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Many firms in the oil and gas business have long used decision analysis techniques to evaluate exploration and development
opportunities and have looked at recent development in option pricing theory as potentially offering improvements over the decision
analysis approach. Unfortunately, it is difficult to discern the benefits of the options approach from the literature on the topic: Most
of the published examples greatly oversimplify the kinds of projects encountered in practice, and comparisons are typically made to
traditional discounted cash flow analysis, which, unlike the option pricing and decision analytic approaches, does not explicitly
consider the uncertainty in project cash flows. In this paper, we provide a tutorial introduction to option pricing methods, focusing on
how they relate to and can be integrated with decision analysis methods, and describe some lessons learned in using these methods

to evaluate some real oil and gas investments.

Uncertainty and complexity are business as usual in
the upstream oil and gas business. Consequently,
firms in this industry have long used quantitative tools for
decision making. Many firms in this industry have made
extensive use of decision analysis methods, and many have
looked with interest at recent developments in option pric-
ing theory. In this paper we provide a tutorial introduction
to option pricing methods, describing their relationship
with decision analysis techniques. How can the options
approach be implemented in practice? What are the ben-
efits of the options approach as compared to decision anal-
ysis methods? We illustrate the options approach by
applying it on some real oil and gas investments.

This study was undertaken by the authors in conjunction
with a major oil and gas company. Currently, almost every
major capital expenditure at the firm is evaluated using
decision analysis techniques. In a typical evaluation, the
firm’s analysts use sensitivity analysis to identify the key
uncertainties, assess probabilities for these key uncertain-
ties, and construct decision tree or simulation models of
the project cash flows. They use these models to calculate
expected net present values (NPVs) and distributions on
NPVs, which then serve as important inputs into the
decision-making process.

Though management is generally pleased with their de-
cision analysis process, there were two concerns. First,
there was concern that their analyses frequently do not
capture some of the flexibilities associated with projects.
Their decision models typically assume that management
makes an initial investment decision, and then the project
uncertainties are resolved and cash flows are determined.

In reality, the firm makes a series of investment decisions
as the uncertainties resolve over time. For example, when
considering the development of a new oil field, if oil prices,
production rates, or reserves exceed their expectations, or
if production technology improves, the firm might be able
to develop more aggressively or expand to nearby fields.
Similarly, if prices, rates, or reserves are below expecta-
tions, the firm might be able to scale back planned invest-
ments and limit their downside exposure.

A second issue that has long concerned many at the firm
is the way they discount cash flows. Many of their invest-
ments have time horizons as long as 30 or 40 years, and the
NPVs for these investments are extremely sensitive to the
discount rate used. Currently, the company calculates
NPVs for these projects using a discount rate that reflects
their cost of capital and desired rate of return. This dis-
count rate is well above the rate for risk-free borrowing
and lending (currently in the 6 to 7 percent range) and
hence can be viewed as a “risk-adjusted” discount rate.
There is concern, particularly among managers in the ex-
ploration and new ventures parts of the business, that the
blanket use of such a risk-adjusted discount rate causes
them to undervalue projects with long time horizons.

With these concerns in mind, many at this company
have watched recent developments in option pricing the-
ory with great interest (see, e.g., Dixit and Pindyck 1994,
Trigeorgis 1996). In this approach, one views projects as
analogous to put or call options on a stock and values
them using techniques like those developed by Black and
Scholes (1973) and Merton (1973) to value put and call
options on stocks. These methods explicitly model and
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value the decision maker’s ability to make decisions (e.g.,
“exercise the option”) after some uncertainties are re-
solved and do not require the use of a risk-adjusted dis-
count rate. Thus, these new techniques appear to have the
potential to address both of management’s concerns with
their decision analysis process.

The analysts at this company were concerned, however,
that the models described in the real options literature
greatly oversimplify the problems they actually face.! For
example, an undeveloped oil property is superficially anal-
ogous to a call option on a stock, but in reality there are
many complications (uncertain production rates, develop-
ment costs, construction lags, complex royalty and tax
structures, the lack of a true underlying stock, etc.) that
strain the analogy. Moreover, most of the articles describ-
ing the benefits of the options approach compare it to a
traditional discounted cash flow approach based on point
estimates of all cash flows. It was not clear what advan-
tages the options approach would have compared to their
decision analysis approach.

To better understand the potential of the options ap-
proach, the company formed an interdisciplinary team to
see how option pricing methods compare with and could
be integrated with their current decision analysis approach.
This “Valuation Methods Improvement” (VMI) team con-
sisted of six analysts from a variety of different operating
companies within the firm, as well as the two authors. In
addition, a Steering Committee, consisting of executives
from corporate staff and several operating companies, was
formed to oversee the VMI team. To facilitate compari-
sons between approaches, the option pricing methods were
to be applied to projects for which the firm had done
extensive decision analyses.

In this paper we describe some of the lessons learned by
this VMI team with the goal of providing a tutorial on
option pricing techniques and describing how they relate
to, and can be integrated with, decision analytic methods.
While our paper focuses primarily on the concerns and
questions of a particular oil and gas company, we have
heard similar concerns and questions from other oil and
gas companies as well as from firms in a variety of other
industries, especially electric utilities and pharmaceutical
firms.

1. MODELING FLEXIBILITY

The first lesson we learned in this effort is that there are
two distinct sets of issues associated with applying option
methods. The first set of issues has to do with modeling
project flexibilities: What options does management have
now? What options will they have in the future? How
should these options be modeled? The second set of issues
concerns the valuation procedure used. We can contrast
two different valuation approaches: the conventional risk-
adjusted discount rate approach that this company and
many others currently use, and the new valuation proce-
dure underlying the option pricing approach. The two sets
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Figure 1. The original tree for Project X.

of issues really are distinct: One could do a great job mod-
eling flexibilities and then value the risky cash flows using
either the risk adjusted discount rate approach or the op-
tion valuation approach. Similarly, one could model no
project flexibilities and use either valuation approach.

We begin by considering issues associated with modeling
flexibility in this section and then consider the valuation
issues in the next section. In this section, we will value cash
flows using the conventional, risk-adjusted discount rate
approach. In the next section, we consider the rationale of
the risk-adjusted discount rate approach and compare and
contrast this approach to the option valuation procedure.

1.1. Problem Structuring

In discussing issues associated with modeling flexibility, we
will focus primarily on one of several projects considered
by the VMI team. This project—which we will call Project
X—is a large, undeveloped, offshore oil field. There had
been a significant amount of exploratory drilling in this
field and substantial reserves had been identified, though
there was still substantial uncertainty about the extent of
the field and the total reserves.

The original decision analysis study for Project X was
based on the decision tree in Figure 1. The only decision
considered in this analysis was whether to proceed with the
project. Three uncertainties were modeled: reserves,
prices, and costs. Each price scenario represents a se-
quence of oil prices, one for each year, going out for ap-
proximately 30 years. Similarly, the cost and reserve
uncertainties represent a sequence of costs and production
rates (and associated drilling expenditures) for each year,
going out about 30 years. The distribution for reserves was
calculated from a complex model that considered uncer-
tainty about reserves in the as yet unexplored areas, the
uncertainty in production rates, as well as many other fac-
tors. The values at the end of the tree represent NPVs of
cash flows determined using an economic model that in-
cludes complex tax and royalty calculations. The results of
this analysis showed a project with a positive expected
NPV but a significant chance of having a negative NPV. In
the end, the project was viewed as marginal because its
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Figure 2. “Dream tree” for Project X.

expected NPV was small compared to the amount of cap-
ital required.

After reviewing a number of different projects and deci-
sion analyses, Project X was selected as a candidate for our
study because the VMI team and steering committee felt
there were significant project flexibilities that were not cap-
tured in the original analysis. Because the project was mar-
ginal and its value was very sensitive to oil prices, it was
viewed as being like a call option: Though the project
was marginal at current prices, it could have considerable
value if prices were to rise at some point in the future.
There were also some expansion options in that one could
use the platform and facilities constructed for Project X to
develop (or “tie in”) other nearby fields when production
at the main field declined. Finally, there were abandon-
ment options in that the field could be abandoned at any
time if continued production appeared uneconomic. While
the decision tree of Figure 1 contained fewer uncertainties
than most of the models we reviewed, it was typical in its
lack of delayed (or “downstream”) decisions: Most of the
models we reviewed had many uncertainties but used heu-
ristic policies to determine when to expand production or
shutdown the field rather than optimal policies depending
on the then-prevailing prices, costs, etc. None of the mod-
els we reviewed explicitly modeled the decision concerning
when to begin development.

The first step in our new analysis of Project X was to
construct a new decision tree for the project that incorpo-
rates these previously unmodeled options (see Figure 2).
The first row of this tree represents the predevelopment
phase of the project. The firm’s first decision is whether to
acquire rights to develop the field. Next, they decide how
and whether to test the field to learn more about produc-
tion before drilling; for example, should they do extended
well tests? They then observe the results of these tests. The
boxes in the tree indicate repeated elements (or “do
loops”) in the tree. For example, if the firm decides not to
begin development and not to abandon the field (by sur-
rendering their development rights), they wait and observe
oil prices and face the same decision in the next time
period, say next year. If they choose to wait again in the
next year, they observe prices again and face the same
decision in the subsequent year. Once they choose to
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develop the field and construct the necessary facilities,
they break out of this loop and move to the initial devel-
opment phase and produce from the primary field. Here
they observe production and costs as well as prices and
enter into a new loop and repeatedly decide whether to
continue production, abandon the field, or tie in the nearby
fields. The final row of the figure represents the second
development phase where they produce at these nearby
fields. Depending on how prices and production rates
evolve over time, they eventually abandon the field and
salvage the offshore production facility.

1.2. Modeling Frameworks

In comparing Figures 1 and 2, we see that trees that take
into account the flexibilities quickly become huge. In order
to model these downstream decisions correctly, one must
include not only the decisions in the tree, but also the
information available at the time these decisions are made.
While the tree of Figure 1 requires the evaluation of the
economic model in a total of 27 (= 3 X 3 X 3) different
scenarios, even if we allow only a few iterations in the “do
loops,” the tree of Figure 2 is much too large to be evalu-
ated using off-the-shelf decision analysis software and to-
day’s personal computers. For these reasons, we referred
to this tree (and others like it) as a dream tree—this is the
tree we wished we could solve.

We considered three different approaches to evaluating
this dream tree. The first approach we considered is to
reduce the number of uncertainties and decisions modeled
so the tree can be evaluated using commercially available
decision analysis software. We did this in Project X by
building a decision tree with five-year time increments and,
reflecting our initial view of the project as a call option on
oil prices, we focused our analysis on price uncertainties
and development decisions. This simplified tree (shown in
Figure 3) had approximately 52,500 endpoints and a com-
plex spreadsheet-based economic model. It took about 90
minutes to run this model using commercially available
decision analysis software (DPL™) on a 166-MHz
Pentium-based personal computer.

An alternative approach to evaluating these flexible de-
cision models is to use dynamic programming techniques.
For example in Project X, to get a better understanding of
the initial development decision, we constructed an
infinite-horizon dynamic programming model correspond-
ing to the first “do loop” of Figure 2. In this model, oil
prices were uncertain and evolving over time according to
a stationary Markov process (details in section 2.4 below).
In this model, the costs of waiting and abandonment were
directly specified. The possible values of the field at the
time of development were calculated by repeatedly solving
a tree similar to that of Figure 3 but assuming immediate
development with varying initial price assumptions. This
infinite-horizon dynamic program framework can easily
handle small time steps (in this case we worked with time
steps that were approximately two weeks in length), but in
order to satisfy the additivity assumptions required by the
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Figure 3. Simplified tree for Project X.

dynamic program, we had to make some simplifying ap-
proximations in the project’s royalty and tax calculations.
The key to developing dynamic programming models of
these kinds of problems is to identify a reasonably small
set of state and decision variables that are sufficient to
describe the value of the project over time. In the dynamic
programming model of the initial development decision
for Project X, we tracked only the evolution of prices over
time. For an early phase exploration project, we developed
a more complex dynamic programming model that consid-
ered prices, productivity, leasing costs, and drilling costs as
uncertain and evolving over time and modeled drilling and
leasing decisions on a well-by-well basis. The major barrier
to implementing these dynamic programming models was
the amount and level of computer programming required.
While spreadsheets and off-the-shelf decision analysis soft-
ware make it relatively easy to evaluate the decision tree
models, we had to develop fairly sophisticated custom
code to formulate and solve these dynamic programming
models. For example, the dynamic programming model of
the exploration problem was formulated as a large linear
program and solved on a UNIX workstation using com-
mercial LP software. The most time-consuming aspects of
this effort were converting the model specification (espe-
cially the spreadsheet-based economic model) into the for-
mat required for the LP model and then converting the LP
results to forms suitable for discussion with management.
Though we have focused on infinite-horizon dynamic
programs, some problems would be more naturally formu-
lated as finite-horizon dynamic program if the problem has
a natural horizon (e.g., the options expire at some time) or
if the transition probabilities and payoffs are nonstationary
in that they explicitly depend on time. In these cases, we
can formulate and solve the dynamic programs using lat-
tice techniques, including the “binomial” or “trinomial

trees” frequently used in the option-pricing literature. As
with the infinite-horizon case, the key to managing these
models is to define a relatively small set of state variables
that evolve over time so that the lattice will not grow too
large. Again, some fairly sophisticated programming is re-
quired to formulate and solve these problems, particularly
when there are multiple state variables. In some cases, we
may need to “paste together” finite- and infinite-horizon
dynamic programs to model both expiring and nonexpiring
options, perhaps using a finite-horizon model to determine
payoffs for an infinite horizon model or vice versa.>

We also considered the possibility of using simulation
techniques to solve these kinds of problems. While this
approach is easy to implement using commercial software
(such as @RISK or Crystal Ball®) and can easily handle
many uncertainties, it is difficult to incorporate down-
stream decisions like those in Figures 2 or 3. The problem
with the simulation approach is that it is difficult to deter-
mine the optimal policies for the downstream decisions:
Though it is easy to calculate expected values and distribu-
tions of cash flows given a specific policy for all decisions,
it is difficult to determine policies that maximize expected
values given the information available at the time the de-
cisions are made. While one could, in principle, use simu-
lation to calculate expected values for all possible policies
and then choose the optimal policy, practically, the num-
ber of possible policies grows much too quickly for this to
be a viable approach.

1.3. Benefits of Modeling Flexibility

To capture flexibility, we must assess and solve more com-
plex decision models. What are the benefits of modeling
these project flexibilities? Decision theory suggests that
incorporating flexibilities can only increase the values cal-
culated for the project, because one could always choose



the base case alternative assumed in the nonflexible model.
In practice, managers often took flexibilities into account
informally and intuitively and incorporating flexibility
would make a project more or less attractive depending on
how the results of the analysis compared to these intuitive
evaluations. For example, the “call option” feature of
project X (the ability to wait for higher prices before de-
veloping the field) was initially viewed as potentially pro-
viding substantial value not captured in the tree of Figure
1; yet, as we will see shortly, our new analysis shows this
option has no value. In general, these kinds of options are
difficult to value intuitively, and one benefit of modeling
flexibilities is that it improves the accuracy of these valua-
tions and makes them more consistent across different
managers.

A second and more important benefit is that in attempt-
ing to model project flexibilities we often identify new op-
tions and strategies. In constructing these models, we
found it useful to ask questions like: “How could we use
this information?”, “What would we really do in this sce-
nario?”, and “What would I like to know before making
this decision?” For example, in Project X, in thinking
about how management might use the results from early
drilling and well tests, one possibility that was identified
was using this information to optimize the design of the
production facility. While there was relatively little flexibil-
ity in the design of the production platform once construc-
tion had begun, there was some flexibility in the design of
the system for transporting oil to market. If, for example,
management were to learn from early drilling results that
production rates would be less than expected, they could
save substantial amounts by reducing the capacity of the
transportation system (e.g., building one tanker instead of
two). Here we are actually creating value for the project:
While some of these options would be discovered in due
course (in which case the benefit of identifying them now
is through the improved measurement of the value of the
project), some of them, like the flexibility in the transpor-
tation system, might be lost if management did not identify
them up front and take steps to preserve these flexibilities.

A final benefit from modeling flexibilities is the set of
optimal policies generated by the analysis. While the
traditional analysis (e.g., that of Figure 1) generates an
initial decision and value, the models that incorporate
these downstream decisions generate an optimal policy
that specifies, for example, when Project X should be
developed and when production should be shifted to
nearby fields. Such a policy might say, for example, “Begin
Project X when prices reach $25 per barrel” or “If prices
are below $15 per barrel and production at the main field
is below 1,000 barrels a day, then move to the nearby
field.” These kinds of results provide management with
“signposts” that suggest changes to (or at least a re-
evaluation of) their operating procedures under certain
conditions.
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Figure 4. Probability forecasts for geometric Brownian
motion process.

1.4. Stochastic Process Assumptions

To evaluate these flexible decision models, we had to ask
and answer some new questions. While the decision tree of
Figure 1 requires the specification of high, medium, and low
scenarios for prices, production, and costs, the tree of Fig-
ure 2 requires a series of conditional probability distri-
butions. Now, in addition to specifying a probability
distribution for oil prices in the current year, in order to
determine what the company should do if they wait for a year
we need to specify distributions for prices the next year given
prices from the first year. Similarly, we need to specify
distributions for prices in year 3 conditioned on prices for
years 1 and 2, and so on for subsequent years. Production
rates and costs would be treated similarly. These condi-
tional assessments were new questions for the company:
While they construct corporate high, medium, and low
price scenarios (of the kind required in Figure 1) for use
throughout the corporation, they have rarely considered
conditional price, production, and costs forecasts of the kind
required by the tree of Figure 2. As we will see, the results
of our analysis depend critically on the assumptions about
these conditional distributions.

Most of the real options literature assumes the underly-
ing uncertainty (in this case, oil prices) follows a random
walk, specifically geometric Brownian motion (see Appendix
1 for a detailed description of this model). In this model, oil
prices at any future time are lognormally distributed with the
conditional distribution for later prices shifting by the amount
of any (unexpected) change in prices in the early years.
Figure 4 shows a representative price series and 10-, 50-,
and 90-percent “confidence bands” for future oil prices
generated by this process; the prices modeled here repre-
sent spot prices for West Texas Intermediate grade crude
oil for delivery in Cushing, Oklahoma. The parameters for
the process are based on historical estimates using annual
data from 1900-1994.> The first set of bands fanning out
from the current (1995) price of $18.00 per barrel show
probability forecasts conditioned on today’s prices. For ex-
ample, in the year 2000, there is a 90-percent chance of oil
prices being less than $33.79 per barrel; a 50-percent
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chance of being less than $18.00 per barrel, and a 10-
percent chance of being less than $9.59 per barrel; these
confidence bands diverge rapidly and become extremely
wide for distant years. The jagged path emanating from
the current price represents one randomly generated set of
future oil prices and the second set of confidence bands
represent probability forecasts conditioned on prices being
$34.50 in 2005. Here we see that a price increase in the
early years lifts all three bands and increases the rate of
divergence of the outer confidence bands.

Though this price model is the most frequently used
model in the real options literature, the assumptions un-
derlying this process were not consistent with the beliefs of
the managers in the firm undertaking the study. They ar-
gued that, when prices are high compared to some long-
run average (or equilibrium price level), new production
capacity comes on line, that older production expected to
come off line stays on line, and prices tend to be driven
back down toward this long-run average. Conversely, if
prices are lower than this long-run average, less new pro-
duction comes on line, older properties are shut down
earlier, and prices tend to be driven back up. Thus oil
prices should be “mean reverting” in that prices tend to
revert to some long-run average. Both historical spot and
futures prices tend to support this view. Looking at the
historical data from 1900-1994, prices have averaged
about $18.00 per barrel in 1995 dollars; and deviations
from this average, either above or below, have been fol-
lowed by reversions back to this level. Similarly, in the
futures markets, when spot prices are high compared to
historical levels the 6- and 12-month futures prices tend
to be lower than spot prices, and when prices are low the
6- and 12-month futures prices tend to be higher than spot
prices.

To capture the phenomenon of mean reversion, we used
a mean-reverting stochastic process for oil prices where
future prices are expected to drift back to a specified long-
run (perhaps inflation or growth-adjusted) average price.
The particular form we used assumes that the logarithm of
oil prices follows an “Ornstein-Uhlenbeck” process and was
chosen both for its analytic tractability and its ability to fit
historical and futures price data (see Appendix 1 for details).
We again use annual data from 1900-1994 to estimate the
model parameters. The confidence bands for this process
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Figure 5. Probability forecasts for mean-reverting price
process.

are shown in Figure 5. Like Figure 4, the first set of confi-
dence bands are based on today’s prices and the set of
bands starting in 2005 are conditioned on a price of $29 in
2005. Comparing these bands to those of Figure 4, we see
that there is less fanning out in the confidence bands, and
when prices are above the long-run average, the bands
tend to point back down to this average. In the limit, the
two sets of bands for the mean-reverting process converge
and prices in the distant future are independent of current
prices. The rate of mean reversion in the model can be
interpreted as being like a “half-life”: Using historical esti-
mates, we find that deviations from the long-run average
are expected to decay by half their magnitude in about
four years.

1.5. Results

These different price processes lead to markedly different
valuations and strategies for Project X; the results are
summarized in Table I. In the nonmean-reverting case
(i.e., assuming geometric Brownian motion), using the tree
of Figure 3, a 10-percent discount rate, and a current oil
price of $18.00 per barrel, we find that the expected NPV
of the field is $1,623MM. The distribution of NPVs shows
the field has tremendous upside potential (there is a 10-
percent chance of exceeding $4,870MM in NPV), reflect-
ing the possibility of sustaining high future prices implied
by this nonmean-reverting model of oil prices. The optimal
strategy from this tree is to develop the field now. To get a

Table I
Results for Project X

Brownian Motion Price Model

Mean-Reverting Price Model

with Flexibility

without Flexibility

with Flexibility without Flexibility

Expected Value ($mm) 1,633
Optimal Development 17
Threshold ($/bbl)
Percentiles from Distribution
of NPVs ($mm)
10th Percentile -750
50th Percentile 865
90th Percentile 4,870

770 740 421
— 7 —
—665 —150 —340

480 725 405
2,550 1,610 1,165




better sense of the exact optimal development threshold,
we used the dynamic programming model of the initial
development decision (described in Section 1.2) with time
steps that were approximately 2 weeks in length, as com-
pared to the 5-year increment assumed in the tree of Fig-
ure 3. According to this model, the optimal development
strategy is to develop the field when oil prices exceed
$17.00 per barrel (in 1995 dollars). Thus, with current
prices at $18.00 per barrel, they should immediately de-
velop the field, but if prices were below this $17 threshold,
they should wait for higher prices. Thus, with prices at
their current level, the option to wait and develop the field
has no value. At lower prices this option has some value
but, until prices drop below about $14 per barrel, the ad-
ditional value given by waiting is slight.

To illustrate the value of other options associated with
the project, Table I also shows results for the case where
we remove all of the downstream decisions from the tree
of Figure 3 and assume the project is developed immedi-
ately, two tankers are used, and the nearby fields are not
developed; these assumptions mirror the assumptions
made in the original analysis of Figure 1. The result in this
case is a much lower expected value ($770MM instead of
$1,623MM) and a distribution with a similar downside but
much less upside. The difference in upsides and expected
values reflects the omission of the option to develop the
nearby fields. The two investments have similar downsides
as the flexible decision model will choose not to develop
the nearby fields in most of those cases where develop-
ment is economically unattractive.

If we assume that oil prices follow the mean-reverting
process rather than the Brownian motion process, using
the tree of Figure 3 and maintaining all other assumptions,
we find a much lower expected value of $740MM (versus
$1,623MM) and much less uncertainty in value. This re-
duction in risks and expected values reflects the decreased
probability of sustaining either high or low oil prices. In
this case, the values are not so sensitive to current prices
and, as long as prices are above about $7 per barrel, they
should develop the field. This insensitivity to current prices
is a result of long development lags in the project: It is
about eight years from the initial “go” decision until oil
is first produced, and if prices are high when development
begins, one would expect prices to revert before produc-
tion begins. In this case, the optimal decision was always to
go with two tankers, and in the tie-in decision the optimal
decision was always to develop the neighboring field. This
is again a reflection of mean reversion: Just as in the initial
development decision, the critical question is whether the
two tankers and nearby fields are economic at long-run
prices. The difference in expected values in the flexible and
nonflexible cases shows that the ability to develop the
nearby fields is worth approximately $320MM in expected
value.

The lessons here are twofold: (1) mean reversion greatly
decreases the value of waiting to develop, particularly
when facing long lead times; and (2) because it implies
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narrower long-run confidence bands with a decreased
probability of sustaining high or low future prices, mean
reversion implies there is significantly less risk and value
associated with long-term oil projects than implied by the
non-mean-reverting model. When contemplating the de-
velopment of long-term projects, the mean-reverting
model suggests that the critical question is whether the
project is profitable at long-run average prices; current
prices are not particularly relevant.

One should not draw the conclusion that mean-
reversion eliminates the value of all flexibilities. For exam-
ple, suppose management had the ability to quickly adjust
production rates, perhaps by rapidly drilling and complet-
ing more wells or temporarily curtailing production. These
kinds of flexibilities may have substantial value even in a
mean-reverting price environment. If, for example, prices
drop below some threshold, it could be optimal to tempo-
rarily shut-in production at certain wells or, if above some
other threshold, it could be optimal to drill additional
wells. The real lesson is that we need to think carefully
about the conditional distributions (or stochastic pro-
cesses) in the model and focus our analysis on options that
can take advantage of the learning that takes place over
time.

2. VALUATION METHODOLOGY

Insofar as modeling flexibility is concerned, the option
pricing and decision analysis approaches are identical—the
issues discussed in the previous section pertain equally to
both approaches. Where the two methods differ is in how
they value risky cash flows. In the decision analysis ap-
proach, firms typically attempt to incorporate any risk pre-
miums required by shareholders by adjusting the discount
rate used in calculating NPVs. In the option pricing ap-
proach, one uses futures and options prices to estimate
risk-adjusted probabilities and discounts at the risk-free
rate. In this section, we briefly describe each approach,
then consider some practical issues in estimating these
risk-adjusted probabilities and compare results given by
the two approaches for some real projects.

2.1. The Risk-Adjusted Discount Rate Approach

Like many others, the company undertaking this study uses
decision analytic techniques in an effort to determine the
value-maximizing strategy for managing a given project; by
“value,” they mean market value or shareholder value.
Traditionally, they have attempted to align their prefer-
ences for cash flows over time with shareholder’s expecta-
tions of returns by using a discount rate equal to the firm’s
“weighted average cost of capital.” This weighted average
cost of capital is determined by considering the firm’s fi-
nancial structure, its marginal tax rate, its borrowing rate,
and the expected rate of return on the firm’s stock as
estimated using, for example, the capital asset pricing
model (CAPM). The justification of this approach relies
primarily on the model used to determine the expected
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return on the equity. If we use the CAPM to determine the
expected return on equity, the project is valued as if it
were a stock that satisfies the assumptions of the CAPM.
While these assumptions might be appropriate for valuing
companies as a whole, some of these assumptions—espe-
cially the assumption that project returns are normally dis-
tributed and jointly normal with the market as a whole—
seem inappropriate when applied to flexible projects that
might possess highly asymmetric distributions of returns.

To illustrate the determination of a weighted average
cost of capital (or WACC), we calculate it for a hypothet-
ical firm similar to the one we worked with; the values are
chosen to be representative of a major oil and gas com-
pany. If we consider a firm with only debt and equity,* the
WACC would be given by:

WACC = (D/V)(1 = T )rq + (S/V)r,
=(7/27)(1 — 34%)8.5% + (20/27)11.5%
=9.97%,

where D (= $7 billion) is the market value of the firm’s
interest-bearing debt, S (= $20 billion) is the market value
of the equity, V' = D + S (= $27 billion) is the market
value of the firm, T, (= 34%) is the corporate tax rate, and
ry (= 8.5%) is the pre-tax yield on the firm’s debt, and r,
(= 11.5%) is the firm’s expected return on equity as given
by the CAPM. This expected return on equity is given by
the CAPM as:

re=rp+ (rp, —rp)B=7% + (13% — 7%)(0.80)
=11.50%,

where r, (= 75) is the risk-free rate (given as the yield on
long-term government bonds), 7, (= 13%) is the expected
return on the market portfolio (say, the S&P 500), and B
(= 0.80) is the “beta” of the firm, a measure of the corre-
lation between the return on the firm’s stock and the re-
turn on the market portfolio. The weighted average cost of
capital in this example is 9.97 percent—we will round off
to 10 percent—which is then applied to after-tax, then-
current cash flows. The firm we worked with uses its
WACC for all projects and for all scenarios considered.
For a given project, the NPVs in each scenario are
weighted by their respective probabilities—reflecting the
firm’s beliefs about future oil prices, production rates,
costs, etc.—to determine the expected NPV for the
project. Though the firm looks at other financial measures
associated with a project (e.g., internal rates of return and
various productivity indices), this expected NPV is taken to
represent the value of the project.

While this cost-of-capital-based discounting rule may, in
some sense, be right “on average” for the company, it can
lead to trouble when applied to projects that are signifi-
cantly different from the firm as a whole. If you are going
to use risk-adjusted discount rates, you should use differ-
ent discount rates for different projects, evaluating each on
the basis of their own cost of capital. To do this, you need
to somehow estimate the correlation between the project

Oil Price in 2000

Futures Option  Risk-Free
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$22 per barrel
3.50 2.00 1.00 5000
519 per barrel
0.50 0.00 1.00 2000
$16 per barrel )
-2.50 0.00 1.00 0

Figure 6. A simple numerical example.

returns and the market as a whole, either by identifying betas
for firms that are “similar in risk” to the project or by making
a difficult, subjective estimate of the beta (see Brealey and
Myers 1991, p. 181-183, also p. 919). Given a flexible
project, you might need to go one step further and use
different discount rates for different time periods and dif-
ferent scenarios as the risks of a project may change over
time, depending on how uncertainties unfold and manage-
ment reacts. For example in Project X, the risks associated
with the later cash flows are very different in the case
where they choose to expand development as compared to
the cases where they abandon the project after the main
field declines. While, in principle, one could use time- and
state-varying discount rates to value flexible projects, it
becomes very difficult to determine the appropriate dis-
count rates to be used in this framework.

2.2. The Option Valuation Approach

Rather than risk-adjusting discount rates to capture risk
premiums, the option pricing (or “contingent claims”) ap-
proach uses information from securities markets to value
market risks more precisely. We illustrate this valuation
procedure by considering the simplified example illus-
trated in Figure 6. In this example, we focus on oil price
risks in the year 2000 and assume that there are three
possible spot prices for oil in that year: $16, $19, or $22
dollars per barrel. The approach assumes that investors
can buy or sell securities in any desired quantity (including
fractional and negative amounts) at market prices with no
transactions costs. There are three securities in this exam-
ple, defined and priced as follows:

Futures Contract: The futures contract obligates the buyer
to buy (and the seller to sell) a barrel of oil in the year
2000 for a fixed price of, say, $18.50. Thus, if the oil price
is $22 per barrel in the year 2000, this contract will then be
worth $22.00 — $18.50 = $3.50, as the contract would
deliver a barrel of oil for $18.50, which could then be sold
on the spot market for $22.00. Similarly, if the oil price is
$19 or $16 per barrel in 2000, the futures contract is worth
$0.50 or —$2.50, respectively.

Call Option: The call option gives the investor the right,
but not the obligation, to buy a barrel of oil in the year
2000 at a price of $20 per barrel, and it may be purchased
for a current price of $0.40 per contract. If the oil price



turns out to be $22, the holder of the option would exer-
cise the option, by buying oil at $20 per barrel and selling
it on the spot market at $22 per barrel, for a profit of $2.00
per barrel. If prices are $19 or $16 dollars per barrel, the
holder of the option would decline to exercise the option
and let it expire worthless.

Risk-Free Bond: The risk-free bond may be purchased for
$0.7629 today and returns a certain $1.00 in the year 2000.
(This is a “zero coupon” bond that pays no interest in
intermediate years.) The current year is assumed to be
1996, so the price for the bond corresponds to a risk-free
interest rate (r;) of 7 percent per year (viz., 1/(1 + r)* =
0.7629).

The basic idea of the option valuation procedure is to
use prices for traded securities to determine the market
value of related cash flows. We can, for example, deter-
mine the value of a portfolio that pays $1.00 if the price of
oil is $16.00 in the year 2000, and $0.00 in the other states.
To determine this portfolio, we let w,, w,, and w5 denote
the shares of the futures contract, call option, and risk-free
bond, respectively, and solve the following set of linear
equations specifying portfolio values in each state:

$16 state: wi(—$2.50) + w,($0.00) + w5($1.00)
= $1.00;
$19 state: w1($0.50) + w,($0.00) + w($1.00)
= $0.00;
$22 state: w1($3.50) + w,($2.00) + w5($1.00)
= $0.00.
The solution is a portfolio consisting of w, = —1/3 futures

contracts, w, = 1/2 share of the call option, and w; = 1/6
share of the risk-free bond. The value of this portfolio can be
interpreted as a “state price” representing the present value
of $1 paid in the year 2000 if and only if the oil price is
then $16 per barrel. The state price for the $16 price sce-
nario is —1/3($0.00) + 1/2(80.40) + 1/6($0.7629) =
$0.3271.° We can similarly calculate state prices of $0.2357
and $0.2000 for the $19 and $22 price scenarios,
respectively.

Using these state prices, we can determine the market
value for any project whose payoffs depend only on the
price of oil in the year 2000. For computational purposes,
it is convenient to renormalize these state prices by divid-
ing by 1/(1 + ry)" where r; is the risk-free rate and ¢ is the
time when the claims are paid. Since the present value of
the risk-free bond must equal its future value discounted
at the risk-free rate, these normalized state prices must
sum to one and we can interpret these normalized state
prices as risk-adjusted probabilities. In the example, we
divide the state prices by 1/(1 + .07)* = 0.7629 (the cur-
rent price of the risk-free bond) and obtain risk-adjusted
probabilities of 0.4288, 0.3090, and 0.2622 for the $16, $19,
and $22 price states, respectively. In this interpretation,
the value of any project or any security is given by
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calculating its expected future value using these risk ad-
justed probabilities and discounting at the risk-free rate.

To illustrate this approach, consider a hypothetical
project, call it Project Z, that can, if the firm chooses,
produce 1,000 barrels of oil in the year 2000 at a cost of
$17 per barrel. To keep the example as simple as possible,
we assume that this is a one-shot deal: if the firm chooses
not to produce in 2000, the project generates no cash flows
at any other time. In the $16 price state, assuming the firm
chooses not to produce, project Z would be worth $0. In
the $19 price state, Project Z would be worth $2,000 (=
1000 ($19 — $17)); in the $22 state, it would be worth
$5,000. The value of project Z is then equal to:

1
(1+.07)*

+0.2622($5,000)) = $1,471. (1)

(0.4288($0) + 0.3090($2,000)

These risk-adjusted probabilities can be viewed as provid-
ing a shortcut method for computing the market value of a
portfolio that exactly matches the project payoffs in all
price states. In this example, the project is exactly repli-
cated by a portfolio of 666.67 futures contracts, 500 call
options, and 1,666.7 risk-free bonds; the current market
value of this portfolio is exactly the value given by using
the state prices in Equation (1).

Note that the firm’s probabilities and risk preferences
are not used anywhere in the options approach. In this
framework, it is the market’s beliefs and preferences that
are important and these are reflected in the risk-adjusted
probabilities. Also note that you need not adjust the prob-
abilities or discount rate depending on the features of the
project being valued. While in the risk-adjusted discount
rate approach, you should use different discount rates for
different projects or even different states of the world, here
you use the same risk-adjusted probabilities to value a
futures contract, a call option, or a real project with em-
bedded options. This is a key advantage of the option
valuation approach over the risk-adjusted discount rate
approach when valuing complex, flexible projects.

In order for this option valuation approach to be practi-
cal for real projects, we need to be able to value projects
that cannot be replicated by portfolios of existing securi-
ties. While there are well-developed financial markets for
managing oil and gas price risks, there are no securities
for hedging project-specific risks like the production at
Project X. The classic option valuation theory assumes that
markets are complete in that all project risks can be per-
fectly hedged by trading securities, perhaps dynamically
over time. With incomplete markets, we can extend the
option pricing approach to distinguish between “market
risks” that can be hedged by trading securities (e.g., oil
price risks) and “private risks” that cannot be hedged by
trading existing securities (e.g., production risks, cost risks,
etc.). In this integrated approach, we use option valuation
techniques to value market risks and traditional decision
analytic techniques to value private risks.
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This integrated approach works as follows. Assuming
the firm is risk-neutral (as was the case with the firm in this
study), we use the firm’s probabilities to determine the
expected value of the project conditioned on the occur-
rence of a particular market state. The value of the project
is then given by using the market-based, risk-adjusted
probabilities to calculate the expected value of these
market-state-contingent values, and discounting at the
risk-free rate. For example, let us reconsider Project Z and
assume that production is equally likely to be either 500 or
1,500 barrels of oil (independent of the price of oil) rather
than being 1,000 barrels for sure. The market-state-
contingent expected values are then $0, $2,000 and $5,000
in the $16, $19, and $22 price states (as in the case where
production was assumed to 1000 barrels for sure), and the
overall value is given using the risk-adjusted probabilities
as in Equation (2). Any dependence between the market
and private risks is captured by conditioning the probabil-
ities and expected values for the private risks on the out-
come of the market risks.

This option valuation procedure and its extension can be
applied recursively in a multiperiod setting. To do this,
construct a decision tree or dynamic program that uses
risk-adjusted probabilities for the market risks and ordi-
nary probabilities for the private risks, taking care to
model how the private risks depend on the market risks.
Again assuming the firm is risk-neutral, roll back the tree
or solve the dynamic program by calculating expected val-
ues in the usual way using these mixed probabilities, mak-
ing decisions to maximize these expected values, and
discounting at the risk-free rate. The values generated by
this procedure can be interpreted as present certainty
equivalent values: taking into account all project decisions
and risks, as well as all trading opportunities related to the
project, the value generated by this procedure is the amount
such that the firm is just indifferent between undertaking
the project and receiving this amount as a lump sum, with
certainty, today. Thus, the firm would want to invest in
Project Z if and only if it costs less than $1,520 in present
dollar terms.®

2.3. Estimating “Risk-Adjusted” Probability
Distributions

To apply the option valuation technique with real projects,
we need to determine the appropriate risk-adjusted prob-
abilities and, more generally, a risk-adjusted stochastic
process describing the evolution of these probabilities over
time. To do this, we will assume a particular functional
form for the risk-adjusted stochastic process and estimate
the parameters for that process from the available futures
and options prices. While the standard Black-Scholes op-
tion pricing model assumes the risk-adjusted stochastic
process follows geometric Brownian motion process (re-
flecting the assumption that the true price process has that
form), we will use the mean-reverting price model de-
scribed in the previous section and estimate its parameters
to match the futures and options prices listed in the Wall
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Figure 7. Risk-adjusted oil price forecasts.
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Street Journal. On August 15, 1995 (the date the analysis
was done), the Wall Street Journal listed prices for 24 fu-
tures contracts, one for each month from September 1995
to March 1997, plus five contracts ranging out as far as
December of 1999. There were prices for 31 different op-
tion contracts, with strike prices ranging from $16.00 to
$18.50 and expiration dates ranging from October to De-
cember of 1995. Here we are constructing “implied” esti-
mates of the parameters of the risk-adjusted stochastic
process, backing them out from current prices for futures
and options. Alternatively, one could use historical futures
and options prices to estimate the parameters for this risk-
adjusted process.

In the option valuation approach, the value of each se-
curity should be equal to its expected future value, where
expectations are calculated using these risk-adjusted prob-
abilities and discounting is done at the risk-free rate. Ac-
cordingly, we selected our parameters for the mean-
reverting price model to minimize the squared errors in
futures and options prices, where the errors are the differ-
ences between the discounted expected values calculated
by the model and the prices listed in the Wall Street Jour-
nal. The results are summarized in Figure 7 and the details
are described in Appendix 2. In this approach, the futures
prices should be equal to the expected (risk-adjusted) oil
price. In Figure 7, we see that the expected values of the
mean-reverting process (shown with the bold line) provide
a very good fit to the futures prices; the model correctly
mimics the initial decline in prices for near-month futures,
followed by an increase in the longer term futures prices.
The option prices provide information about the uncer-
tainty in these risk-adjusted price forecasts. To place the
option prices back on the same scale as the futures prices,
we have used the listed options prices to estimate confi-
dence bands (10th and 90th percentiles) for the risk-
adjusted distribution for oil prices in the month of expiration,
using the current price for options expiring in that month.
Comparing these implied confidence bands to those from
the mean-reverting model (or comparing the direct esti-
mates of put and call prices), we see that the estimated put
and call prices generated by the mean-reverting model are
very close to their true prices.



The parameter estimates and price forecasts for this
risk-adjusted stochastic process are quite different from
the unadjusted forecasts based on historical, annual price
data from 1900-1994. Compared to the unadjusted histor-
ical estimates (see Figure 5), the risk-adjusted estimates
have lower expected values, have narrower confidence
bands, and revert much faster. Because the risk-adjusted
forecasts reflect both market opinions and risk premiums,
it is difficult to discern the reasons for these differences. It
could be that the market does not view the historical data
as a good predictor of the future (this could explain the
differences in reversion rates and confidence bands) or it
could be a reflection of the market risk premiums for oil
price exposure. The difference in means is most likely a
combination of both these factors. In reviewing a number
of different oil price forecasts provided to the firm by gov-
ernment sources and private consultants, we found some
forecasts above and some below our historical expected
values, but no forecasts below the futures prices. This is
evidence that there is some risk premium embedded in the
risk-adjusted price forecasts and that the difference in
means does not simply reflect a change in beliefs.

One major problem in using the futures and options
markets to generate the risk-adjusted oil price forecasts is
that the maturities of the exchange-traded futures and op-
tions contracts are much shorter than the time horizons of
the projects we are interested in evaluating. While the
projects may last 30 or 40 years, the futures contracts go
out less than 5 years and the options contracts go out only
4 months.” Thus, we need to somehow extrapolate from
these shorter term risk-adjusted forecasts. In performing
this extrapolation, it is important to remember that we are
not attempting to forecast what oil prices will be after the
year 2000. Instead, we are asking what an oil futures or
option contract maturing in say, 2010, would trade for
today: it is not the firm’s projections of future oil prices
that matters, so much as the current market assessment.
Here, we extrapolate using our mean-reverting price
model, estimating its parameters with the near-term mar-
ket data and assuming these estimates hold going forward.

2.4. Project Valuation

Before we consider results for some actual projects, to
demonstrate the effects of the different valuation method-
ologies let us first consider the value of a hypothetical
project that produces a single barrel of oil in a specified
year. To isolate the effect of the valuation methodology,
we will assume that there are no costs associated with this
production, no uncertainty about the amount produced, no
royalties or taxes, and no basis risks: The project produces
one barrel of West Texas Intermediate grade oil in Cush-
ing, Oklahoma. The results of this comparison are summa-
rized in Figure 8. The bold line indicates values generated
using the option valuation approach: Here we calculate
expected net present values using the risk-adjusted proba-
bilities and discounting at a risk-free rate of 7 percent,
reflecting the yield on long-term Treasury securities in
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Figure 8. Present value of a barrel of oil produced in dif-
ferent years.

August of 1995. The lighter line indicates values calculated
using the risk-adjusted discount rate approach with histor-
ically based probabilities and discounting at the firm’s
weighted average cost of capital of 10 percent. In both
cases, we have used our mean-reverting model for oil
prices.

In Figure 8, we see some support for management’s
hypothesis that the blanket use of a 10-percent discount
rate biases evaluations against the long-term projects:
While the risk-adjusted discount rate approach slightly
overestimates the values of oil produced in the near fu-
ture, it severely underestimates the value of distant pro-
duction. For example, the options approach shows the
present value of a barrel of oil produced in the year 2025
to be $4.78 and the risk-adjusted discount rate approach
shows a value of $2.19. Thus we see that the market-
required risk premiums do not grow as fast as those im-
plied by compounding the risk-adjusted discount rate.
While these specific numbers reflect the particular price
forecast used with the risk-adjusted discount rate, the ef-
fect is fairly robust: even if we double the price forecasts,
the risk-adjusted discount rate approach would give a
present value of $4.38 for a barrel of oil delivered in 2025,
which is still less than the value given by the option valua-
tion approach.

We applied these valuation techniques to two real
projects, Project X (which we discussed in the previous
section) and another project—a large undeveloped field in
a remote region—which we will call Project Y. As before,
both evaluations use the mean-reverting price process in
decision tree models; we used the model of Figure 3 for
Project X and model of similar complexity for Project Y.
The only difference between the risk-adjusted discount
rate and option valuations is in the parameters of the oil
price process and the discount rate. The assumptions in
both cases are exactly as in Figure 8.

For project X, we find values of $740MM and
$1,265MM for the risk-adjusted discount rate approach
and option valuation approach, respectively. This is what
one might expect given the results of Figure 8. Here, most
of the capital expenditures occur in the first eight years,
followed by a long stream of oil production extending out
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to approximately 2030. The options procedure values this
future production more highly than the risk-adjusted dis-
count rate procedure and leads to a higher project value.
Though the optimal development policy is the same in the
two methods (they should begin development immediately,
always use two tankers, and expand to the nearby fields),
the difference in values suggests very different behavior in
an acquisition or divestiture setting.

The change in values for Project Y are more extreme:
The risk-adjusted discount rate approach leads to value
of $102MM, while the options analysis leads to a value of
$721MM. Project Y, like Project X, is a long-term project
with a significant delay before production begins. The dif-
ference in values here reflects a substantial change in op-
timal policies for the project. This project requires a big
investment in infrastructure (pipelines, processing facili-
ties, etc.) that would be shared with other producers in the
area and could generate tariff revenue after Project Y’s
main field begins to decline. The model for the project
includes the ability to adjust the size of the equity position
in this infrastructure (depending on prices, costs, and early
well tests) and the change in the valuation procedure leads
to a substantial change in optimal investment in this infra-
structure. In the risk-adjusted discount rate approach, this
infrastructure investment was seen as a necessary evil re-
quired to bring the reserves to market in a timely manner.
In the options approach, the tariff revenue itself looks
much more attractive, and the optimal policy calls for tak-
ing a larger equity position in the infrastructure. Thus, in
this case, we see that the valuation procedure leads to
substantial changes in policies as well as changes in values.

While in both examples the options approach leads to
higher values, in other cases the options approach leads
to lower values. While the options approach values future
oil production more highly (as indicated in Figure 8), it
also discounts the future costs less. While in Projects X
and Y, we saw a substantial increase in the overall present
value of the project, in other cases, the reduced discount-
ing of costs may dominate the effect due to the increased
valuation of production. For example, in the case of a mature
oil field that we examined the production costs were quite
high (secondary and tertiary recovery methods were being
used) and the reduced discounting of these costs lead to a
lower overall project value.

3. CONCLUSIONS

Our first major conclusion from this study is that the op-
tion pricing and decision analysis approaches are equally
capable of modeling flexibility. In both approaches, the
evaluation models correspond to constructing a decision
tree or dynamic programming model that describes the
sequence of decisions to be made and the resolution of
uncertainties over time. Despite the ubiquity of options in
business and everyday life, in practice we find that embed-
ded options are often overlooked in the formulation and
evaluation of decision problems, even when uncertainties

are explicitly modeled (see Howard 1996 for similar obser-
vations). One possible reason for this is the difficulty of
evaluating decision problems that include many down-
stream decisions. To properly evaluate these downstream
decisions, you must model not only the downstream deci-
sions, but also the information available at the time these
decisions are made. While decision analysts have devel-
oped techniques for assessing probabilities for simple ran-
dom variables, with flexible decision models, we need to
consider some complex conditional probability or stochas-
tic process assessments. In our example of project X, we
examined the pivotal role of the price processes; in other
cases, the key questions concern learning about production
or costs over time.

Our second main conclusion from our experience to
date is that the option pricing and decision analysis tech-
niques should be viewed as complementary modeling ap-
proaches that can be nicely integrated. While we are not
comfortable with applying off-the-shelf option pricing
models to real projects (for example, using the Black-
Scholes formula to value an undeveloped oil field), the
options approach provides a simple technique for incorpo-
rating market information into project values that can be
easily incorporated into decision-analytic or dynamic pro-
gramming models. To implement this approach, you risk-
adjust the probabilities for market risks and use a risk-free
discount rate and solve the models using standard dynamic
programming techniques. Viewing the option pricing
methods as a refinement on decision analytic and dynamic
programming methods, we can draw on the experience and
expertise of the operations research and management sci-
ence communities when applying these options techniques
to real projects.

While we have focused on oil and gas applications, most
of the methodology and lessons have broader applications.
One could easily imagine similar models and issues for
producers of other commodities (e.g., gold, copper, coal,
etc.) or consumers of these commodities (for example, an
electric utility that consumes oil, gas, and/or coal). Similar
issues arise in manufacturing: products may be manufac-
tured and distributed in a variety of different countries.
These firms may be able to use securities markets to help
value exchange rate risks while relying on their own judg-
ment to value private risks, like the demand for their prod-
uct. In these applications, and others like them, it seems
that there is much to be gained by integrating the option
pricing and decision analytic methods of evaluation.

APPENDIX 1: OIL PRICE MODELS

Geometric Brownian Motion. The geometric Brownian
motion model of oil prices is described by two parameters,
u, and o, representing the expected rate of change and
volatility of the process. Given the current price p(0), fu-
ture oil prices p(¢) follow a stochastic process described by
the following stochastic differential equation:

d(In(p(1)) = p, dt + o, dz, (1),



where dz, represents increments of a standard Brownian
motion process. Given p(0), this process implies that
In(p(?)) is normally distributed with mean In(p(0)) + w,t
and variance oﬁt. As a log-normal random variable, p(f) has
mean p(0) exp(p,f + aﬁt/Z) and variance p(O)zexp(Z;Lpt +
of,t)(exp(o-,z,t) — 1). The conditional distributions for p(¢)
given p(7) are similar, with p(0) replaced by p(r) and ¢
replaced by ¢ — 7. Using annual oil prices from 1900-1994
adjusted back to 1995 dollars, we find an estimated mean
growth rate (u,) equal to 0 percent per year and a volatil-
ity (0,) equal to 22 percent per year. We discretized this
process for use in the decision tree and dynamic program-
ming models, using three-point approximations for the
conditional distributions with probabilities and values se-
lected to match the mean and variance of the exact condi-
tional distributions for the time step of the model. This
process describes movements in real prices; these were
inflated to nominal prices in the model by assuming a
constant inflation rate of 3 percent.

Mean-Reverting Model. Our mean-reverting model of oil
prices assumes that the logarithm of oil prices, m(f) =
In(p(?)), follows an Ornstein-Uhlenbeck process, i.e., fu-
ture oil prices are described by the stochastic differential
equation:

dmw(t) = k(7w — 7w(t)) dt + o, dz (1), (A1)

where 7 denotes the long-run mean to which log-prices
revert, k describes the strength of mean reversion, o, de-
scribes the volatility of the process, and dz () represents
increments of a standard Brownian motion process. This
implies that, given (0), m(¢) is normally distributed with
mean 7 + (7(0) — 7)e”* with variance o2(1 — e~ )/ 2k.
In this form, we see that deviations from the long-run
mean are expected to decay following an exponential de-
cline. Given a current log-price 7(0) away from the long-
run mean 7, in —In(0.5)/k years we would expect m(¢) to
have reverted half way back to the long-run mean; thus we
can interpret —In(0.5)/k years as representing the “half-
life” of the mean-reverting process. Notice that in the limit
as t — oo, the distribution for (¢) is independent of the
initial price and has mean 7 and variance o>/2k.

Using annual oil prices from 1900-1994 adjusted to
1995 dollars, we estimate a long-run mean (7) of 2.83
(corresponding to a long-run median oil price of ¢*% =
$16.89 in 1995 dollars), a mean-reversion coefficient (k) of
16.9 percent per year (corresponding to a half-life of 4.11
years), and a volatility (o) of 22.8 percent per year. These
parameter estimates imply that the long-run distribution of
oil prices is lognormal with a mean of $18.25 (in 1995
dollars) and a standard deviation of $7.47. These distribu-
tions were discretized and inflated for use in the decision
tree and dynamic programming models in the same way as
in the geometric Brownian motion case.
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APPENDIX 2: ESTIMATING RISK-ADJUSTED
PROBABILITIES FROM FUTURES AND OPTIONS

In this appendix, we describe the details of how we esti-
mated parameters for our mean-reverting oil price process
based on listed futures and options prices. The key to this
estimation process is developing formulas for determining
futures and options prices using this price process. We
then choose parameters of the process to fit the listed
prices. There were a total of five parameters estimated for
the process including the three parameters described
above (7, k, and o). In addition, we estimated the current
spot price p(0) and an implied inflation/growth rate («). In
this framework, we assume that w(¢f) = In(p(¢)) — «t fol-
lows the mean-reverting process described by (Al). The
spot price at time ¢ is then given by p(t) = ™",

Valuing Futures Contracts. Using the risk-neutral valua-
tion framework, the current futures price is equal to the
expected spot price at the time the contract expires, where
expectations are calculated using the risk-adjusted proba-
bility distribution (see Duffie 1992, p. 122). Assuming the
risk-adjusted oil price process has this mean-reverting
form, the futures price for a contract with ¢ years before
expiration is

Elp(1)] = exp(E[7(1)] + Var[m(2)])
=exp(m + (w(0) — e M + at
+0.502(1 — e ")/ 2k). (A2)

The equation follows from the fact that p(¢) is a log-
normal random variable with In(p(#)) having the mean and
variance given by the assumed stochastic process for ().

Valuing Futures Options Contracts. A “European” call
option gives its owner the right to buy a futures contract at
some specified “strike price” (K) on a specified exercise
date (7). On the exercise date, the value of the call option
is equal to (F(t) — K)™ = max(F(t) — K, 0) where F(¢)
denotes the price of the futures contract at the time the
option expires. In the risk-neutral valuation framework,
the current price of the call option is given as the expected
value of the futures contract at the time the option expires,
discounted to present values at the risk-free rate:
e "E[(F(t) — K)*]. In general the option contracts expire
before the underlying futures contracts, and for short-term
options it is important to recognize that these options rep-
resent options on futures contracts rather than options on
the spot price of oil.

The key to valuing these options on futures contracts is
to note that, if the spot price p(¢) follows our mean-
reverting process, the value of the futures contract F(t)
follows the same form of process with transformed param-
eters. If we let T denote the time the futures contract
expires and let Azt = T — ¢ denote the difference between
the futures and option expirations, then from (A2) we see
that at the time the option expires, given the then-
prevailing (log) spot price m(¢), the futures price is then
given by
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In(F(t)) = ,n-(t)e*KAl + a(1 — e*KA[) + alf
+0.502(1 — e 24 /2k.

Since the only uncertainty in this formula is w(¢), ¢(t) =
In(F(r)) is a linear transformation of a normally distributed
random variable (7 (¢)), with mean and variance:

o) = Elm(n)]e ™ + (1 — e %)
+ alAt + 0.502(1 — e 24/ 2k,
o§(t) = Var[w(r)]e —2KAr

F(t) then is log-normally distributed with mean exp(,(¢)
+ 0.507(1)).

The value of the call option is given by e "E[(F(r) —
K)™]. To calculate these values we note that E[(F(f) —
K)™] can be evaluated analytically, resulting in a call op-
tion value given as

e ME[F(D](1 = N(In(K), py(t) + 04(1), a4(1))
— K(1 = N(In(K), py(t), 3(0))},

where N(d, u, o) indicates the tail probability for d (i.c.,
P(X < d)) for a normally distributed random variable (X)
with mean u and variance o”. (The standard Black-Scholes
formula can be written in this same form with the appro-
priate substitution for the means and variances.) Following
a similar analysis, we find an analogous formula for deter-
mining the value of the put options:

e "{—E[F(N](1 = N(In(K), wy(1) + o4(t), 03(1)))
+ K(1 — N(In(K), py(t), ag(0))}.

Throughout this discussion, we have assumed that the
option contracts are European in nature allowing exercise
only at expiration, when, in fact, the exchange traded op-
tions on oil futures contracts are American options that
allow the holder to exercise at any time. The valuation of
American contracts is more difficult than their European
counterparts and typically requires the construction of a
binomial tree or lattice approximation of the stochastic
process (as in Cox et al. 1979). For very short-term op-
tions, like the exchange traded options on oil futures con-
tracts, the European options usually provide a good
approximation of the American values (Barone-Adesi and
Whaley 1987). While the approximation may not be appro-
priate for longer term options, the long-term options that
we have seen traded over the counter are, in fact, Euro-
pean option contracts. In valuing the put and call options,
we used a risk-free rate of 5.60 percent, corresponding to
the then-prevailing interest rate for three-month Treasury
securities.

Results. Given these formulas for valuing futures and op-
tion contracts, we then chose parameter values to mini-
mize squared errors in observed prices. Specifically, we
chose parameters to minimize the sum of squared errors in
prices, where the errors are defined as the difference be-
tween the “settle” price listed in the Wall Street Journal
and the values given by our model, and each of the 55

securities was weighted equally in calculating the total
squared error. The parameter estimates given by this pro-
cess were as follows: m = 2.798, k = 2.194 per year (cor-
responding to a mean-reversion half-life of 3.79 months),
o, = 26.4 percent per year, a = 2.90 percent, and p(0) =
$17.36. These parameters imply the long-run median oil
price is $16.41 (= e™) in 1995 dollars, where future dollars
are discounted at o = 2.90 percent.

With these parameters, the model provides a very good
fit to the actual security prices. The largest error is 14 cents
and occurs in the near-month futures contract: the model
gives a price of $17.32 and the actual price is $17.48. After
that the next largest error is 8 cents, with a mean absolute
error of 3.3 cents on the 24 futures contracts (including the
16 cent error on the near term contract) and a mean abso-
lute error of 2.1 cents on the 31 option contracts.
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ENDNOTES

1. Examples of real options applications in the oil and
gas area (or natural resource extraction more generally)
include Brennan and Schwartz (1985), Paddock et al.
(1988), Lehman (1989), Trigeorgis (1990), Kemna (1993),
and Smith and McCardle (1996).

2. Bertsekas (1996) discusses finite- as well as infinite-
horizon dynamic programming in general (including how
to formulate them as linear programs). Luenberger (1997)
provides a nice discussion of lattice methods for the cases
of one- and two-state variables. The stochastic differential
equations often presented in the real options literature can
be viewed as a limiting case of discrete-time dynamic pro-
grams with infinitesimal time steps (see Dixit and Pindyck
1994).

3. These oil price forecasts and all others presented and
used in this paper are based on publicly available price
data. These forecasts are intended to provide a basis for
discussion and do not represent the company’s or anyone
else’s recommended or actual price forecast.

4. For more on the weighted average cost of capital and
the capital asset pricing model, see, for example, Brealey
and Myers (1991) p. 465-470 or Copeland et al. (1990), p.
171-205. These books talk about how to incorporate more
complex debt instruments as well as issues associated with
estimating these parameters.

5. Though the futures contract commits the buyer and
seller to potentially make payments in the future, the con-
tract requires no initial payment and, hence, the current
price of the contract is $0.



6. The traditional option valuation theory (sometimes
called “contingent claims valuation,” “risk-neutral valua-
tion,” or “valuation by arbitrage”) is discussed at an intro-
ductory level in Dixit and Pindyck (1994), and at a more
advanced level by Harrison and Kreps (1979) and Duffie
(1992). Note what we call “risk-adjusted probabilities” are
often referred to as “risk-neutral probabilities” or “equiv-
alent martingale measures.” The extension to handle pri-
vate risks is developed in Smith and Nau (1995) and Smith
(1996) and discussed in Luenberger (1997). These refer-
ences also discuss how to handle the case where the firm is
risk-averse rather than risk-neutral.

7. Longer maturity futures and options are currently
traded over-the-counter, though prices for such contracts
are not readily available to those not active in those
markets.
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