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This paper was motivated by the problem of developing an optimal policy for exploring an oil and gas field in the North
Sea. Where should we drill first? Where do we drill next? In this and many other problems, we face a trade-off between
earning (e.g., drilling immediately at the sites with maximal expected values) and learning (e.g., drilling at sites that provide
valuable information) that may lead to greater earnings in the future. These “sequential exploration problems” resemble a
multiarmed bandit problem, but probabilistic dependence plays a key role: outcomes at drilled sites reveal information about
neighboring targets. Good exploration policies will take advantage of this information as it is revealed. We develop heuristic
policies for sequential exploration problems and complement these heuristics with upper bounds on the performance of an
optimal policy. We begin by grouping the targets into clusters of manageable size. The heuristics are derived from a model
that treats these clusters as independent. The upper bounds are given by assuming each cluster has perfect information
about the results from all other clusters. The analysis relies heavily on results for bandit superprocesses, a generalization
of the multiarmed bandit problem. We evaluate the heuristics and bounds using Monte Carlo simulation and, in the North
Sea example, we find that the heuristic policies are nearly optimal.
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1. Introduction
This paper was motivated by the problem of developing an
optimal policy for exploring an oil and gas field in the North
Sea, off the coast of Norway: Where should we drill first?
Where do we drill next? Clearly the choices for later targets
maydependonwhatweobserve at earlier wells—particularly
when drilling “wildcat” wells in regions that are not well
understood. For example, positive results in one region of
the field may lead us to explore other targets that are nearby
or share geologic features. Conversely, negative results may
lead us to explore other regions or quit altogether.

Researchers considering R&D projects face similar prob-
lems: with dependent projects, which projects should they
pursue first? Similarly, in Web-based advertising, one must
decide which advertisement to show to a user visiting a
Web page. Here too the performances of similar advertise-
ments (e.g., for different shoes) may be correlated and the
sequence of ads chosen may reflect the responses to earlier
ads. In these and many other problems, we face a trade-off
between earning (e.g., drilling immediately at targets with
large expected values) and learning (e.g., drilling at targets
that provide valuable information) that may lead to greater
earnings in the future.

These “sequential exploration problems” can be viewed
as variations on the classic multiarmed bandit problem.
A multiarmed bandit consists of a set of arms, each corre-
sponding to a Markov reward process. In each period, the

decision maker (DM) selects an arm to play and receives a
random reward; the state of the selected arm then randomly
changes and the process begins again with the DM choosing
which arm, if any, to play next. If the state changes for the
arms are independent, the multiarmed bandit problem has a
very elegant solution: Gittins and Jones (1974) showed that
it is optimal to pull the arm with the largest “Gittins index,”
where these Gittins indices can be calculated by consider-
ing each arm in isolation. Thus, with independent arms, the
multiarmed bandit problem can be solved by decomposing
the problem into a series of computationally manageable
subproblems, one for each arm.

The sequential exploration problems that we consider
are like multiarmed bandits, but with dependent arms.
Although the problems can be formulated as stochastic
dynamic programs, without independence, the models suf-
fer the “curse of dimensionality” and may be difficult to
solve to optimality. For instance, in the North Sea exam-
ple, we have 25 possible targets and the state space for this
dynamic program has approximately 1015 elements; this
problem is much too large to solve exactly.

Our goal in this paper is to develop tractable heuris-
tic policies for sequential exploration problems and com-
plement these heuristics with upper bounds on the
performance of an optimal policy. Our analysis relies heav-
ily on results for “bandit superprocesses,” a generaliza-
tion of the multiarmed bandit problem where the arms are
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independent but correspond to Markov decision processes,
rather than Markov reward processes: i.e., in addition to
choosing which arm to play, the DM has a choice of how
to play the arm. Bandit superprocesses, unlike multiarmed
bandits, generally cannot be solved using decomposition
and the optimal policies need not have an index structure.

Our model of a sequential exploration problem begins
with a set of “targets” that represent Markov decision pro-
cesses; these are like the arms in a bandit superprocess,
but may be dependent. We then partition the set of targets
into “clusters,” which can be viewed as larger, more com-
plicated arms. Ideally, we want to choose the clusters in a
way that captures the most important dependencies within
the chosen clusters, while maintaining tractability. Given a
set of clusters, we do the following:

• We generate heuristics and lower bounds on the opti-
mal value by assuming the clusters evolve independently,
thereby approximating the model with a bandit superpro-
cess. We then further approximate the bandit superprocess
with a classical multiarmed bandit by assuming a fixed pol-
icy for choosing actions within clusters. The optimal policy
for the approximating multiarmed bandit has an index pol-
icy that prescribes a feasible heuristic that can be evaluated
using Monte Carlo simulation.

• We generate upper bounds by assuming each cluster
has perfect information (clairvoyance) about the results for
all other clusters. This leads to a series of bandit superpro-
cesses for different possible scenarios. Although we can-
not solve these bandit superprocesses exactly, we develop
some new results and computational methods for bandit
superprocesses that we use to generate an upper bound
on the optimal value for each of these scenario-specific
bandit superprocesses. (We also consider bounds based
on Lagrangian relaxations.) Averaging these bounds across
scenarios, we arrive at an upper bound on the performance
of an optimal policy for the sequential exploration problem.

Intuitively, we properly capture the learning opportuni-
ties within each cluster, but approximate learning across
clusters. The heuristic-based lower bounds underestimate
values because they do not fully capture cross-cluster learn-
ing. In contrast, the clairvoyant upper bounds overestimate
values because they include more cross-cluster learning
than is actually possible. In the North Sea example, we
find that, with a suitable choice of clusters, the difference
between the lower and upper bounds is small; this implies
that the heuristic policies achieving the lower bound are
nearly optimal.

1.1. Literature Review

This paper builds on and contributes to three strands of lit-
erature. First, we build on the existing literature on sequen-
tial exploration problems. Bickel and Smith (2006) studied
sequential exploration problems using dynamic program-
ming methods. Although Bickel and Smith discuss other
applications (e.g., to R&D), they focus on an oil exploration
example with six targets that are either wet or dry; this leads

to a dynamic program with 36 = 729 states. Bickel et al.
(2008) considered an oil exploration example with five tar-
gets with more complex geologic uncertainties that leads
to a dynamic program with approximately 59,000 states.
Although these examples could be solved exactly, the North
Sea example we consider, with 1015 states, is much too large
to solve exactly. The North Sea example is adapted from
Martinelli et al. (2011) who develop the Bayesian network
and discuss probabilistic inference in this example. Mar-
tinelli et al. (2012) consider “naive,” myopic, and limited-
look-ahead heuristic drilling policies in this example; we
will compare our heuristics with theirs in §6.5.

Second, we build on the literature on the multiarmed
bandit problem. The large literature on this topic is
reviewed in the recent book by Gittins et al. (2011). We rely
on and extend Whittle’s (1980) results for bandit super-
processes in our clairvoyant bounds. Specifically, we show
that what we call the “Whittle integral” provides an upper
bound on the value of a bandit superprocess. We also
describe how we can calculate these Whittle integrals effi-
ciently. Moreover, we compare these bandit superprocess
bounds to an alternative approach based on a Lagrangian
relaxation of a weakly coupled dynamic program (see,
e.g., Whittle 1988, Hawkins 2003, Adelman and Mersereau
2008): we prove that the Whittle integral bounds are tighter
than the Lagrangian relaxation bounds in this setting.

The problem of bandits with “correlated arms” is not as
well understood as the standard multiarmed bandit prob-
lem, though there has been recent work considering partic-
ular forms of probabilistic dependence. For example, Wang
et al. (2005) explored the use of “side observations” for
bandit problems with two arms; their focus is on asymptotic
results. Mersereau et al. (2009) derived asymptotic results
for a multiarmed bandit model where the mean reward for
each arm is a linear function of an unknown scalar; Rus-
mevichientong and Tsitsiklis (2010) extended these results
to the case where the rewards depend linearly on a multi-
variate random vector. Ryzhov et al. (2012) studied a one-
period look-ahead heuristic for multiarmed bandit problems
where rewards are correlated with a multivariate normal
distribution. Pandey et al. (2007) studied multiarmed ban-
dit models with Bernoulli rewards where arms in the same
“cluster” may be correlated; they claim that index policies
are optimal in their setting. Our approach also involves
grouping arms into clusters; however, these clusters are
generally not independent, and, even when they are, index
policies may not be optimal.

Finally, we build on the recent literature considering
the use of information relaxations to provide performance
bounds in dynamic programs. Brown et al. (2010) devel-
oped theory and methodology for general dynamic program-
ming models, building on related work by Haugh and Kogan
(2004), Andersen and Broadie (2004), Rogers (2002), and
others for providing bounds in option pricing problems;
Rogers (2007) also developed methods for information-
relaxation-based bounds for Markov decision problems.
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Brown et al. (2010) considered applications in inventory
management and option pricing with stochastic volatility
and interest rates. Lai et al. (2010) applied these methods
when studying natural gas storage problems. Brown and
Smith (2011) considered applications in portfolio manage-
ment with transaction costs. The clairvoyant bounds in this
paper are novel in that we use a new form of partial informa-
tion relaxation and the solution of the resulting subproblems
uses new techniques for bandit superprocesses.

1.2. Outline

We begin by describing the North Sea example in §2;
we will use this example to illustrate concepts throughout
the paper. We describe our formal model of the sequen-
tial exploration problem in §3. We discuss bandits and
bandit superprocesses in §4. In §5, we use bandits and
bandit superprocesses to generate heuristics and bounds
for sequential exploration problems. We present numeri-
cal results for the North Sea example in §6. We describe
computational methods in Appendix A. Some proofs and
detailed discussions are relegated to the online appendix
(available as supplemental material at http://dx.doi.org/
10.1287/opre.2013.1164).

2. The Motivating Example: Oil and Gas
Exploration in the North Sea

As mentioned in the introduction, our work on this problem
was motivated by the problem of developing an optimal

Figure 1. Bayesian network model for the example.

policy for exploring an oil and gas field in the North
Sea, off the coast of Norway, in an area referred to as
the Tampen region. Martinelli et al. (2011), working with
experts at the Norwegian oil company Statoil, developed
a Bayesian network model that describes the uncertainty
about the generation and migration of hydrocarbons over
the geologic history of the field. Figure 1, from Martinelli
et al. (2011), provides a high level overview of the model.
Nodes in the network represent locations or geological
structures in the field and arrows represent possible migra-
tion paths between these locations or geological structures.

At the highest level of the network, the nodes with labels
beginning with “K” represent kitchens, which are locations
where conditions may have been appropriate to “bake”
organic materials into oil or gas. There are three possible
states for each kitchen: the kitchens may have produced oil,
produced gas, or be dry.

At the next level, the nodes beginning with “P” rep-
resent prospects, which are geologic structures where
hydrocarbons may have collected. These prospects may
contain oil or gas or be dry. For a prospect to contain
oil or gas, at least one of its parents (either a kitchen
or another prospect) must contain oil or gas. However,
there is uncertainty about whether the oil or gas migrated
from the parent to the prospect or was captured at the
prospect. Thus, even if the parent structure contains oil or
gas, there is some chance that the prospect will be dry.
The probabilities for the prospects’ states are specified as
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conditional probabilities that depend on the state of the par-
ent kitchen(s) or prospect(s).

Finally, at the lowest level of the network, each prospect
has associated targets, which represent potential drilling
sites; kitchens and prospects cannot be drilled. For exam-
ple, the nodes labeled 6A, 6B, and 6C represent three dif-
ferent targets associated with prospect 6. These targets may
also contain oil or gas or be dry. For a target to contain oil
or gas, its parent (a prospect) must also contain oil or gas.
However, there is also a chance of a “local failure” where
a target will not contain oil or gas, even though its parent
prospect does.

In total, the model includes four kitchens, 13 prospects,
and 25 targets. The probabilities for the model are
described in detail in Martinelli et al. (2011). We will fol-
low their assumptions exactly, except we will at times intro-
duce uncertainty about the state of the kitchens. Martinelli
et al. assume that the kitchens certainly produced gas, based
on observations of results for other nearby fields. Intro-
ducing kitchen uncertainty makes the problem more of a
“wildcat” play and increases the possibilities for learning
about one target from the results at other targets. In the
cases where we introduce uncertainty about the state of the
kitchens, we assume that at each kitchen there is a 40%
chance that the kitchen produced gas, a 40% chance that it
produced oil, and a 20% chance that it is dry.

The DM has access to a single drilling rig and in each
period must decide which target, if any, to drill. Drilling
takes a few months and, after drilling is completed, the tar-
get’s physical state (oil, gas, or dry) is revealed. The DM
then decides whether to continue drilling and which tar-
get to drill. This process continues until all of the targets
have been drilled or the DM chooses to quit. Drilling costs
vary by target and the values vary by target and depend on
whether the target contains oil, gas, or is dry. We will use
the values and costs as given in Martinelli et al. (2012).
We assume a single-period discount factor of 0.98, where
the period corresponds to the amount of time it takes to
drill a well; this corresponds an annual discount rate of
about 10%.

The probabilistic model is implemented using the Bayes
Net Toolbox for MATLAB (Murphy 2001). This is an
open-source, general-purpose software package that per-
forms probabilistic inference using Bayesian network tech-
niques. We use this software to calculate, for example, the
probability of finding oil or gas at one target (or a set of
targets) after observing results for other targets.

3. The Sequential Exploration Problem
In this section, we formally describe the sequential explo-
ration problem and then illustrate it with the North Sea
example.

3.1. The Basic Model

The model consists of a set of targets organized into
N clusters. The uncertainty in the model is described by

a probability space 4ì1F1�5 where the outcomes × in ì
are decomposed into a vector of cluster-specific outcomes
×= 4�11 0 0 0 1�N 5 and �i is drawn from ìi. The �-algebra
of events F for ì is the product algebra F1 ⊗ · · · ⊗ FN

of �-algebras Fi of events for ìi. The probability distri-
bution (or measure) � need not decompose, however, as
F11 0 0 0 1FN need not be independent.

The cluster outcomes �i are not directly observed and
the cluster state xi summarizes what the DM knows about
cluster i at any given time. These cluster states xi range
over a finite set Xi and the system state x = 4x11 0 0 0 1 xN 5
ranges over the product of the cluster state spaces,

∏N
i=1 Xi.

The system begins in an initial state x� = 4x�
11 0 0 0 1 x

�
N 5 with

a joint probability distribution P4× � x�5 on ì correspond-
ing to � 0 We write the corresponding marginal distribution
for cluster i outcomes ìi as P4�i � x

�5.
In each period, the DM can quit or select a cluster

to work on and an action for that cluster. The possible
actions ai for cluster i are selected from a finite set of
possible actions Ai4xi5 that depends on the current state
for the cluster. If the DM works on cluster i, the state of
that cluster transitions to a next-period state x̃i4xi1 ai1�i5
that is a function of the cluster’s current state xi, the
action selected ai, and the cluster outcome �i; the uncer-
tainty in the state transition is due to uncertainty about
the cluster outcome �i. The states for the inactive clus-
ters do not change and thus the next-period system state
is x̃4x1 ai1×5 = 4x11 0 0 0 1 xi−11 x̃i4xi1 ai1�i51 xi+11 0 0 0 1 xN 5.
As actions are taken, the system state x evolves and the
joint distribution over outcomes, P4× � x5, is updated using
Bayes’ rule to reflect the information observed up to that
time. We assume that the system state x is a sufficient
statistic in that the conditional probability distribution on ì
given the current x does not depend on earlier system states.

If the DM works on cluster i, the DM receives a reward
r̃i4xi1 ai1�i5 that depends on the current state xi for that
cluster, the action selected ai, and the cluster i outcome �i.
The goal is to sequentially choose clusters to work on
and associated actions to maximize the expected discounted
reward. We will assume that the discount factor � satisfies
0 ¶ � < 1. Formulating this as a stochastic dynamic pro-
gram, we can write the value function V 4x5 for the sequen-
tial exploration problem recursively as

V 4x5≡ max
{

01max
i

max
ai∈Ai4xi5

Ɛ6r̃i4xi1 ai5

+ �V 4x̃4x1 ai55 � x7
}

1 (1)

where, to streamline our notation, we suppress × and
let r̃i4xi1 ai5 and x̃4x1 ai5 denote the random reward
and next-period state. The expectation Ɛ6r̃i4xi1 ai5 +

�V 4x̃4x1 ai55 � x7 in (1) may be written explicitly as
∫

�i∈ìi

4r̃i4xi1ai1�i5

+�V 44x110001xi−11x̃i4xi1ai1�i51xi+110001xN 555dP4�i �x50

To ensure that these expectations are well defined, we
assume the rewards r̃i4xi1ai1�i5 and state transitions
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x̃i4xi1ai1�i5 are Fi-measurable functions of �i for each
cluster state xi and action ai.

In applications, there is significant flexibility in the
definition of clusters, as one can always combine any two
clusters (or targets) into a more complicated cluster by
capturing the choice between the two clusters (the max-
imization over i in (1)) within the choice among actions
(the maximization over ai in (1)) for the combined clus-
ter. As long as we define outcomes, states, rewards, actions
sets, and transition probabilities appropriately, combining
clusters in this way has no effect on the values and optimal
policies for the full model. However, the cluster definitions
will play a key role in the approximations of the model
that we will use to generate heuristics and bounds. We will
discuss the choice of clusters in more detail in §5.3.

3.2. Modeling the North Sea Example

We consider four different definitions of clusters in the
North Sea example. In the first case, we consider 25 clus-
ters, each consisting of a single target. There are three
possible outcomes �i for each target: the target could con-
tain oil, contain gas, or be dry. There are four possible
states xi for each target: the target could be (i) drilled and
known to contain oil, (ii) drilled and known to contain gas,
(iii) drilled and known to be dry, or (iv) undrilled. Initially,
all 25 targets are undrilled. If target i is undrilled, the
action set Ai4xi5 contains a single action, representing the

Figure 2. Example with medium clusters.

Cluster 4

Cluster 5 Cluster 2

Cluster 3 Cluster 6

Cluster 1

possibility of drilling; if target i has already been drilled,
the action set Ai4xi5 is empty. Drilling a target leads the
state of the target to transition from undrilled to one of the
three drilled states and pays a reward, with the next state
and reward depending on the outcome �i, i.e., whether the
target contains oil, contains gas, or is dry.

For the second case of clusters, we consider 13 clusters
where each cluster contains all of the targets associated
with a given prospect. For example, one cluster consists of
the three targets associated with prospect 13; the outcome
�i ranges over the 33 possible outcomes for the three tar-
gets in the cluster and the cluster state xi ranges over the
43 different possible states for the targets. The actions asso-
ciated with these clusters represent drilling at one of the
targets contained in the cluster.

We also consider larger clusters with targets grouped as
shown in Figures 2 and 3. Clusters 3 and 5 in Figure 2 both
have six targets. They therefore have 36 =729 outcomes and
46 =41096 states; the actions correspond to drilling one of
the undrilled targets in the cluster. The largest cluster we
will consider is cluster 3 in Figure 3; this cluster has nine tar-
gets, 39 =191683 outcomes, and 49 =2621144 states.1

In the North Sea example, the transition probabilities for
the next-period state x̃4x1ai5 can be calculated from the
Bayesian network for any state x and action ai. For exam-
ple, if we start in the state with all targets undrilled and
then choose an action ai that corresponds to drilling at,
say, target 9A, the probabilities of transitioning to the states
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Figure 3. Example with large clusters.

Cluster 3

Cluster 1

Cluster 4

Cluster 2

where the target is known to contain oil or gas or to be dry
are given by the marginal probabilities associated with that
node in the Bayesian network. If we then start in a state
where target 9A is known to be dry and all other targets
are undrilled, we can calculate transition probabilities asso-
ciated with drilling other targets by updating the Bayesian
network to reflect the fact that target 9A is known to be dry
and then calculating new marginal probabilities for other
targets. These calculations can be rather involved, but the
algorithms used in the Bayes Net Toolbox (Murphy 2001)
take advantage of the network structure to perform these
calculations reasonably efficiently.

As discussed in the introduction, these sequential explo-
ration problems suffer the curse of dimensionality and scale
poorly. In this example, regardless of how the targets are
grouped into clusters, there are approximately 1015 different
states to consider, with up to 25 different actions to eval-
uate in each state and each state-action combination may
have a different set of transition probabilities. This model is
much too large to solve exactly, so we will instead consider
heuristic policies and performance bounds.

4. Multiarmed Bandits and
Bandit Superprocesses

In the special case where the clusters are probabilisti-
cally independent, the sequential exploration problem (1)
is known as a bandit superprocess. In this section, we will
study properties of bandit superprocesses. Although these
results do not apply directly with dependent clusters, these

results provide key tools for our study of sequential explo-
ration problems. We return to the full problem in §5 and
describe how we will use these tools to generate heuris-
tics and bounds in a setting with dependence among clus-
ters. In this section, we first discuss some basic properties
of bandit superprocesses, then discuss the Whittle inte-
gral for generating bounds on value functions for bandit
superprocesses and consider some examples. We then com-
pare the Whittle integral bounds to bounds provided by a
Lagrangian relaxation.

4.1. Definitions and Basic Results

Throughout our discussion of bandit superprocesses, we
will assume that the clusters are independent in that the
initial underlying probability distribution factors as P4× �

x�5=
∏N

i=1P4�i �x
�5. This independence is preserved as the

system state evolves and the probabilities for one cluster
will always be independent of the state of other clusters
(i.e., P4�i �x5=P4�i �xi5). Thus, we can consider transi-
tion probabilities and conditional expectations conditioned
on the active state xi rather than the full system state x.

When studying bandit superprocesses, it is useful to fol-
low Whittle (1980) and consider a variation on the problem
where quitting results in a payment of M , rather than zero
as assumed in (1). Given a retirement value of M , we can
define the system-wide value function ê as

ê4x1M5≡max
{

M1max
i

max
ai∈Ai4xi5

Ɛ6r̃i4xi1ai5

+�ê4x̃4x1ai51M5 �xi7
}

0 (2)
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The ability to choose an action ai for a cluster distinguishes
bandit superprocesses from the multiarmed bandit problem:
in the multiarmed bandit problem, Ai4xi5 contains at most
one element and the only question is which cluster to work
on (or arm to play).

We can define a cluster-specific value function that con-
siders rewards and actions for cluster i only as follows:

�i4xi1M5≡max
{

M1 max
ai∈Ai4xi5

Ɛ6r̃i4xi1ai5

+��i4x̃i4xi1ai51M5 �xi7
}

0 (3)

The Gittins index M∗
i 4xi5 for cluster i in state xi is the

smallest M such that �i4xi1M5=M , i.e., the retirement
value that makes the DM indifferent between retiring and
continuing from this state. With discounting (�<1) and
bounded rewards, we know that the Gittins index M∗

i 4xi5
will exist and be less than r∗

i /41−�5, where r∗
i is the max-

imum possible reward for cluster i. We let M∗4x5 denote
the maximum Gittins index for a given system state, i.e.,
M∗4x5=maxiM

∗
i 4xi5.

We note the following basic properties of these value
functions and their derivatives, ê′4x1M5≡¡ê4x1M5/¡M
and �′

i4x1M5≡¡�i4x1M5/¡M , that will be used in our
analysis.

Lemma 4.1 (Properties of Value Functions). For any x,
(i) ê4x1M5 is piecewise linear, nondecreasing, and con-

vex in M;
(ii) ê′4x1M5 exists for almost all M , and where it exists,

(a) ê′4x1M5 is piecewise constant, nonnegative, and
nondecreasing in M;

(b) ê′4x1M5<1 for M<M∗4x5; and
(c) ê′4x1M5=Ɛ6��̃4x1M5 �x7, where �̃4x1M5 is the

(random) time of retirement when following a policy that is
optimal with retirement value M and starting in state x;

(iii) If it is optimal to retire in state x with retirement
value M , it is also optimal to retire in state x with any
retirement value M ′¾M .

These results also hold for all cluster-specific value
functions �i4xi1M5 and their derivatives �′

i4xi1M5 with
M∗

i 4xi5 in place of M∗4x5 in (ii)(b). In addition, we have
�′

i4xi1M5=1 for M>M∗
i 4xi5.

These results follow from standard arguments for multi-
armed bandits (see, e.g., Whittle 1980 or Bertsekas 1995)
that also apply with bandit superprocesses. For complete-
ness, we provide a proof in the online appendix.

4.2. The Whittle Integral and Bound

We now show how we can provide an upper bound on the
system-wide value function ê4x1M5 in terms of the cluster-
specific value functions �i4xi1M5. From the fundamental
theorem of calculus, for any B, we can write

ê4x1M5=ê4x1B5−
∫ B

m=M
ê′4x1m5dm0 (4)

If we choose B to be large enough so that, if the DM were
offered retirement value B, it would be optimal to retire
immediately, we would then have ê4x1B5=B and can sim-
plify (4) accordingly. We then approximate the derivative
ê′4x1m5 with the product of cluster-specific value function
derivatives

∏N
i=1�

′
i4xi1m5; this leads to an upper bound on

the system-wide value function.

Proposition 4.2 (The Whittle Integral and Bound).
For any x and any B greater than or equal to the maximum
Gittins index M∗4x5, the Whittle integral,

ê̂4x1M5≡B−

∫ B

m=M

N
∏

i=1

�′

i4xi1m5dm1 (5)

provides an upper bound on the system-wide value func-
tion: ê̂4x1M5¾ê4x1M50

This proposition is essentially an unnoticed or unappre-
ciated intermediate result in Whittle’s (1980) proof of the
optimality of the Gittins index-based policies for a particu-
lar form of bandit superprocesses. We will discuss Whittle’s
result immediately after the proof and then provide some
intuition for this approximation of the derivative ê′4x1m5.
A few remarks on the result before we provide the proof:

(i) As long as B is greater than or equal to the maxi-
mum Gittins index M∗4x5, the value of B does not affect
the value of ê̂4x1M5 because, as noted in Lemma 4.1,
�′

i4xi1M5=1 for M>M∗
i 4xi5.

(ii) The Whittle integral ê̂4x1M5, like ê4x1M5, is
piecewise linear, nondecreasing, and convex in M . This fol-
lows from the fact that the �′

i4xi1m5 are piecewise constant,
positive, and nondecreasing in m.

(iii) Proposition 4.2 implies that it is optimal to retire
for any M such that M¾M∗4x5: for these values of M ,
ê̂4x1M5=M . Since ê̂4x1M5 is an upper bound on the
true value function ê4x1M5, it follows that immediate
retirement must be optimal. This, in turn, implies that
ê′4x1M5=1 for M>M∗4x5.

Proof. Let Qi4x1M5≡
∏

j 6=i�
′
j4xj1M50 Note that, because

the clusters are independent, Qi4x1M5 does not depend
on xi. Also note that, from Lemma 4.1, Qi4x1M5 is non-
negative and nondecreasing in M and equal to one when
M>M∗

4i5, where M∗

4i5≡maxj 6=iM
∗
j 4xj5. Thus, for fixed x,

Qi4x1M5 can be viewed as a cumulative probability func-
tion in M with the probability measure’s mass concentrated
below M∗

4i5, which is less than or equal to M∗4x5. Using this
and integrating by parts, for any cluster i, we can represent
ê̂4x1M5 as

ê̂4x1M5=�i4xi1M5Qi4x1M5

+

∫ M∗4x5

m=M
�i4xi1m5dmQi4x1m51 (6)

where M∗4x5≡maxiM
∗
i 4x5. (We also use the fact that

�i4xi1B5=B for B¾M∗ here.) Thus ê̂4x1M5 can be inter-
preted as the expected value of �i4xi1m5 with random m
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having mass Qi4x1M5 at M and the rest of the mass dis-
tributed between M and M∗4x5, as specified by the proba-
bility distribution Qi4x1m5.

Since �i4xi1M5¾M for all M and any cluster i, inter-
preting (6) as an expectation, we see

ê̂4x1M5¾M0 (7)

Similarly, since �i4xi1m5 is greater than or equal to the
value associated with choosing action ai (i.e., �i4xi1m5¾
Ɛ6r̃i4xi1ai5+��i4x̃i4xi1ai51M5 �xi7, from Equation (3)),
Equation (6) also implies

ê̂4x1M5

=�i4xi1M5Qi4x1M5+
∫ M∗4x5

m=M
�i4xi1m5dmQi4x1m5

¾Ɛ6r̃i4xi1ai5+��i4x̃i4xi1ai51M5 �xi7Qi4x1M5

+

∫ M∗4x5

m=M
Ɛ6r̃i4xi1ai5+��i4x̃i4xi1ai51m5 �xi7dmQi4x1m5

=Ɛ6r̃i4xi1ai5 �xi7+Ɛ

[

�4�i4x̃i4xi1ai51M5Qi4x1M5

+

∫ M∗4x5

m=M
�i4x̃i4xi1ai51m5dmQi4x1m55

∣

∣

∣

xi

]

=Ɛ6r̃i4xi1ai5+�ê̂4x̃4x1ai51M5 �xi70 (8)

To see this last equality, recall that Qi4x1m5 does not
depend on xi (because the clusters are independent) and
that only xi will change when cluster i is active with
action ai selected; thus Qi4x̃4x1ai51m5=Qi4x1m5. Then,
from (6), we have

ê̂4x̃4x1ai51M5

=�i4x̃i4xi1ai51M5Qi4x̃4x1ai51M5

+

∫ M∗4x5

m=M
�i4x̃i4xi1ai51m5dmQi4x̃4x1ai51m5

=�i4x̃i4xi1ai51M5Qi4x1M5

+

∫ M∗4x5

m=M
�i4x̃i4xi1ai51m5dmQi4x1m51

which establishes the last equality above.
Combining (7) and (8), we have

ê̂4x1M5¾max
{

M1max
i

max
ai∈Ai4xi5

Ɛ6r̃i4xi1ai5

+�ê̂4x̃4x1ai51M5 �xi7
}

0 (9)

Thus ê̂4x1M5 satisfies a recursion analogous to Equa-
tion (2) defining ê4x1M5, but with an inequality replacing
the equality. This is sufficient to ensure that ê̂4x1M5¾
ê4x1M5; see, e.g., Puterman (1994), Theorem 6.2.2. �

As mentioned earlier, the proof above is essentially due
to Whittle (1980), though he did not consider the use of the

Whittle integrals to provide bounds on the value function
for bandit superprocesses. His main goal in that paper was
to provide a simple dynamic programming-based proof of
the optimality of Gittins-index-based policies for the multi-
armed bandit problem. However, he also observed that the
index policy result holds for bandit superprocesses satis-
fying a particular property. We say cluster i satisfies the
Whittle condition in state xi if there is a dominant action ai

in Ai4xi5 that achieves the maximum in (3) for all values
of M such that 0¶M¶M∗

i 4xi5 or if quitting is optimal for
all M¾0. Whittle’s (1980) result for bandit superprocesses
can then be stated as follows.

Proposition 4.3 (Whittle 1980). If the Whittle condition
holds for all clusters, in all states, then, for any retirement
value M¾0,

(i) the Whittle integral is exactly equal to the value func-
tion, i.e., ê̂4x1M5=ê4x1M53

(ii) for any state x, if the retirement value M exceeds
the maximum Gittins index M∗4x5, it is optimal to retire.
Otherwise, it is optimal to work on the cluster that achieves
the maximum Gittins index in state x and to choose the
dominant action for that cluster in the current state.

Proof. Given a system state x, if the Whittle condition is
satisfied by the cluster with the maximum Gittins index
and its dominant action is ai, we then have �i4xi1m5=
Ɛ6r̃i4xi1ai5+��i4x̃i4xi1ai51m5 �xi7 for all m such that 0¶
m¶M∗4x5. This implies that the inequality (8) holds with
equality. If the dominant action in state x is to quit, then
(7) holds with equality. If the Whittle condition holds for
all states and clusters, (9) holds with equality in all states
and, consequently, ê̂4x1M5=ê4x1M5 (see, e.g., Puterman
1994, Theorem 6.2.2.). In this case, the optimal policy is
to work on the cluster with the largest Gittins index and
to choose the dominant action for that cluster and state, as
these are the actions that achieve equality in (8). �

A classic multiarmed bandit has a single choice of action
in each state and thus automatically satisfies the Whittle
condition. More generally, for a bandit superprocess, if the
Whittle condition holds in all states for all clusters, the opti-
mal choice of action for a cluster is unambiguous and we
can reduce the bandit superprocess to a multiarmed ban-
dit problem by assuming the choice of the dominant action
in each state: that is, without loss of optimality, we can
replace Ai4xi5 with a singleton containing just the domi-
nant action for state xi. Glazebrook (1982) showed that this
Whittle condition is necessary (in a sense that he makes
precise) for bandit superprocesses to have optimal policies
with an index structure. As we will discuss in the example
in §4.3, if the Whittle condition is not satisfied, the choice
of action ai for a cluster may depend on the state of the
other clusters.

This intuition helps explain why we take the derivative
ê′4x1m5 of the system-wide value function to be the prod-
uct of derivatives for the cluster-specific value functions
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∏N
i=1�

′
i4xi1m5 in the Whittle integral (5). If the Whittle

condition is satisfied and the optimal actions do not depend
on the other clusters, one might conjecture that, for a
given retirement value M and initial state x, the time until
retirement for the full system �̃4x1M5 would be equal to
the sum of the times until retirement �̃i4xi1M5 for the
individual clusters when considered in isolation. Recalling
from Lemma 4.1 that the derivatives of the value functions
ê′4x1M5 and �′

i4xi1M5 are equal to the expected discount
factor at retirement, Ɛ6��̃4x1M5 �x7 and Ɛ6��̃i4xi1M5 �xi7 (respec-
tively), if this conjecture is true, we have

ê′4x1M5=Ɛ6��̃4x1M5
�x7=Ɛ6�

∑N
i=1 �̃i4xi1M5

�x7

=Ɛ

[ N
∏

i=1

��̃i4xi1M5
∣

∣

∣

x
]

=

N
∏

i=1

Ɛ6��̃i4xi1M5
�xi7 (10)

=

N
∏

i=1

�′

i4xi1M5=ê̂′4x1M50

Whittle’s result (Proposition 4.3) proves that this conjecture
is true. (The fourth equality above follows from the fact
that the clusters are independent.)

However, if there is no dominant action for some cluster
in some states, the state of other clusters may affect the
choice of actions at this cluster and the retirement time for
the full system �̃ may no longer be equal to the sum of
the retirement times �̃i for the clusters viewed in isolation;
�̃ may be more or less than the sum of the cluster-specific
retirement times �̃i. Thus the second equality in (10) need
not hold. Therefore the Whittle integral need not provide an
exact value function for a bandit superprocess if the Whittle
condition is not satisfied in all states for all clusters, but, as
shown in Proposition 4.2, it does provide an upper bound.

4.3. Examples

To illustrate these ideas, let us consider Whittle integrals
for the North Sea example with clusters as defined in Fig-
ure 2, but with the clusters assumed to be independent so
the model is a bandit superprocess. Specifically, we will
set the probabilities for each cluster to be the marginal dis-
tribution for the cluster, i.e., the initial joint distribution
P4× �x�5 on outcomes is replaced by

∏N
i=1P4�i �x

�5; we
focus on the case where there is uncertainty about the state
of the kitchens.

We will consider two different sets of possible actions
Ai4xi5 for the cluster-specific subproblems (3) underlying
the Whittle integral. First, we consider the case where the
DM has full flexibility in choosing actions in each state, for
all values of m. Second, to illustrate the role of the Whittle
condition and the potential slack in using the Whittle inte-
gral as a bound, we consider the case where the actions
Ai4xi5 for each cluster are restricted to a singleton with
action ai selected by a fixed policy; here we take the fixed
policies to be the policies that solve the cluster-specific
dynamic program (3) with M=0. Note that the retirement

decisions are not fixed by this policy; only the actions if
the DM continues are fixed. Fixing the policies in this
way reduces the bandit superprocess to a multiarmed ban-
dit problem. (We will use such bandits with fixed policies
when considering heuristics for the sequential exploration
problem in §5.1.)

Figure 4(a) shows the derivatives �′
i4xi1m5 as a function

of the retirement value m retirement value m for cluster 3
in Figure 2 with xi corresponding with all targets undrilled.
The thick black line shows �′

i4xi1m5 with full flexibility
in the choice of actions and the thin blue line shows the
derivatives in the case with the fixed policy for choosing
actions. These derivatives were calculated using the fron-
tier algorithm described in Appendix A and are piecewise
constant and increasing, as noted in Lemma 4.1.

If cluster 3 satisfied the Whittle condition in all states,
the derivatives with fixed and variable policies would be
identical, as the actions selected given retirement value
M=0 would be optimal for larger m. Here, the optimal
choice of actions for cluster 3 varies with m. For instance,

Figure 4. Example results for clusters in Figure 2.
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for values of m less than $905B, the optimal policy calls for
drilling at target 9A first. Target 9A is not very attractive
in itself (in fact, it has a negative expected value if taken in
isolation), but it is relatively inexpensive to drill and pro-
vides a great deal of information about other targets in the
cluster. For values of m greater than $66B, it is optimal to
retire and not work on this cluster at all. For values of m
between $43B and $66B, it is optimal to drill at target 5C
first; 5C has the largest unconditional expected value, but
provides less information about other targets. With a large
value of m, the additional information provided by drilling
at 9A is not as valuable as the DM would rather retire than
drill at many of the prospects in the cluster. Interestingly,
the optimal initial target changes several times for different
values of m, switching from 9A to 9B to 5A to 5C as we
increase m; the switch points are noted at the bottom of
Figure 4(a).

Because the choice of first action varies in the cluster-
specific problem with the retirement value m, the best
choice for this cluster in the full system problem may
depend on the states of other clusters. When solving the full
system problem, the DM does not actually “retire” from a
cluster and may return to work on the cluster after working
elsewhere. The optimal choice of first action for the cluster
in the full system problem may depend on how long the
DM expects it to take before returning to work on the clus-
ter. If the DM expects to return quickly, it may be optimal
to invest by drilling at sites that provide a great deal of
information, as suggested by the cluster policy with m=0
or other small values of m. On the other hand, if the DM
does not expect to return for a long time (or never), it may
be optimal to not make such an investment, as suggested
by the policies given by larger values of m.

Figure 4(b) shows the product of derivatives,
∏N

i=1�
′
i4xi1m5, for all clusters in Figure 2. The Whittle

integral given zero retirement value, ê̂4xi105, is equal to
the area above

∏N
i=1�

′
i4xi1m5 and inside the bounding

box. In the case where the DM has full flexibility in the
choice of policies for all clusters (the thick black line),
the Whittle integral value is $17,294M; this provides an
upper bound on the value of the bandit superprocess.
In the case with fixed policies for the clusters, the Whittle
integral is $171261M; this provides an exact value for
the bandit problem with these fixed policies. As the
solution for the bandit problem with this fixed policy is
feasible for the bandit superprocess with variable policies,
this fixed-policy value provides a lower bound on the
value with an optimal policy for the bandit superprocess.
The difference between the upper and lower bound,
$17,294M−$17,261M=$33M, is an upper bound on the
slack in the Whittle integral: we know that the value
associated with the optimal policy is within $33M or
0.19% of the upper bound given by the Whittle integral
with variable policies.

The slack in the Whittle integral bounds will vary with
the clusters and distributions assumed. In the case where

clusters correspond to individual targets, there is at most
a single action to choose from and the Whittle condi-
tion is satisfied; thus, the Whittle integral is equal to
the value function in this case. In the other cases, the
Whittle condition is not satisfied. Performing a similar
analysis as in the example above for the other clusters
with kitchen uncertainty, we find upper bounds on slack of
$8M, $33M (as above), $31M (0.05%, 0.19%, 0.17%) for
the cases with clusters corresponding to prospects and as
in Figures 2 and 3 (respectively). Without kitchen uncer-
tainty, these bounds on the slack are $6M, $68M, and
$68M (0.03%, 0.29%, 0.29%). Thus, in these examples, the
Whittle integral provides a fairly tight bound on the optimal
value, even though the Whittle condition is not satisfied.

4.4. Bounds Based on Lagrangian Relaxations

Rather than using the Whittle integral to bound the value
function for the bandit superprocess, another approach that
is commonly used in similar settings is a Lagrangian relax-
ation bound. This approach was used in Whittle (1988) in
a study of “restless bandits” and is developed more fully
in Hawkins (2003) and Adelman and Mersereau (2008),
which both consider applications in bandit or bandit-like
problems. Farias and Madan (2011) used this approach
in a study of “irrevocable bandit problems.” It is natu-
ral to consider using a Lagrangian relaxation with bandit
superprocesses.

In this approach, we introduce Lagrange multipliers for
the constraint that we can work on at most one cluster at
a time or, equivalently, the constraint that we must rest
at least N −1 clusters in each period. If we assume the
Lagrange multipliers are constant across states, we can
interpret the Lagrange multiplier as a retirement value M
and the Lagrangian decomposes into the sum of cluster-
specific value functions:

L̂4x1M5=
N
∑

i=1

�i4xi1M5−M4N −150 (11)

We provide the details of this derivation in the online
appendix. This Lagrangian L̂4x1M5 provides an upper
bound on the system-wide value function with zero retire-
ment value, ê4x105, for any M¾0; we can vary M to
find the smallest Lagrangian bound. In assuming a constant
Lagrange multiplier across states, this Lagrangian relax-
ation can be interpreted as requiring the resting constraint
to hold “on average”—more precisely, a form of discounted
expectation (see, e.g., Adelman and Mersereau 2008)—
rather than requiring the constraint to hold in each state.

This Lagrangian relaxation is like the Whittle integral in
that it provides an upper bound on the system-wide value
function in terms of the cluster-specific value functions
�i4xi1M5. We can, however, prove that the Lagrangian
relaxation bound is weaker than the bound provided by the
Whittle integral.

Proposition 4.4 (Comparing the Whittle Integral
and Lagrangian Relaxation Bounds). Let ê4x1M5
denote the value function for the bandit superprocess as
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defined in Equation (2) and let ê̂4x1M5 be the Whittle inte-
gral defined by Equation (5). For any x and any M¾0, we
have

ê4x1M5¶ê̂4x1M5¶ L̂4x1M50 (12)

Moreover, ê4x105¶ê̂4x105¶ inf8M¾09 L̂4x1M50

Proof. We established ê4x1M5¶ê̂4x1M5 in Proposi-
tion 4.2, so we need to prove ê̂4x1M5¶ L̂4x1M5. The
proof relies on the Weierstrass product inequality: given
�110001�N such that 0¶�i¶1 for all i, the Weierstrass
product inequality says that

∏N
i=141−�i5+

∑N
i=1�i¾1.

Rearranging into the form in which we will use it, this
is equivalent to −

∏N
i=141−�i5¶−1+

∑N
i=1�i. Now, start-

ing with the definition of the Whittle integral, for any B¾
M∗4x5 we have

ê̂4x1M5≡B−

∫ B

m=M

N
∏

i=1

�′

i4xi1m5dm

¶B+

∫ B

m=M

(

−1+

N
∑

i=1

41−�′

i4xi1m55

)

dm

=

N
∑

i=1

�i4xi1M5−4N −15M= L̂4x1M50

The inequality follows from the Weierstrass product
inequality taking �i =41−�′

i4xi1m55. The next equal-
ity follows from basic calculus and algebra, noting that
�i4xi1B5=B for B¾M∗4x5.

The final part of the proposition, ê4x105¶ê̂4x105¶
inf8M¾09 L̂4x1M51 follows from noting that ê4x1M5 and
ê̂4x1M5 are both nondecreasing in M , though L̂4x1M5
need not be nondecreasing in M . �

These Lagrangian bounds are particularly weak in the
North Sea example. In this example, we can show that the
best Lagrangian bound is given by taking M=0, for all
choices of clusters; see the online appendix. In this case,
the Langrangian L̂4x1M5 reduces to the value given by
allowing all of the clusters to be pursued immediately—
the sequential aspect of the problem is entirely disregarded.
The problem is that, in this example, with a limited number
of targets to drill, we can satisfy the constraint of rest-
ing N −1 clusters “on average” by working on all clusters
immediately and resting after the clusters have drilled all
of their prospects or quit.

More generally, however, the best Lagrangian bound may
be achieved by a value of M>0. Given that L̂4x1M5 is
piecewise linear and convex in M (this follows from the
fact that the �i4xi1M5 are piecewise linear and convex),
we can identify the best Lagrangian bound by a simple line
search, e.g., using bisection focusing on the breakpoints for
the piecewise linear function.

4.5. Computational Methods

In Appendix A, we describe the “frontier algorithm”
that we use to evaluate multiarmed bandits and bandit

superprocesses. These calculations are at the heart of our
methods for studying sequential exploration problems and
it is important to perform them efficiently. In the frontier
algorithm, we formulate the cluster-specific dynamic pro-
grams (3) as linear programs and then use techniques from
parametric linear programming to examine the impact of
varying the retirement value. Sequential explorations prob-
lems in general, and the North Sea example in particular,
have a lot of special structure that can be exploited in this
algorithm. For a given cluster, one pass of this algorithm
calculates �i4xi1m5 for all states xi and retirement val-
ues m and Gittins indices for all states. The run times for
this frontier algorithm varies strongly with cluster size. For
instance, with a cluster containing six targets (such as clus-
ter 3 in Figure 2), the algorithm runs in 0.08 seconds. For a
cluster with nine targets (such as cluster three in Figure 3),
the algorithm takes about four minutes.2

5. Heuristics and Bounds for Sequential
Exploration Problems

Having studied bandits and bandit superprocesses, which
assume independence among the clusters, we now return
to the full sequential exploration problem with dependence
among clusters. In this section, we consider heuristics and
bounds for the sequential exploration problem that are
based on the results and methods for bandits and bandit
superprocesses.

5.1. Bandit-Based Approximations and Heuristics

To find heuristics, we simplify and approximate the sequen-
tial exploration problem (1) in two ways:

• We approximate the initial (true) joint probability
distribution P4× �x�5 by a distribution that assumes the
clusters evolve independently according to their marginal
distributions under the true distribution. That is, we replace
P4× �x�5 with P�4× �x�5≡

∏N
i=1P4�i �x

�5 and thereby
approximate the sequential exploration problem with a ban-
dit superprocess.

• We approximate this bandit superprocess with a mul-
tiarmed bandit by assuming fixed policies Ï=4�110001�N 5
for choosing actions within each cluster. In this case, rather
than the DM selecting actions from a full set of actions
A4xi5 for each cluster as in (2), the set of actions consists
of a single action �i4xi5 from Ai4xi5 selected by policy �i

or the empty set if �i calls for retiring in state xi.
We can then write the approximating multiarmed bandit

problem with fixed policies Ï=4�110001�N 5 as

ê�
� 4x5≡max

{

01 max
8i2�i4xi56=�9

Ɛ�6r̃i4xi1�i4xi55

+�ê�
� 4x̃4x1�i4xi555 �xi7

}

1 (13)

where Ɛ� denotes expectations taken using the approximate
distribution P�0 The optimal solution for this approximate
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model is to work on the cluster with the maximum Gittins
index for the given state or to quit if the maximum Gittins
index is less than or equal to zero. These Gittins indices can
be calculated using the frontier algorithm of Appendix A.

There is considerable flexibility in the choice of fixed
policies in the approximate bandit model (13). In our
numerical experiments with the North Sea example, we
will use fixed policies �i that are optimal for cluster i with
retirement value M=0 (i.e., corresponding to �i4xi105),
given the independent marginal distribution for the cluster,
P4�i �x

�5. These policies can also be calculated using the
frontier algorithm of Appendix A.

There are many other possible choices for fixed poli-
cies. For example, we could use a policy corresponding to
�i4xi1M5 for some value of M other than zero. In a differ-
ent setting, Pandey et al. (2007) suggest choosing the action
in state xi that maximizes �i4xi1Mi4xi55, where Mi4xi5 is
the Gittins index for that state. We experimented with such
a policy in the North Sea example and it did not perform
as well as choosing actions that maximize �i4xi105. Intu-
itively, as discussed in §4.3, the actions selected with large
retirement values assume that the DM will retire before
drilling at the less attractive targets in a cluster. However,
in reality, rather than “retiring,” the DM may return to work
on the cluster after working elsewhere. With a large value
of M , the optimization problem may not appreciate actions
that provide information about or otherwise benefit these
less attractive targets. However, these additional benefits
could be valuable if the DM returns to work on the cluster.
In contrast, the optimization problem with M=0 assumes
that the DM will work on cluster i without interruption and
may overvalue actions that provide information about the
less attractive targets. Thus, the performance of different
fixed policies for a cluster may depend on the options avail-
able at other clusters as this determines when/if the DM
will return to a cluster after initially “retiring” and when/if
the benefits of learning will be realized.

The optimal policy for this approximate multiarmed ban-
dit (13) can be used to define a heuristic policy for the
original sequential exploration problem. We can evaluate
the performance of these heuristics using Monte Carlo sim-
ulation, by drawing samples from the true joint distribution
for the full system P4× �x�5 (taking into account all depen-
dence in the model) and calculating the rewards generated
using this heuristic in each simulated scenario.3 We can use
these bandit approximations in either a static or sequential
approach:

• In the static approach, we approximate the full model
once before running the simulation. For each cluster, this
requires performing Bayesian inference to calculate the
cluster-specific distributions P4�i �x

�5 given the initial sys-
tem state x� and determining the corresponding fixed poli-
cies �i and Gittins indices for all states. In the simulation,
in each period and in any state encountered, we work on
the cluster with the maximum Gittins index for that state
and choose actions according to the assumed fixed policy

for that cluster. This process continues until we encounter
a system state in which no clusters have positive Gittins
indices.

• In the sequential approach, we update the distribu-
tions and policies used in the approximate bandit in each
period, taking into account all observed results up to that
time. That is, in each period, we update P�4× �x5 to be
∏N

i=1P4�i �x5, where x is the current system state and then
resolve the approximate model (13). In each period, we use
Bayesian inference to calculate the cluster-specific distri-
butions P4�i �x5, for each cluster, given the current state;
we then determine the corresponding fixed policies �i and
Gittins indices for each cluster.4 In the simulation, we then
work on the cluster with the maximum Gittins index in the
current version of the approximate model, choosing actions
according to the current fixed policy for the chosen cluster.
This process continues until we encounter a system state
in which, after updating, no clusters have positive Gittins
indices.

Intuitively, with the static approach, we capture the learn-
ing within each cluster (e.g., how results for one target
affect decisions about other targets in the same cluster)
but entirely ignore the value of learning across clusters.
The sequential approach requires more work than the static
approach but captures cross-cluster learning in an approx-
imate manner by updating the bandit approximation as
results are revealed. Both start with the same approximate
model and thus select the same first action; the recommen-
dations may differ in later periods as the approximations
are updated in the sequential approach.

5.2. Upper Bounds on the Value of an
Optimal Policy

As these bandit-based heuristics are feasible for the sequen-
tial exploration problem, the expected discounted reward
generated by a heuristic provides a lower bound on the
value associated with an optimal policy. We complement
these lower bounds on the optimal value with upper bounds
given by considering an information relaxation (Brown
et al. 2010) in which the DM makes optimal decisions
using more information than would be available in the real
problem.

We will consider an information relaxation where we
evaluate each cluster in isolation, assuming that it has per-
fect information about the results for all other clusters.
We study this “clairvoyant relaxation” using simulation.
In each trial of the simulation, we generate a random out-
come ×̂=4�̂110001�̂N 5 of the underlying uncertainty for the
full model, with �̂i representing the outcome for cluster i.
The samples are drawn according to the full joint proba-
bility distribution P4× �x�5, taking into account all depen-
dence in the model. In each simulated scenario, we do the
following:

• We first calculate marginal distributions on outcomes
for each cluster, conditioned on observing the outcomes for
all other clusters; that is, we calculate P4�i �×̂ī1x

�5, where
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×̂ī denotes the sample outcome for all clusters other than
cluster i.

• We then approximate the sequential exploration prob-
lem with a bandit superprocess (2) by replacing the initial
(true) joint probability distribution P4× �x�5 with P×̂4× �

x�5≡
∏N

i=1P4�i �×̂ī1x
�5, so each cluster evolves indepen-

dently according to the clairvoyant marginal distributions.
If we let Ɛ×̂ denote expectations taken with respect to

this clairvoyant distribution P×̂, we can write the approxi-
mating bandit superprocess for the sample scenario ×̂ as

êc4x3×̂5≡max
{

01max
i

max
ai∈Ai4xi5

Ɛ×̂6r̃i4xi1ai5

+�êc4x̃4x1ai53×̂5 �xi7
}

0 (14)

Averaging the values found in each inner problem (14) pro-
vides an estimate of an upper bound on the value of the
original problem (1).

Proposition 5.1 (Clairvoyant Bound). Let ×̃ denote
the random selection of outcomes drawn according to the
full joint distribution with initial state x�. Then V 4x�5¶
Ɛ6êc4x

�3×̃57.

Proof. See the online appendix. �
The information relaxation used here is different from

those considered in Brown et al. (2010) or elsewhere in that
different parts of the model are given different sets of infor-
mation. We liken this information relaxation to the state of
information in the card game “blind man’s bluff,” where
each player knows the cards of all other players, but not
their own. Intuitively, with this information relaxation, we
properly capture the learning within each cluster (e.g., how
results for one target affect decisions about other targets in
the same cluster) but we overestimate the value of learning
across clusters.

Although we may not be able to solve the scenario-
specific bandit superprocesses (14) exactly, we can calcu-
late upper bounds on êc4x3×̂5 using the Whittle integral
or Lagrangian relaxation, as discussed in §4. To formalize
this, we let ê̂c4x3×̂5 and L̂c4x3×̂5 denote the Whittle inte-
gral (5) and Lagrangian relaxation (11) defined for the ban-
dit superprocess (14) with outcome ×̂, taking the retirement
value M that yields the minimum value. (For the Whittle
integral, the minimizing M is always zero. In the North Sea
example, the minimizing value for the Lagrangian bound
is always M=0, but, more generally, the minimizing value
of M may vary with ×̂.) Then, combining Proposition 5.1
with results in §4, we have the following bounds.

Corollary 5.2 (ClairvoyantWhittle andLagrangian
Bounds). Let ×̃ denote the random selection of outcomes
drawn according to the full joint distribution with initial
state x�, as in Proposition 5.1. Then

V 4x�5¶Ɛ6êc4x
�3×̃57

¶Ɛ6ê̂c4x
�3×̃57¶Ɛ6L̂c4x

�3×̃570 (15)

We will refer to Ɛ6ê̂c4x
�3×̃57 and Ɛ6L̂c4x

�3×̃57 as the
clairvoyant Whittle bound and the clairvoyant Lagrangian
bound, respectively. We present results for these two
bounds in the North Sea example in §6.

5.3. On the Choice of Clusters

Combining clusters into larger clusters will lead to tighter
clairvoyant bounds as there is less information gained in
the information relaxation. For instance, in the North Sea
example, the clairvoyant bound given by a model that treats
each target as its own cluster will be weaker than the bound
given by a model that groups together all of the targets
associated with a given prospect. Similarly, a bound given
by grouping prospects together (such as that of Figure 2)
will be better than the bound given by treating prospects
(or targets) as separate clusters. Larger clusters will also
typically lead to better lower bounds, as the heuristics will
better capture the dependence in the problem. The trade-
off is that it typically requires more computational effort to
evaluate larger clusters.

How should we choose clusters? A natural approach is
to start with the smallest clusters possible, then compute
upper and lower bounds with these simple clusters; if the
gap between bounds is small, we are done. Otherwise, we
can group together some of the clusters in order to reduce
the gap between lower and upper bounds.

One way to identify clusters to be combined is to see
which clusters are benefitting most from the additional
information in the clairvoyant relaxation. To examine
this, we can calculate the cluster-specific value function
�ci4x

�
i 3×̂ī5 given knowledge of all other cluster results

in each trial of the simulation (assuming zero retirement
value); this requires little additional work as this value
would be determined as part of the frontier algorithm used
to calculate Whittle integrals or Lagrangian bounds. The
average of these cluster-specific values, Ɛ6�ci4x

�
i 3×̃ī57, pro-

vides an upper bound on the maximum expected reward
that can be obtained from cluster i under any policy. We can
contrast this upper bound with the cluster-specific value
�i4x

�
i 5 computed using the unconditional marginal distri-

bution of cluster i. A large difference between these values
suggests that cluster i is benefitting a great deal from the
information provided by other clusters.

We would consider combining those clusters that are
benefitting significantly from the additional information
with other clusters that are providing this valuable infor-
mation. In the North Sea example, the clusters that are
most strongly related to a given cluster are its upstream or
downstream neighbors in the Bayesian network. In other
applications, we might identify strongly related clusters by
looking at a correlation matrix or a multiple regression
model that relates rewards or outcomes for the different
clusters. We could also perhaps use entropy (or mutual
information) methods to suggest strongly related clusters.
In practice, we would expect application-specific features to



Brown and Smith: Optimal Sequential Exploration
Operations Research 61(3), pp. 644–665, © 2013 INFORMS 657

play a key role in guiding the choice of clusters. Moreover,
we would expect there to be some degree of experimenta-
tion in this process.

6. Numerical Results for the
North Sea Example

In this section, we discuss the use of Monte Carlo sim-
ulation to evaluate the performance of our heuristics and
bounds in the North Sea example. We first describe the
computations and then discuss the results.

6.1. Computations and Run Times

In our simulations, we consider four different sets of clus-
ters: one cluster for each target, one cluster for each
prospect, the “medium cluster” case shown in Figure 2,
and the “large cluster” case of Figure 3. To illustrate the
effects of different degrees of dependence among targets,
we consider the model with and without uncertainty about
the state of the kitchens, as discussed in §2. We ran 400 tri-
als for each simulation, using one set of samples for all
cases without kitchen uncertainty and another set of sam-
ples for the cases with kitchen uncertainty. In each trial
of the simulation, we generate outcomes for all 25 targets
according to the full joint probability distribution, taking
into account all dependence in the problem.

In these simulations, we will consider static and sequen-
tial bandit-based heuristics (as discussed in §5.1) and the

Table 1(a). Results without kitchen uncertainty (400 samples).

Clusters= Clusters=one Medium clusters Large clusters
one target prospect (Figure 2) (Figure 3)

Static bandit heuristic
Mean ($M) 201217 221451 231019 231150
Mean standard error ($M) 104 41 33 5
Run time (seconds) 280 281 290 422

Sequential bandit heuristic
Mean ($M) 221714 221991 231148 —
Mean standard error ($M) 65 42 34 —
Run time (seconds) 697 31892 21735 —

Clairvoyant Whittle bound
Mean ($M) 251244 241077 231416 231248
Mean standard error ($M) 19 13 8 2
Duality gap ($M) 21530 11086 268 98
Gap as a fraction of bound (%) 1000 405 101 004

Clairvoyant Lagrangian bound
Mean ($M) 271435 261138 251141 241479
Mean standard error ($M) 33 20 8 1
Duality gap ($M) 41721 31147 11993 11329
Gap as a fraction of bound (%) 1702 1200 709 504

Clairvoyant Whittle bound with fixed first action
Mean ($M) 251079 231960 231304 231248
Mean standard error ($M) 19 11 5 2
Target with max 1A 13B 13B 10B
Duality gap ($M) 21365 969 156 98
Gap as a fraction of bound (%) 904 400 007 004

Run time for all clairvoyant bounds (seconds) 417 227 332 1111374

clairvoyant Whittle and Lagrangian bounds (as discussed
in §5.2). We use the Bayes Net Toolbox for MATLAB
(Murphy 2001) to calculate and update the probability dis-
tributions and our own MATLAB code to implement the
frontier algorithm of Appendix A. Because both clairvoy-
ant bounds (and the first-action-fixed clairvoyant bounds
discussed in §6.3) require essentially the same information,
we calculated these bounds simultaneously and report a sin-
gle run time for all clairvoyant bounds. The run times and
results are summarized in Table 1((a) and (b)).

As is evident in Table 1, the run times vary by cluster
size. With smaller clusters, the run times are dominated by
the time it takes to update the probability distributions for
each cluster; the frontier algorithm is very fast. However,
with larger clusters, the run times are dominated by the time
it takes to run the frontier algorithm. This is evident in the
run times for the clairvoyant bounds in the cases with the
large clusters: each trial takes approximately five minutes
and 400 trials takes more than 30 hours. Note, however, that
the mean standard errors in this case are quite small and
we could have achieved good accuracy with many fewer
trials. Because of run time concerns, we did not attempt
to evaluate the sequential heuristic in the cases with large
clusters.

The run times also differ across the cases with and with-
out kitchen uncertainty because of the differences in the
probability distributions involved. On one hand, the heuris-
tic policies are easier to evaluate with kitchen uncertainty
because the policies tend to quit sooner; the possibility that



Brown and Smith: Optimal Sequential Exploration
658 Operations Research 61(3), pp. 644–665, © 2013 INFORMS

Table 1(b). Results with kitchen uncertainty (400 samples).

Clusters= Clusters=one Medium clusters Large clusters
one target prospect (Figure 2) (Figure 3)

Static bandit heuristic
Mean ($M) 121272 161328 171058 171717
Mean standard error ($M) 146 84 63 19
Run time (seconds) 215 243 278 420

Sequential bandit heuristic
Mean ($M) 161915 171409 171688 —
Mean standard error ($M) 100 71 51 —
Run time (seconds) 595 31163 21660 —

Clairvoyant Whittle bound
Mean ($M) 201875 191639 181464 171894
Mean standard error ($M) 34 30 15 6
Duality gap ($M) 31960 21230 776 177
Gap as a fraction of bound (%) 1900 1104 402 100

Clairvoyant Lagrangian bound
Mean ($M) 221437 211101 191594 181698
Mean standard error ($M) 75 46 22 6
Duality gap ($M) 51522 31692 11906 981
Gap as a fraction of bound (%) 2406 1705 907 502

Clairvoyant Whittle bound with fixed first action
Mean ($M) 201515 191404 181239 171894
Mean standard error ($M) 30 26 15 6
Target with max 10B 13B 12A 10B
Duality gap ($M) 31600 11995 551 177
Gap as a fraction of bound (%) 1705 1003 300 100

Run time for all clairvoyant bounds (seconds) 419 230 354 1261585

the kitchens may be dry makes all targets less attractive.
On the other hand, kitchen uncertainty increases the pos-
sibilities for cross-prospect learning; this tends to lead to
more complicated policies and more iterations in the fron-
tier algorithm, particularly with clusters that include more
than one prospect.

The means and mean standard errors in Table 1 have
been adjusted using control variates. We describe these con-
trol variates in detail in the online appendix and provide a
brief overview here:

• For the clairvoyant bounds, the control variates are
based on the expected values for the individual clusters
with a fixed policy. These cluster-specific expected val-
ues can be computed exactly and are also estimated in
the simulations; the differences between the simulated val-
ues and exact means can then be used as control variates
in a standard multiple-regression-based approach (see, e.g.,
Glasserman 2004). In our experiments, these control vari-
ates reduce the mean standard errors by a factor of 10–20.

• For the heuristic policies, we use the “approximat-
ing martingale-process method” of Henderson and Glynn
(2002). The basic idea of this approach is to use samples
and expectations for an approximate value function (here
the value function for the approximating multiarmed ban-
dit (13)) to construct a control variate for the more com-
plex system. The effectiveness of these control variates will
depend on how well the approximate value function repli-
cates values for the more complex system. In our exper-
iments, these control variates reduce the mean standard
errors by a factor of 5–100.

In general, these control variate calculations require very
little additional work. The improvements in accuracy pro-
vided by these control variate corrections are very impor-
tant: without them, it would be difficult to make meaningful
comparisons of the heuristics and bounds without running
many more trials.

6.2. Results

In Table 1, we see that the sequential heuristic outper-
forms the static heuristic in every case. This is not sur-
prising: As discussed in §5.1, the static heuristic captures
learning within clusters, but does not capture learning
across clusters. The sequential heuristic incorporates cross-
cluster learning by updating this approximate model in each
period. With larger clusters, both heuristics do better and
the differences between the two heuristics decrease as more
learning is captured within the clusters. We also note that
the differences between the sequential and static heuristics
are more pronounced when there is uncertainty about the
state of the kitchens; cross-cluster learning plays a greater
role in this case.

Examining the clairvoyant bounds, we see that the
Whittle and Lagrangian bounds both improve with larger
clusters, as there is less information gained in the informa-
tion relaxation with larger clusters. Also as expected, the
Lagrangian bounds are substantially worse than the Whittle
bounds: the differences range from approximately $800M
to $2,200M. The duality gap—the difference between the
upper bound and the best lower bound (the sequential
heuristic, when computed)—is smallest for the Whittle
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bounds with the large clusters: the static heuristic is within
004% of the optimal value without kitchen uncertainty and
within 100% with kitchen uncertainty. Comparing the mag-
nitudes of these duality gaps to the estimates of the slack in
the Whittle integrals presented at the end of §4.3, it appears
that with the small and medium clusters most of the dual-
ity gap is due to the information relaxation (i.e., the first
inequality in (15)) as opposed to using the Whittle integral
as a bound (the second inequality in (15)). However, in the
case with the large clusters, there is much less information
lost in the relaxations and the slack in the Whittle integral,
though small in an absolute sense, may represent a larger
fraction of the relatively small duality gap.

The mean standard errors associated with each estimate
also decrease for larger clusters. For the heuristics, this
improved accuracy is a consequence of the fact that the
control variates improve as the underlying approximate
value functions improve with larger clusters. For the clair-
voyant bounds, the improved accuracy reflects the fact that
there is less information gained with larger clusters; this
implies that the clairvoyant bounds are less variable across
the different conditioning scenarios.

6.3. Refinements

Although we have presented the results for all cases simul-
taneously, our choices of clusters proceeded iteratively with
the choices at each stage guided by the detailed results for
earlier, smaller clusters. As discussed in §5.3, after each
simulation, we looked at how much each cluster, when con-
sidered in isolation, benefitted from the additional informa-
tion provided in the information relaxation. When moving
from smaller to larger clusters, we combined those clusters
that benefited most with other clusters that were closely
related in the Bayesian network of Figure 1. For example,
after examining the results for the case with clusters corre-
sponding to prospects, these considerations led us to com-
bine prospects 7 and 11 and their neighbors into one cluster
and prospects 5 and 9 into another cluster. (We provide
detailed cluster-specific results in the online appendix.)

Similarly, we looked at the details of the optimal policies
for the cluster-specific problems to see how likely we were
to drill various targets. As discussed in §A.1, the decision
variables È in the linear programming representation (18)
of the cluster-specific dynamic program represent the dis-
counted expected time spent in each state-action pair. If a
target is never drilled, the entries in È corresponding to
drilling that target will always be zero. In early results with
smaller clusters, we noticed that targets 6C and 8A were
never drilled in any scenario encountered (with or without
kitchen uncertainty). Considering these targets more care-
fully, we were able to prove that these two targets should
never be drilled (see the online appendix). Given this, we
dropped these targets in the case with large clusters, mean-
ing we assumed that the targets would never be drilled and
that their results would never be observed. Dropping these
targets has no effect on the values for the heuristic policies,

as the targets are never drilled with these heuristic policies.
However, dropping the targets may improve (and cannot
harm) the clairvoyant bounds as it reduces the information
provided to other clusters.

Finally, we looked at the possibility of constraining the
actions selected in the clairvoyant bounds. Although any
nonclairvoyant DM must start by drilling a particular tar-
get and cannot change this choice in response to unseen
future events, the clairvoyant DM has the flexibility to
change this choice based on outcomes for other clusters.
We can refine the clairvoyant bounds by calculating a set of
bounds—one bound for each possible first-period action—
where the first-period action is constrained to match the
given action. Because any feasible exploration policy has
to drill at some target first, the maximum of these first-
action-fixed bounds provides an upper bound for the opti-
mal sequential exploration problem; moreover, this bound
cannot be any worse than the unconstrained clairvoyant
bound. Because the frontier algorithm provides cluster-
specific value and derivative information for all states
simultaneously, these fixed-first-action bounds require lit-
tle additional work beyond that required for computing the
unconstrained Whittle or Lagrangian bounds.

Table 1 reports the best first-action-fixed Whittle bounds,
as well as the target that attains the maximum in each case.
Here we see that imposing this constraint on the first action
improves the bounds, particularly in the cases with smaller
clusters. There is no improvement in the cases with large
clusters, as in these cases, the clairvoyant DM is learning
relatively little and the first action does not change across
scenarios. We discuss the calculation of these first-action-
fixed bounds in detail in the online appendix and provide
full results for the case with large clusters.

6.4. Recommendations

So, which target should we drill first? And then what?
In both cases with and without kitchen uncertainty, for
all cluster sizes, the bandit-based heuristics recommend
drilling at target 10B. Although we cannot prove that is
optimal to start with 10B, we can rule out starting at any
target other than 10B or 13B in the case without kitchen
uncertainty (10B, 6B, or 13B in the model with kitchen
uncertainty): considering the clairvoyant bounds with fixed
actions (see Table 2 in the online appendix), the upper
bounds on performance for policies that start with the
ruled-out targets are worse than the expected value follow-
ing the static heuristic. It is also telling that with the large
clusters, the unconstrained clairvoyant bounds match those
bounds that are restricted to start with 10B. Although this
does not prove that starting with 10B is optimal, we can be
sure that if we start with 10B and follow the static heuristic
with large clusters, we will be within 0.4% of the expected
value with an optimal policy (or 1.0% for the case with
kitchen uncertainty).

Assuming we drill 10B first, the choice for the next well
to drill depends on the outcome for 10B. If we find oil or
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gas at 10B, in all cases, the heuristics recommend drilling
at target 10C. We learn little new by drilling at 10C next,
because finding oil or gas at 10B has already revealed that
prospect 10 contains oil or gas. Instead, we reap some of
the benefits of what we learned from 10B: success at 10B
makes 10C very attractive and we drill there right away.

If we find 10B to be dry, the recommendations vary by
heuristic and by cluster size. For example, without kitchen
uncertainty and with medium clusters, the static heuris-
tic recommends drilling at 6A next, whereas the sequen-
tial heuristic with medium clusters and static heuristic with
large clusters recommend drilling 13B next. In the medium
cluster case, prospect 6 is in a different cluster than 10;
the static heuristic therefore does not take into account
the negative implications that failure at 10B has for target
6A. With large clusters, prospects 6, 10, and 13 are all in
the same cluster and these negative implications are cap-
tured by the static heuristic. The sequential heuristic with
medium clusters also takes these negative implications into
consideration when it updates the approximation after see-
ing 10B is dry. We would recommend following the more
sophisticated heuristics and drilling at 13B in those cases
where 10B is found to be dry.

6.5. Comparison with Other Heuristics

It is instructive to compare our bandit-based heuristics with
the naive, myopic, and limited-look-ahead heuristics that
Martinelli et al. (2012) considered for the North Sea exam-
ple. In the naive heuristic, the DM neglects all learning
and ranks all targets according to the (initial) unconditional
expected value associated with drilling at that target; the
DM then drills those that have positive expected values
in order. This naive heuristic is exactly equivalent to the
static bandit heuristic with clusters corresponding a single
target: it is not hard to see that in this case the Gittins
indices would rank targets in the same way as the uncon-
ditional expected values. The myopic heuristic also ranks
targets by their unconditional expected values, but updates
these expected values at each stage taking into account any
observed results; this is exactly equivalent to sequential
bandit heuristic with clusters corresponding to individual
targets. In Table 1 we see that the myopic heuristic outper-
forms the naive heuristic, but does not perform as well as
the heuristics based on larger clusters.

A limited-look-ahead heuristic (see, e.g., Bertsekas
1995) truncates the time horizon of the dynamic program-
ming model and at each stage uses a decision based on
looking ahead a small number of stages. For instance, in
this example, a one-step look-ahead heuristic chooses a
cluster and action (i and ai) (i.e., a target to drill) in a given
period to maximize Ɛ6r̃i4xi1ai5+�V̄ 4x̃4x1ai55 �x7, where x
represents the current state of the full system and V̄ is
some easy-to-compute approximation of the true continu-
ation value function. The heuristic calls for quitting if the
values are all negative. Martinelli et al. (2012) propose tak-
ing V̄ to be the value under the naive heuristic.

In a setting with many possible actions, the look-ahead
heuristics can be time consuming to evaluate. For instance
in the North Sea example, for each available action in
the first stage (there are 25 choices), we need to cal-
culate marginal probabilities for each possible outcome
(three possibilities) conditional on the current state of infor-
mation. To evaluate the approximate continuation value, we
need conditional probabilities for the possible outcomes for
the next period for each possible (24) action in the next
period in every first period scenario: in all, we need to solve
25×3×24=11800 different Bayesian inference problems
just to calculate these approximate continuation values for
the first-stage decision. A two-step look-ahead heuristic
would require solving 11800×3×23=1241200 different
Bayesian inference problems to calculate the approximate
continuation values for the first decision. Thus, looking
ahead in depth is quite computationally expensive.

We evaluated these one-step look-ahead heuristics using
the same set of 400 scenarios used to generate the results
in Table 1. In the case with no kitchen uncertainty, the sim-
ulation took approximately 16,400 seconds (4.5 hours) to
run and, using control variates, the mean was $22,239M
with a mean standard error of $70M. Strikingly, this one-
step look-ahead heuristic performs worse than the simpler
myopic heuristic; it also performs worse than the easier-
to-evaluate heuristics based on larger clusters. In the case
with kitchen uncertainty, the simulation took 16,492 sec-
onds and the mean was $16,891M, with a mean standard
error of $70M. This is comparable to the myopic heuristic
but worse than the heuristics based on larger clusters.

To understand the performance of the one-step look-
ahead heuristics, it helps to consider the actions selected by
the heuristics; we will focus on the case with no kitchen
uncertainty. As discussed above, the myopic heuristic and
cluster-based heuristics start by drilling at target 10B. The
one-step look-ahead heuristic instead starts at target 9B,
which is one of the targets that was ruled out as optimal in
§6.4. Target 9B provides a lot of information about other
targets, but is not very attractive in itself. The one-step look-
ahead heuristic chooses to drill target 9B first because in the
one-step look-ahead model the DM only has one period to
“learn” and places a great deal of value of information pro-
vided by this first well. In the next period, the heuristic again
assumes the DM has only one period to learn and chooses
accordingly, thereby deferring the earning associated with
drilling at attractive targets. In contrast, the bandit heuristics
based on larger clusters recognize that the DM can choose
the most attractive target initially and then learn later.

As discussed in the introduction, the key trade-off in
these sequential exploration problems is between earn-
ing immediately and learning to improve future earnings.
Although it can be expensive to “look ahead” in mod-
els with many actions, some degree of looking ahead is
necessary to properly value opportunities for learning. We
can view the bandit-based heuristics as being a form of
limited-look-ahead heuristic that manages computational
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complexity by looking ahead only within the chosen clus-
ters, where learning is likely to play the biggest role. We
then make the trade-off between earning and learning by
working on the cluster with the largest Gittins index, with
the index reflecting both learning and earning potential for
a given cluster.

7. Conclusions
Although we cannot claim to have fully solved the North
Sea example that motivated this work, by iteratively refin-
ing our approximations and heuristics, we have come very
close to an optimal policy. Moreover, through the clair-
voyant bounds, we know that we have come very close to
optimality. These clairvoyant bounds are very useful for
modelers: it is always tempting to tinker with heuristics to
see if we can do better and, in complex models, evaluating
these variations can be time consuming. Without an upper
bound on the performance, we would never know when we
have reached the point of diminishing returns and may tin-
ker endlessly. With good bounds, we know when we cannot
do much better.

What is required for this approach for studying sequen-
tial exploration problems to work well? The main require-
ment appears to be the ability to capture “most” of the
dependence in the model within clusters that are of a man-
ageable size, i.e., of a size such that we can find the
Gittins indices required for the bandit-based heuristics and
repeatedly evaluate the Whittle integrals in a reasonable
amount of time. Typically, the state spaces for these cluster-
specific problems grows exponentially as we combine sim-
ple clusters (or targets) into larger clusters. Thus it helps
to have small, discrete state-action spaces for the targets
and a correlation structure among targets that is, intuitively,
“approximately block diagonal” with blocks (correspond-
ing to clusters) that are not too large. We also need to be
able to do probabilistic inference (i.e., Bayesian updating)
in the full model reasonably efficiently in order to calcu-
late the cluster-specific marginal distributions used in the
heuristics and bounds.

Several interesting questions and challenges remain:
• We chose clusters by studying the network and

detailed simulation results, proceeding in a rather ad hoc
manner. Is there some way to systematically choose and
refine the definition of clusters?

• In other applications of information relaxations to pro-
vide bounds for stochastic dynamic programs, it is help-
ful to incorporate penalties that charge the clairvoyant DM
for using additional information (see Brown et al. 2010).
Although the bounds in our example are “good enough”
without such penalties, would it be possible to obtain good
bounds with less effort (e.g., with smaller clusters) using
some kind of penalty?

• Our analysis has assumed that the DM must proceed
sequentially, considering one cluster or, in the example,
one target at a time. What if there was a possibility of

using more than one drilling rig so the DM can drill two
or more targets simultaneously? What kinds of heuristics
and bounds would be helpful in these settings? Does the
Whittle integral generalize?

• Finally, we might consider the case of “restless ban-
dits with correlated arms” where cluster states may change
when not active or, more generally, “weakly coupled
dynamic programs” with dependent subproblems. In this
setting, we could proceed as in §5 and generate heuristics
and upper and lower bounds on values by considering inde-
pendent and clairvoyant approximations of the full problem
with dependence. Although we could no longer use bandit
and bandit superprocess methods to study these approxi-
mate models, we could perhaps use Lagrangian and/or lin-
ear programming relaxations instead (as in, e.g., Adelman
and Mersereau 2008).

Although we have focused on a specific example of oil
and gas exploration in this paper, we believe that there are
many other problems that have a similar structure. As dis-
cussed in the introduction, many classic applications of the
bandit problem (e.g., job scheduling, targeted advertising,
clinical trials) may have dependent arms. In these settings,
we may be able to use heuristics and bounds that are anal-
ogous to those used here. Moreover, the results and algo-
rithms for bandit superprocesses that we have developed
may be useful in these and other settings.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1164.

Appendix A. Computational Methods

To evaluate our heuristics and bounds for sequential exploration
problems, we need to calculate cluster-specific value functions
�i4xi1M5 and their derivatives for a variety of retirement values
and calculate Gittins indices for a variety of states. We will formu-
late the cluster-specific dynamic programs as linear programs and
solve them using techniques that combine ideas from paramet-
ric linear programming and policy iteration methods for solving
dynamic programs.

Chen and Katehakis (1986) and Kallenberg (1986) discussed
the use of linear programming and parametric linear programming
(respectively) for calculating Gittins indices for standard multi-
armed bandit problems. We build on these ideas and describe how
these methods can be used with bandit superprocesses to com-
pute the cluster-specific value functions and derivatives required
to calculate Whittle integrals and Lagrangian bounds, as well as
Gittins indices. Although the Whittle integral is frequently used
as a theoretical construct to prove the optimality of index-based
policies for multiarmed bandit problems (as in Whittle 1980), we
are not aware of any prior work that considers actually computing
these integrals for multiarmed bandits or bandit superprocesses.

A.1. Formulating the Dynamic Programs
as Linear Programs

We first describe the linear programming formulation of the prob-
lem of finding the value function �i4xi1M5 for the cluster-specific
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dynamic program given by (3) with retirement value M . Lin-
ear programming formulations of dynamic programs are standard
(see, e.g., Puterman 1994 or Bertsekas 1995).

Let Ô denote the vector of values representing the cluster-
specific value function �i4xi1M5; the length of the vector is equal
to the number of possible states, �Xi�. We let Ô4xi5 denote the
entry of Ô corresponding to state xi. We can then write the linear
program as

minimize
Ô

∑

xi

Ô4xi5

subject to Ô4xi5−�Ɛ6Ô4x̃i4xi1ai55 �xi7

¾Ɛ6r̃i4xi1ai5 �xi7

for all xi ∈Xi1ai ∈A4xi5

Ô4xi5¾M for all xi ∈Xi0

(16)

Intuitively, the problem is to find a minimal vector Ô that satis-
fies the Bellman inequalities, represented as constraints. The first
set of constraints captures the maximum over actions ai in the
recursive Equation (3). The second set of constraints captures the
possibility of retiring and receiving retirement value M . These
inequality constraints will be binding if the action (action ai or
retirement) is optimal for state xi. Basic feasible solutions for (16)
represent different possible policies for the dynamic program and
at least one constraint will be binding for each state.

To streamline our discussion, it is convenient to rewrite (16)
using matrix and vector notation as

minimize
Ô

eTÔ

subject to ATÔ¾c+Md0
0 (17)

Here AT is a m×n matrix where the m rows represent possi-
ble state-action pairs and the n columns represent states; c is an
m-vector representing the expected rewards for Ɛ6r̃i4xi1ai5 �xi7 for
each state-action pair, with zeroes for the retirement actions; d
is an m-vector with ones for state-action pairs corresponding to
retirement (earning reward M) and zeroes otherwise; e is an n-
vector of ones.

Note that the basis matrices for this linear program will be of
the form BT =4I−�P5, where P is a substochastic matrix rep-
resenting the probability transition matrix with the policy rep-
resented by the basis.5 Since we have assumed �<1, we know
B−1 =4I−�PT5−1 =4I+�P+�2P2 +···5T.

The dual of (17) is a linear program in standard form:

maximize
È

4c+Md5TÈ

subject to AÈ=e

È¾00

(18)

Here the decision variable È is an m-vector, with one entry for
each state-action pair. In any basic feasible solution, the entries in
È corresponding to the action selected in a given state (the basic
variables ÈB) will be positive—in fact, greater than one—and the
remainder will be zero; thus all basic feasible solutions will be non-
degenerate. The È variables represent the discounted total expected
time spent in each state-action pair with the given policy, summing
over the times for all initial states. To see that the basic variables
ÈB will be greater than one, let P be the substochastic matrix rep-
resenting the transitions for the policy represented by basis B and
note that ÈB =B−1e=4I−�PT5−1e=4I+�P+�2P2 +···5Te¾e.

A.2. The Frontier Algorithm

To calculate �i4xi1M5 for varying retirement values M , we need
to repeatedly solve the linear program (18). Because �i4xi1M5 is
piecewise linear, increasing, and convex in M (see Lemma 4.1),
this amounts to finding the slopes of the pieces and the break-
points between pieces. We do this using an algorithm that we will
call the “frontier algorithm.” The frontier algorithm is a variation
of the Gass-Saaty algorithm for parametric linear programming
(Gass and Saaty 1955), which can be seen as a variation of the
simplex method for solving a linear program.

Algorithm 1 (Frontier algorithm: For all xi, find �i4xi1M5,
�′

i4xi1M5 for all M¾0 and M∗
i 4xi5)

let B0 =I be an initial basis matrix that is optimal for all
M¾M0;

let g=0 (initialize vector of Gittins indices);
let j=0;
loop

let Ëcj and Ëdj be the solutions to BT
j Ëcj =cB and

BT
j Ëdj =dB (calculate dual variables);

let c̄=c−ATËcj and d̄=d−ATËdj

(calculate reduced costs);
if d̄¾0 then

let Mj =0 and Stop. (The next Mj is −�;
we are done.);

end if
let Mj and I be the max and argmax (resp.) of
{

−
c̄k
d̄k
2 d̄k<0

}

;

if Mj ¶0 then
let Mj =0 and Stop. (We are done.);

else
for all states xi included in I, let g4xi5=

max8g4xi51Mj9 (update Gittins indices)
let Bj+1 be a new basis matrix with the rows of Bj

representing the states in I replaced by the
corresponding rows of A, ensuring that the basis
matrix Bj consists of rows of A representing one
action for each state (ties among actions for the
same state may be broken arbitrarily);

let j= j+1;
end if

end loop

The frontier algorithm begins with a large retirement value M0

and a basis matrix B0 that is optimal for all M¾M0. Since the dis-
count factor � is assumed to be strictly less than one, we can take
M0 =c∗/41−�5 where the c∗ is the maximum element in c. In all
states, it is optimal to retire immediately for all M¾M0 and we
can take the initial basis matrix B0 to be an identity matrix. Thus
we have �i4xi1M5=M and �′

i4xi1M5=1 for M¾M0. We then
calculate the remaining values, slopes, and breakpoints by itera-
tively updating the basis while reducing the retirement value M .

Suppose we are given a basis matrix Bj that is optimal for Mj .
This basis will remain optimal for smaller values of M as long
as the reduced costs associated with the basis are nonpositive.
We can decompose the dual variables and reduced costs associ-
ated with this solution into components associated with rewards
and retirement. The dual variables Ëcj and Ëdj associated with
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rewards and retirement are given as the solutions to BT
j Ëcj =cB

and BT
j Ëdj =dB, where cB and dB are the elements of c and d

associated with the current basis. The reduced cost components
are then given as c̄=c−ATËcj and d̄=d−ATËdj . The combined
reduced costs c̄+M d̄ will be nonpositive as long as M¾Mj+1 =

max8−c̄k/d̄k2 d̄k<09. Thus Bj will remain optimal for M¾Mj+1.
The algorithm terminates if Mj+1¶0 or if d̄¾0 (which would

imply Mj+1 =−�). Otherwise, we update the basis matrix Bj .
The set of indices I achieving the maximum ratio Mj+1 =

max8−c̄k/d̄k2 d̄k<09 represents the state-action pairs entering the
basis in this iteration. We replace the rows in Bj corresponding
to the set of states in I with the rows from A representing the
state-action pairs in I. To ensure the validity of the new basis, we
need to be sure that the basis includes one action for each state.
If the index set I includes two or more state-action pairs for a
single state, we can break the tie among actions arbitrarily and
choose any one of these actions. This leads to a new basis that is
optimal over the next range of retirement values. (We prove this
as part of the proposition below.)

The value function and its derivatives are given by the dual
variables constructed in the algorithm and the Gittins indices are
determined by noting the value of Mj+1 that leads to the first
change action for a given state; these are stored in g in the algo-
rithm. We summarize these results as follows.

Propositon A.1 (The Frontier Algorithm). Let M0 satisfy
M0 ¾c∗/41−�5, where the c∗ is the maximum element in c and
let B0 be an identity matrix.

(i) For all j¾0, the basis matrices Bj generated by the fron-
tier algorithm are optimal for M in 6Mj+11Mj 7. In this range,
�i4xi1M5=Ëcj4xi5+MËdj4xi5 and �′

i4xi1M5=Ëdj4xi5.
(ii) For any state xi with a positive Gittins index, the Gittins

index M∗
i 4xi5 is equal to g4xi5.

(iii) The algorithm will terminate after a finite number of steps.

Proof. See the online appendix. �

Thus, with one pass of the frontier algorithm, we can calculate
the cluster-specific value function and its derivatives for all states
and retirement values M>0 and Gittins indices for all states with
nonnegative indices. Given the slopes and breakpoints for all clus-
ters in a given state x, we can easily (and quickly) calculate the
Whittle integral ê̂4x105; we provide details of these calculations
in the online appendix.

A.3. Discussion of the Frontier Algorithm

This frontier algorithm differs from the Gass-Saaty algorithm for
parametric linear programming in several ways. First, we are able
to use properties of the bandit problem to identify an initial basis
that is optimal for large values of M , rather than starting the
procedure by solving a linear program for some value of M .

Second, we do “multiple pivots” in the event of a tie in the ratio
test for choosing which variables to add to the basis: we swap in
all elements of I achieving the maximum ratio, taking care to
ensure that the basis consists of one action per state. Because the
linear program represents a stochastic dynamic program, we can
be sure that such a multiple pivot will result in a valid basis (i.e., a
basis matrix with linearly independent columns). In our examples,
ties in the ratio test are common and the sets I may be large
(e.g., containing hundreds or thousands of elements); efficiency is
greatly enhanced by doing multiple pivots simultaneously.

The final point of difference between the frontier algorithm and
the Gass-Saaty algorithm is also a consequence of the fact that
(18) represents a stochastic dynamic program. Because of this, we
know that the basic feasible solutions will be nondegenerate and
no cycling will occur. The Gass-Saaty algorithm requires addi-
tional assumptions to ensure that cycling will not occur (see Klee
and Kleinschmidt 1990). Here we cannot be sure that Mj will
decrease in each iteration, but we can be sure that the objective
function without retirement rewards (eTËcj ) will increase in each
iteration.

In light of this last observation, we can view this frontier algo-
rithm as a form of the policy iteration method (see, e.g., Puterman
1994) for solving the stochastic dynamic program (16) with zero
retirement value. In each iteration, we modify the policy, ensur-
ing that the objective function without retirement value improves.
A full policy iteration method would proceed in the same way as
our frontier algorithm, but would take the changing index set I to
include all state-action pairs with positive reduced costs c̄k: these
basis changes represent the possible improvements in the current
policy given the value function Ëcj associated with the current
policy. (If there is more than one action with positive reduced
cost for a given state, the convention is to select the action with
the largest reduced cost for that state.) Policy iteration—in the
full form or in the form of the frontier algorithm—continues until
no reduced costs c̄k are positive, meaning the policy cannot be
further improved.

What can we say about the number of iterations involved in
the frontier algorithm? If a cluster satisfies the Whittle condition
in a given state, the actions for that state can only change from
retirement to the dominant action as we decrease the retirement
value M ; by Lemma 4.1(iii), the decisions will not switch back
to retirement. Thus, if a cluster satisfies the Whittle condition in
all states, there cannot be more iterations than there are states.

If the cluster does not satisfy the Whittle condition in some
state, we would still never switch back to retirement as we
decrease the retirement value, but the choice of action may change
as we change the retirement value. We know the frontier algo-
rithm will stop after a finite number of steps, but we cannot say
much about how many steps will be required. Other researchers
(see, e.g., Melekopoglou and Condon 1994) have shown that
some simple policy iteration schemes have a worst-case num-
ber of iterations that is exponential in the number of state-action
pairs. However, Ye (2011) has a recently shown that another form
of simple policy iteration has a worst-case number of iterations
that is strongly polynomial in the number of states and actions.
Although we have not fully investigated the worst-case perfor-
mance of the frontier algorithm, in our examples, the number
of iterations required are substantially fewer than the number of
states, even when the Whittle condition is not satisfied.

A.4. Application in the North Sea Example

The North Sea example has some nice features that can be
exploited in the frontier algorithm; these features may be present
in many other applications as well. First, we note that the con-
straint matrices for the linear programs (16) are quite sparse.
When the action is to drill, there are just three possible next-
period states and the corresponding row in the constraint matrix
(AT) has just four nonzero elements. If the action is to retire, the
corresponding row will have a single nonzero element, a one on
the diagonal. More generally, whenever we consider clusters that
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are a combination of simpler “subclusters” (as discussed in §3.1
and §5.3), the constraint matrices will be sparse because only one
subcluster will change state in any period.

A second key feature of the example is that we can order the
states to ensure that the state index will be strictly increasing with
each transition. States where a target is undrilled are given a low
index and states where the target contains oil or gas or is dry are
assigned higher indices: drilling then leads to a state with a higher
index. If we order the states this way and ensure that the rows
in the basis matrix correspond to this order of states, the basis
matrices Bj will be lower triangular with ones along the diago-
nal. This simplifies the calculations significantly in that we can
solve BT

j Ëcj =cB and BT
j Ëcj =cB for the dual variables Ëcj and

Ëdj using forward substitution. For problems lacking this struc-
ture, we may want to maintain and update a LU decomposition
of the basis matrix as we proceed through the algorithm, as is
usually done in professional software for solving linear programs
using the simplex method (see, e.g., Gill et al. 1987).

To get a sense of size of these problems, consider cluster 3
in Figure 2, which consists of six targets. The cluster-specific
linear program (17) for this cluster has 46 =41096 decision vari-
ables (one for each state) and the constraint matrix has 101240
rows (one for each state-action pair) and 41096 columns, but only
281672 nonzero elements. The number of steps involved in the
frontier algorithm will depend on the specific probabilities for the
cluster. In the case where the probabilities are set to the marginal
distribution for the cluster (with kitchen uncertainty), the frontier
algorithm requires 174 iterations, performing 3,175 basis swaps
in the process. The cluster-specific value function for the initial
state has 16 pieces, as shown in Figure 4(a). The algorithm runs in
approximately 0.08 seconds, in MATLAB on a personal computer.

The fact that the number of basis swaps in the frontier algo-
rithm greatly exceeds the number of iterations indicates that ties in
the ratio rule are common. In this example, the maximum number
of swaps in one iteration was 781 (i.e., the largest set I contained
781 elements). These ties reflect the structure of the underlying
probabilistic model. For example, once gas is discovered at a tar-
get, the DM knows that the associated prospect contains gas. Once
a prospect is “proven” to contain gas, the results for other targets
no longer affect the probability of finding oil or gas at any tar-
get associated with the proven prospect. Thus, when changing the
retirement value M leads to a change in decision in a state where
a prospect has been proven to contain gas, the same change may
occur simultaneously in many other states.

The largest cluster that we consider is Cluster 3 in Figure 3,
which consists of nine targets. Here, the cluster-specific linear pro-
gram (17) has a constraint matrix with 8511968 rows (state-action
pairs), 2621144 columns (state variables), and 216211440 nonzero
elements. In the case with probabilities set to the marginal distri-
bution for the cluster (with no kitchen uncertainty), the frontier
algorithm requires 4,935 iterations and performs 2291301 basis
swaps; the maximum number of swaps in one iteration involves
281672 elements. In this case, the frontier algorithm takes about
four minutes to run in MATLAB and produces a cluster-specific
value function for the initial state that has 228 pieces.

Endnotes

1. The clusters in Figure 3 do not include targets 6C or 8A; in
§6.3 we will argue that these targets should never be drilled and
hence can be dropped from the model.

2. All run times are for a Dell desktop computer with a 3.07 GHz
Intel Xeon CPU and 12.0 GB of RAM, running MATLAB 7.12.0
(2011a; 64-bit) in Windows 7 on a single processor.
3. In the North Sea example, the simulation horizon is finite as
the DM will quit in finite time. We can simulate infinite horizon
problems using the techniques described in Fox and Glynn (1989)
that provide unbiased estimators in finite time by randomizing the
stopping time.
4. The careful reader may note that we need not update the active
cluster in this sequential process. The conditional probability dis-
tribution for the active cluster includes the relevant probabilities
for all possible next-period states and the frontier algorithm pro-
duces recommended actions and Gittins indices for all states—
including the next-period state—for a given cluster. However, we
do need to update all inactive clusters as the probability distribu-
tions for the clusters may change based on the results observed
for the active cluster; if these distributions change, the policies
and Gittins indices for the inactive clusters may also change.
5. The matrix P is substochastic rather than stochastic because
the retirement decisions are modeled as exiting the system (i.e.,
there is no “retired” state); the transition probabilities in P for
rows corresponding to retirement decisions will all be zero.
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