, c
1
k), for changes in region II. The third

inequality follows from Lemma A.2, using ∆2
k ≥ ∆1

k for changes in region II. Thus if, it is optimal to adopt
at (∆1

k, c
1
k) (i.e., gk(∆

1
k, c

1
k) ≥ 0), then it is also optimal to adopt at (∆2

k, c
2
k) (i.e., gk(∆

2
k, c

2
k) ≥ 0).

In region III, suppose (∆2
k, c

2
k) ≥CI (∆1

k, c
1
k) and c2k ≤ c1k.

1 We then have the following

gk(∆
2
k, c

2
k)

=
1− δk

1− δ
∆2

k − c2k + δE
[
hr
k−1(ũ

p
k−1, c

2
k + ũc

k−1)− hr
k−1(∆

2
k + ũp

k−1, c
2
k + ũc

k−1)
]

= (1− δ)(
1

1 − δ
∆2

k − c2k) + δE

[

hr
k−1(ũ

p
k−1, c

2
k + ũc

k−1)− hr
k−1(∆

2
k + ũp

k−1, c
2
k + ũc

k−1)−
1− δk−1

1− δ
∆2

k − c2k

]

≥ (1− δ)(
1

1 − δ
∆1

k − c1k) + δE

[

hr
k−1(ũ

p
k−1, c

2
k + ũc

k−1)− hr
k−1(∆

2
k + ũp

k−1, c
2
k + ũc

k−1)−
1− δk−1

1− δ
∆2

k − c2k

]

≥ (1− δ)(
1

1 − δ
∆1

k − c1k) + δE

[

hr
k−1(ũ

p
k−1, c

1
k + ũc

k−1)− hr
k−1(∆

1
k + ũp

k−1, c
1
k + ũc

k−1)−
1− δk−1

1− δ
∆1

k − c1k

]

= gk(∆
1
k, c

1
k)

The first inequality follows from the assumption that (∆2
k, c

2
k) ≥CI (∆1

k, c
1
k) and the second inequality from

Lemma A.3. Thus if, it is optimal to adopt at (∆1
k, c

1
k) (i.e., gk(∆

1
k, c

1
k) ≥ 0), then it is also optimal to adopt

at (∆2
k, c

2
k) (i.e., gk(∆

2
k, c

2
k) ≥ 0).

A.7. Proof of Proposition 3.8: Impact of Changing Costs

Proof of Lemma 3.8. We will work with vk when establishing this result. We prove Lemma 3.8 using a
joint induction argument on properties (1) and (2) of the lemma. Both properties hold trivially when k = 0.
Assume that both properties (1) and (2) hold when there are k − 1 periods to go. We first show that this
implies property (1) holds for period k. By definition, we have

vrk(pk, ck, q
2
k)− vrk(pk, ck, q

1
k) = max

{
pk − ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

q2k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)
]

−max

{
pk − ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]

q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]

1Note that this proof works for regions II and III, though the result for region II can be established much more easily.
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If we subtract q1k+δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]
from each maximization statement the difference does

not change and is equal to

= max







x(ck)
︷ ︸︸ ︷

pk − ck − q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]

q2k − q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]

︸ ︷︷ ︸

y(ck)

−max







x(ck)
︷ ︸︸ ︷

pk − ck − q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]

0

This difference is of the form max{x(ck), y(ck)} −max{x(ck), 0} where x(ck) and y(ck) have the following
three conditions:

(i) y(ck) ≥ 0,

(ii) x(ck) is decreasing in ck, and

(iii) y(ck) is increasing in ck.

We show these conditions in a moment. Now depending on which terms take on the maxima,

max{x(ck), y2(ck)} −max{x(ck), 0} =







0 if x(ck) ≥ y(ck) and x(ck) ≥ 0,
y(ck)− x(ck) if x(ck) ≤ y(ck) and x(ck) ≥ 0,
y(ck) if x(ck) ≤ y(ck) and x(ck) ≤ 0.

It is not possible to have max{x(ck), y2(ck)} −max{x(ck), 0} = x(ck) since y(ck) ≥ 0. In light of conditions
(ii) and (iii), in each of the possible cases above, max{x(ck), y2(ck)} − max{x(ck), 0} is increasing in ck,
which implies that Property (1) of Lemma 3.8 holds.

Now we show that conditions (i)-(iii) hold. Condition (i) above follows because q2k ≥ q1k and vrk−1(pk−1, ck−1, qk−1)
is increasing in qk−1. To establish condition (ii), we rewrite x(ck) as

x(ck) = pk − (1 − δ)ck − q1k + δE
[
ũc
k−1

]

+ δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)− (ck + ũc

k−1)
]

Note that the reward term here is decreasing in ck. Also note that, for each ũp
k−1 and ũc

k−1, the term inside
the expectation is decreasing in ck + ũc

k−1 by the induction hypothesis for Property (2) of Lemma 3.8. Thus
the expectations are decreasing in ck. (To apply the induction hypothesis here we use the fact that the
technology is almost certainly improving over time to ensure that pk ≥ q1k.) Thus x(ck) is decreasing in ck.

To establish condition (iii), recall

y(ck) = q2k − q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]
.

Note that, for each ũp
k−1 and ũc

k−1, the term inside the expectation is increasing in ck+ ũc
k−1 by the induction

hypothesis for Property (1) of Lemma 3.8. (Here we use the assumption that q2k ≥ q1k to apply the induction
hypothesis.) Thus the expectation and hence y(ck) is increasing in ck. This completes the proof of Property
(1) of Lemma 3.8.

We next prove Property (2) of Lemma 3.8. Consider

vrk(pk, ck, q
2
k)− vrk(pk, ck, q

1
k)− ck

= max

{
pk − 2ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

q2k − ck + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)
]

−max

{
pk − ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

q1k + δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)
]
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If we subtract pk− ck+ δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]
from each maximization statement the difference

does not change and is equal to

vrk(pk, ck, q
2
k)− vrk(pk, ck, q

1
k)− ck

= max

{
−ck
q2k − pk + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

−max

{
0
q1k − pk + ck + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

= max

{
−ck
q2k − pk + δE

[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

2
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk)

]

−max







0
q1k − pk + (1− δ)ck − δE

[
ũc
k−1

]

+δE
[
vrk−1(pk + ũp

k−1, ck + ũc
k−1, q

1
k)− vrk−1(pk + ũp

k−1, ck + ũc
k−1, pk) + ck + ũc

k−1

]

The first maximization statement is decreasing in ck using the induction hypothesis on Property (1); note that
we use pk ≥ q2k because the technology is almost certainly improving. The second maximization statement is
increasing in ck using the induction hypothesis on Property (2); here we again use the assumption that the
technology is almost certainly improving to conclude that pk ≥ q1k. Then, the difference above is decreasing
in ck.

A.8. Alternative Partial Orders

Though we have focused on improvements defined in terms of the CI-order, we can establish similar mono-
tonicity results using other partial orders on the technologies instead. These alternative orders may allow
us to use essentially the same arguments as above, but with transitions that are not CI-increasing or do not
exhibit CI-diminishing returns. To use these arguments, the alternative partial order < must be “stronger”
than the CI-order in that (p2k, c

2
k) < (p1k, c

1
k) implies (p2k, c

2
k) ≥CI (p1k, c

1
k): this ensures that the rewards

associated with adoption will be <-increasing in all three models. We can then define increasing functions,
increasing transitions, and diminishing improvements as in Definitions 3.2 and 3.5 using the <-order in
place of the CI-order. Then using the same proofs that we use with the CI-order in Proposition 3.4, we
can then show that <-increasing transitions lead to <-increasing value functions in all three models. Simi-
larly, if we have <-increasing transitions that exhibit <-diminishing improvements, we can use the proof of
Proposition 3.6 to show that the optimal policies in the single-purchase model are <-increasing.

For example, consider a generalized additive model of transitions of the form

p̃k−1 = βppk + ũp
k−1

c̃k−1 = βcck + ũc
k−1

(5)

where ũp
k−1 and ũc

k−1 may be correlated but are independent of pk and ck; we will assume that βp, βc ≥ 0. If
βp = βc = 1, the technology transitions are of the additive form of equation (1). In a model of the form of (5),
the expected increment in quality is E[p̃k−1]−pk = (βp−1)pk+ E

[
ũp
k−1

]
, so a coefficient βp < 1 corresponds

to a case where the expected improvements in quality are linearly decreasing in the quality level pk. This
might be a reasonable model if improvements in quality make it harder to find further improvements. Also
note that if βp < 1, the quality levels will converge over time and the initial quality level pk has little influence
on the quality level in the distant future. The cost equation has a similar interpretation.

The transitions of the generalized additive form of (5) will be CI-increasing if βp = βc and will exhibit
CI-diminishing improvements if βp = βc and βp, βc ≤ 1. However the generalized additive transitions will not
be CI-increasing or exhibit CI-diminishing improvements if βp 6= βc. We can however establish monotonicity
properties for other coefficients in equation (5) and other forms of transitions by using the same arguments
as before, but with a different partial order on technologies. Specifically, given a generalized additive model
of the form of equation (5) and its coefficients βp and βc, we can define a partial order <(βp,βc) such that
(p2k, c

2
k) <(βp,βc) (p

1
k, c

1
k) if

γkp
1
k − c1k ≤ γkp

2
k − c2k, (6)
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p
k

ck

<-Better

<-Worse

I II

III (p1k, c
1
k)

γ
′

k
p k

−
c k

=
γ
′

k
p
1 k
−
c
1 k

pk
−
ck
=
p
1
k
−
c
1
k

1
1−δ

pk − ck =
1

1−δ
p1k −

c1k

(a) βc > βp, γ
′

k
=

(

βp

βc

)k−1

p
k

ck

<-Better

<-Worse

I II

III
(p1k, c

1
k)

pk
−
ck
=
p
1
k
−
c
1
k

γ′′kpk
− ck = γ′′kp

1
k
− c1k

1
1−δ

pk − ck =
1

1−δ
p1k −

c1k

(b) βc < βp, γ
′′

k
=

(

βp

βc

)k−1
1

1−δ

Figure 1: (pk, ck) that are better or worse than (p1k, c
1
k) under the <(βp,βc)-order.

for all γk such that

min

{

1,

(
βp

βc

)k−1
}

≤ γk ≤ max

{

1,

(
βp

βc

)k−1
}

1

1− δ
. (7)

If βc = βp, this order is equivalent to the CI-order and in other cases it is stronger than the CI-order. Note
that the <(βp,βc)-order implicitly depends on k; the appropriate k will be clear in the context where it is
used, e.g., when comparing (p2k, c

2
k) and (p1k, c

1
k).

The sets of<(βp,βc)-improvements are shown in Figure 1, with the case where βc > βp shown in Figure 1(a)
and the case βc < βp shown in Figure 1(b). If βc > βp, then the minimum on the left of (7) is achieved by
(βp/βc)

k−1 and the maximum on the right is achieved by 1. Graphically in terms of the regions of Figure 3,
in this case the changes in regions I and III are <(βp,βc)-improvements, though some of the changes in region
II are not: there is a wedge of cases in the upper right quadrant in Figure 1(a) that are CI-improvements but
are not <(βp,βc)-improvements. For the changes in this wedge, quality and cost both increase with the quality
increase being sufficient to ensure that the new technology is preferred over the old even if the technology
were held only for a single period. Though such changes would benefit the consumer who is adopting, because
the impact of changes in costs diminsh more slowly than changes in quality (because βc > βp), we cannot
be sure that these changes will benefit a consumer who is waiting. Note that as k grows large, (βp/βc)

k−1

approaches zero and, asymptotically, no changes in region II are <(βp,βc)-improvements.
On the other hand, if βc < βp, then the minimum on the left is achieved by 1 and the maximum on the

right is achieved by (βp/βc)
k−1. In this case, changes in regions I and II are <(βp,βc)-improvements, but

some of the changes in region III are not. There is a wedge of these in the lower left quadrant in Figure 1(b)
that are CI-improvements but are not <(βp,βc)-improvements. As in the previous case, changes in this wedge
would be preferred if the technology were adopted but we cannot be sure that such changes will benefit a
consumer who is waiting. Also, as k grows large, (βp/βc)

k−1 approaches infinity and, asymptotically, no
changes in region III are <(βp,βc)-improvements.

We can show that the transitions of the generalized additive model of equation (5) are <(βp,βc)-increasing
(see Appendix A.9 for a proof). This imples that with transitions of this form, the single-purchase and repeat-
purchase value functions will be <(βp,βc)-increasing; i.e., v

s
k(pk, ck, qk) and vrk(pk, ck, qk) will be increasing in

directions of <(βp,βc)-improvements shown in Figure 1.
We can similarly establish monotonicity of the policies for the single-purchase model. The transitions

of the generalized additive model of equation (5) exhibit <(βp,βc)-diminishing improvements if βc ≤ βp ≤ 1
(see Appendix A.9 for a proof). Thus, in these cases, the policies for the single-purchase model will be
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<(βp,βc)-increasing. As discussed following equation (5), coefficients βp and βc less than one imply that the
expected improvements in quality and costs are linearly decreasing in the quality level pk and cost level ck.
The condition βc ≤ βp required for <(βp,βc)-diminishing improvements means the expected improvements in
costs are decreasing at a faster rate than the expected improvements in quality. If βc > βp, the compounding
in the generalized additive model may cause the value of waiting to increase more than value of adopting
and destroy the monotonicity of the policies, even in the single-purchase model.

We do not hold much hope for establishing monotonic policies in the repeat-purchase model with gener-
alized additive transitions. For instance in the first example of §3.3, we have a generalized additive model
for transitions with βp = βc = 0.7 and we have non-monotonic policies even as we change price alone. The
additive structure of the transitions (i.e., the assumption that βp = βc = 1.0) underlies the simplification of
the value function in equations (5) and (6) and is required in the proof of Proposition 3.7.

A.9. Proofs for Alternative Orders

Proof that generalized additive transitions are <(βp,βc)-increasing. We will show that for any k ≥ 1
the generalized additive transitions of equations (5) are <(βp,βc)-increasing, that is (p2k, c

2
k) <(βp,βc) (p

1
k, c

1
k)

implies that (p̃k−1c̃k−1)|(p
2
k, c

2
k)<̃(βp,βc)(p̃k−1c̃k−1)|(p

1
k, c

1
k) where <̃(βp,βc) denotes the (first-order) stochastic

dominance relation defined by the <(βp,βc)-partial order; see Definition 3.2.

Using Proposition 3.3(4), we can show that (p̃k−1c̃k−1)|(p
2
k, c

2
k)<̃(βp,βc)(p̃k−1c̃k−1)|(p

1
k, c

1
k) by showing

that

(p̃k−1c̃k−1)|(p
1
k, c

1
k) <(βp,βc) (p̃k−1c̃k−1)|(p

2
k, c

2
k) (8)

holds almost certainly. Using the definition of the <(βp,βc)-order and the definition of the additive transitions
(5), this is equivalent to showing that

γk−1(βpp
1
k + ũp

k−1)− (βcc
1
k + ũc

k−1) ≤ γk−1(βpp
2
k + ũp

k−1)− (βcc
2
k + ũc

k−1). (9)

holds for all γk−1 such that

min

{

1,

(
βp

βc

)k−2
}

≤ γk−1 ≤ max

{

1

1− δ
,

(
βp

βc

)k−2
1

1− δ

}

. (10)

Canceling common terms and dividing through by βc > 0, (9) is equivalent to

γk−1
βp

βc

p1k − c1k ≤ γk−1
βp

βc

p2k − c2k. (11)

Taking γk = γk−1
βp

βc
, showing (9) and (10) becomes equivalent to requiring

γkp
1
k − c1k ≤ γkp

2
k − c2k, (12)

for all γk such that

min

{

βp

βc

,

(
βp

βc

)k−1
}

≤ γk ≤ max

{

βp

βc

1

1− δ
,

(
βp

βc

)k−1
1

1− δ

}

. (13)

We now show that (p2k, c
2
k) <(βp,βc) (p

1
k, c

1
k) implies that (9) holds for all γk−1 satisfying (10) or, equiva-

lently (12) holds for all γk satisfying (13). (p2k, c
2
k) <(βp,βc) (p

1
k, c

1
k) means (6) holds for all γk satisfying (7).

Note (12) and (6) are identical. So we must show that if (9)=(6) holds for all γk satisfying (7), (12)=(6)
holds for all γk satisfying (13). To see this note that for any βp, βc > 0,

LHS of (7) = min

{

1,

(
βp

βc

)k−1
}

≤ min

{

βp

βc

,

(
βp

βc

)k−1
}

= LHS of (13)

10



and

RHS of (13) = max

{

βp

βc

1

1− δ
,

(
βp

βc

)k−1
1

1− δ

}

≤ max

{

1

1− δ
,

(
βp

βc

)k−1
1

1− δ

}

= RHS of (7) .

Thus, the range of values of γk considered in (13) is narrower than that considered in (7).
Thus if (p2k, c

2
k) <(βp,βc) (p

1
k, c

1
k) then (9) holds for all γk−1 satisfying (10); that is, the generalized additive

transitions will be <(βp,βc)-increasing.

Proof that generalized additive transitions exhibit <(βp,βc)-diminishing improvements. We now show
that the generalized additive transitions exhibit <(βp,βc)-diminishing improvements for 0 < βc ≤ βp ≤ 1.
With the additive transitions, the condition for diminishing improvements can be written as:

δE

[
1− δk−1

1− δ
p̃k−1 − c̃k−1|pk, ck

]

−

(
1− δk

1− δ
pk − ck

)

=

(

δ
1− δk−1

1− δ
βp −

1− δk

1− δ

)

pk − (δβc − 1)ck + δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

= −

[(

βp +
1− δk

1− δ
(1− βp)

)

pk − (1− βc + (1− δ)βc)) ck

]

+ δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

= − (1− βc + (1− δ)βc)

[

βp +
1−δk

1−δ
(1− βp)

1− βc + (1− δ)βc

pk − ck

]

+ δE

[
1− δk−1

1− δ
ũp

k−1 − ũc
k−1

]

To show that the generalized additive transitions have <(βp,βc)-diminishing improvements, we must show
that this expression is <(βp,βc)-decreasing, or equivalently that the expression in the brackets above,

βp +
1−δk

1−δ
(1− βp)

1− βc + (1 − δ)βc

pk − ck, (14)

is a <(βp,βc)-increasing function. Notice that this function is of the form γ′

kpk − ck where

γ′

k =
βp +

1−δk

1−δ
(1 − βp)

1− βc + (1− δ)βc

.

Thus, using the definition of the <(βp,βc)-order, to show that (14) is a <(βp,βc)-increasing function, it is
enough to show that we have

1 ≤ γ′

k ≤

(
βp

βc

)k−1
1

1− δ
. (15)

Because, if (15) holds, than by the definition of <(βp,βc)-order, (14) is a <(βp,βc)-increasing function.
Showing 1 ≤ γ′

k is equivalent to proving

1− βc + (1 − δ)βc ≤ βp +
1− δk

1− δ
(1− βp)

Because we have 0 < βc ≤ βp ≤ 1, the LHS is a convex combination of (1− δ) (with weight βc) and 1 (with
weight (1 − βc)) and hence lies between 1 − δ and 1. The RHS is a convex combination of 1 (with weight

βp) and
1−δk

1−δ
(with weight (1− βp)). Since δ ≤ 1 ≤ 1−δk

1−δ
, we have LHS ≤ RHS.

We next show that γ′

k ≤ 1
1−δ

≤
(

βp

βc

)k−1
1

1−δ
which implies the second inequality because 0 < βc ≤ βp.

Proving γ′

k ≤ 1
1−δ

is equivalent to proving

βp +
1− δk

1− δ
(1− βp) ≤ (1− βc)

1

1− δ
+ βc, (16)
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which follows if we have

βp +
1− δk

1− δ
(1− βp) ≤ (1 − βc)

1 − δk

1− δ
+ βc, (17)

because RHS of (17) is less than or equal to the RHS of (16) for βc ≤ 1. Notice that both the LHS and the

RHS are convex combinations of 1 and 1−δk

1−δ
. Because βc ≤ βp, the RHS of (17) puts more weight on the

larger value (1−δk

1−δ
) than the LHS and hence the inequality holds.

A.10. Proof of Proposition 4.2

Proof. 1. The single-purchase value function for k = 0 is trivially convex. Assume that vsk−1(pk−1, ck−1, qk−1)

is convex in (pk−1, ck−1). The value from adopting when there are k periods to go, 1−δk

1−δ
pk − ck, is

convex in (pk, ck). The value from waiting is also convex because vsk−1 is convex (by the induction
hypothesis) and transitions are convex. Because the maximum of two convex functions is convex, the
single-purchase value function when there are k periods to go must be convex.

2. The value from adopting technology (pαk , c
α
k ) is

1−δk

1−δ
pαk − cαk .

1− δk

1− δ
pαk − cαk = α

(
1− δk

1− δ
p1k − c1k

)

+ (1 − α)

(
1− δk

1− δ
p2k − c2k

)

≥ α
(
qk + δE

[
vsk−1(p̃k−1, c̃k−1, qk)|p

1
k, c

1
k

])
+ (1− α)

(
qk + δE

[
vsk−1(p̃k−1, c̃k−1, qk)|p

2
k, c

2
k

])

≥ qk + δE
[
vsk−1(p̃k−1, c̃k−1, qk)|p

α
k , c

α
k

]

The first inequality follows because it is optimal to adopt with both (p1k, c
1
k) and (p2k, c

2
k); the sec-

ond inequality follows because single-purchase value function is convex and technology transitions are
convex.

A.11. Proof of Proposition 4.3

We need the following lemma to prove that the repeat-purchase value function is convex in (pk, ck, qk).

Lemma A.4. If the transitions are as in (5), then E[u(p̃k−1, c̃k−1, pk)|pk, ck] and E[u(p̃k−1, c̃k−1, qk)|pk, ck]
are convex in pk, ck and qk for convex u.

Proof of Lemma A.4. We will prove that E[u(p̃k−1, c̃k−1, pk)|pk, ck] is convex in pk and ck. Proving that
E[u(p̃k−1, c̃k−1, qk)|pk, ck] is convex in pk, ck and qk is similar. Because transitions satisfy (5), we have

E[u(p̃k−1, c̃k−1, p
α
k )|p

α
k , c

α
k ] = E

[
u(βpp

α
k + ũp

k−1, βcc
α
k + ũc

k−1, p
α
k )
]

Because u is convex, for each realization of ũp
k−1 and ũc

k−1, we have

u(βpp
α
k + up

k−1, βcc
α
k + uc

k−1, p
α
k ) ≤ αu(βpp

1
k + up

k−1, βcc
1
k + uc

k−1, p
1
k)+ (1−α)u(βpp

2
k + up

k−1, βcc
2
k + uc

k−1, p
2
k)

Then, it must also hold in expectation and we have

E[u(p̃k−1, c̃k−1, p
α
k )|p

α
k , c

α
k ] ≤ αE

[
u(βpp

1
k + ũp

k−1, βcc
1
k + ũc

k−1, p
1
k)
]
+ (1− α)E

[
u(βpp

2
k + ũp

k−1, βcc
2
k + ũc

k−1, p
2
k)
]

= E
[
u(p̃k−1, c̃k−1, p

1
k)|p

1
k, c

1
k

]
+ (1− α)E

[
u(p̃k−1, c̃k−1, p

2
k)|p

2
k, c

2
k

]

Proof of Proposition 4.3. To show that the repeat-purchase value function is convex, we will proceed by
induction. The property holds trivially for k = 0. Assume vrk−1(pk−1, ck−1, qk−1) is convex in pk−1, ck−1 and
qk−1. Then,

vrk−1(pk, ck, qk) = max

{
pk − ck + δE

[
vrk−1(p̃k−1, c̃k−1, pk)|pk, ck

]

qk + δE
[
vrk−1(p̃k−1, c̃k−1, qk)|pk, ck

]
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The rewards are convex in pk, ck and qk and the continuation values are convex following Lemma A.4, then,
the value function must be convex because the maximum of two convex functions is convex.
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