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Abstract. We use a dynamic programming model to study the impacts of risk aversion
on information acquisition in technology adoption decisions. In this model, the benefit
of the technology is uncertain and, in each period, the decision maker (DM) may adopt
the technology, reject the technology, or pay to acquire a signal about the benefit of the
technology. The dynamic programming state variables are the DM’s wealth and a prob-
ability distribution that describes the DM’s beliefs about the benefit of the technology;
these distributions are updated over time using Bayes’ rule. If the signal-generating pro-
cess satisfies the monotone-likelihood ratio property and the DM is risk neutral, the value
functions and policies satisfy natural monotonicity properties: a likelihood-ratio improve-
ment in the distribution on benefits leads to an increase in the value function and moves
the DM away from rejection and toward adoption. With risk aversion, the value func-
tions (now representing expected utilities) will be monotonic, but the policies need not be
monotonic, evenwith reasonable utility functions. However, if we assume the DM exhibits
decreasing absolute risk aversion and is not “too risk averse,” the policies can be shown
to be monotonic. Establishing these structural properties requires the use of some novel
proof techniques that may prove useful in other contexts. We also study the impact of
changing risk attitudes on the optimal policy.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2017.1601.
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1. Introduction
New technologies often promise uncertain benefits,
sometimes with high costs. For example, consider the
Tesla Model S luxury electric sedan. The Tesla boasts
outstanding styling, performance, and efficiency (with
a miles-per-gallon-equivalent of 84 miles per gallon)
and earned an incredible 99 out of a possible 100 points
in Consumer Reports’ automobile ratings. However, as a
new car, the Tesla’s reliability is uncertain and its price
tag ($70–$100,000) will give most consumers pause.
Even among consumers who can afford a Tesla, many
will wait to see how the car performs over the next few
years to see if its benefits justify its cost. Similar dilem-
mas are faced by a farmer considering planting a new
variety of soybeans or corn, an electric utility consider-
ing building a power plant based on a new technology,
or an entrepreneur considering investing his life sav-
ings to attempt to commercialize a new idea. The stakes
are high: should they act now or wait and learn more
before deciding?
In this paper, we study the impact of uncertainty

about the benefits of a technology on adoption and
information gathering decisions, under risk aversion.
Our starting point is the dynamic programming (DP)
model studied in Ulu and Smith (2009, hereafter US)
that builds on and generalizes the classic model of

McCardle (1985). In this model, in each period, the
decision maker (DM) must decide whether to adopt
or reject a new technology or to wait and gather addi-
tional information about the benefits of the technol-
ogy. Information gathering is costly and modeled as
receiving a signal (e.g., a new review) about the bene-
fit of the technology. After observing a signal, the DM
updates her distribution on the technology’s benefits
using Bayes’ rule. In McCardle (1985), the uncertainty
in each period is described by a univariate summary
statistic and consequently the DP has a univariate state
variable. US (2009) considers a general model of learn-
ing where the state variable is the DM’s probability
distribution on the benefits of the technology; these
probability distributions are ordered by likelihood-
ratio (LR) dominance.

Our focus in this paper is on structural properties
of the model and, in particular, the effects of risk
aversion on these structural properties. Risk aversion
is an important consideration in practice, particularly
when the new technology (for example, the Tesla or
the power plant) is expensive and when the stakes are
high for the DM (as a farmer’s choice of variety to
plant or the entrepreneur’s decision to invest his life
savings in a startup). Many of the structural properties
of the model generalize naturally from the risk-neutral
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to the risk-averse case. In particular, we can show the
value functions are monotonic using essentially the
same arguments as the risk-neutral case: if we assume
the signal-generating process satisfies the monotone
likelihood ratio (MLR) property, LR improvements in
the prior lead to an increase the DM’s expected utility.
Convexity and some other comparative statics and con-
vergence results also generalize in a straightforward
manner to the risk-averse case.
However, the structure of the optimal policy is harder

to characterize with risk aversion. If the DM is risk neu-
tral or risk seeking, we can show that the optimal pol-
icy is monotonic in the sense that if it is optimal to
adopt (or reject) with one distribution, it is optimal to
adopt (reject) with all distributions that LR-dominate
(or are LR-dominated by) the first distribution. This is
shownusingasupermodularityargument: theexpected
values for different actions have LR-increasing differ-
ences. With risk aversion, the corresponding utility dif-
ferencesneednotbeLR-increasingand theoptimalpoli-
cies need not be monotonic, even for reasonable utility
functions. For example, we may have a DM for whom
it is optimal to wait and gather more information about
the technology with one prior distribution but opti-
mal to adopt with a worse (i.e., a LR-dominated) prior.
However, if we assume that the utility functions exhibit
decreasing absolute risk aversion and are not “too risk
averse” (inasense tobemadeprecise later),wecanshow
that these policy differences are “sLR-increasing.” This
sLR-increasing property is sufficient to ensure that the
utility differences are single crossing and the policies
are monotonic, as in the risk-neutral case. Though the
main contribution of the paper is the study of risk aver-
sion in the technology adoptionproblem, this s-increas-
ing property may prove useful when studying other
DPmodels.
We provide a brief review of related literature in the

remainder of this section. In Section 2, we describe the
model and introduce a numerical example that we will
use to illustrate the results of the paper. In Section 3, we
briefly review some key properties of LR-dominance
and LR-increasing functions. In Section 4, we discuss
some results for the risk-averse model that are straight-
forward generalizations of the risk-neutral model. In
Section 5, we study the structure of the policies in
the risk-neutral and risk-averse models and show how
risk aversion can lead to nonmonotonic policies. In
Section 6, we develop the idea of s-increasing and
sLR-increasing functions and show that s-increasing
properties are preserved and propagated in recursive
Bayesian models. In Section 7, we show that if the
DM is not too risk averse, the policy differences will
be sLR-increasing, which implies the optimal policies
will be monotonic under risk aversion. In Section 8, we
study the effects of changing risk attitudes on the opti-
mal values and policies. In Section 9, we consider the

model with discounting and briefly discuss the exten-
sion to include multiple information sources.

1.1. Literature Review
The literature on technology adoption is vast and
spans a number of fields; Rogers (2003) provides a
thorough review of the early literature. As discussed
earlier, we focus on information acquisition in tech-
nology adoption decisions, following McCardle (1985)
and US (2009). Jensen (1982) earlier studied a technol-
ogymodel where the uncertain technology value could
take on just two values. There have been a number
of generalizations and variations on McCardle’s (1985)
model. For example, Lippman and McCardle (1987)
study how changes in the “informational returns to
scale” in the McCardle (1985) model affect the timing
of adoption decisions. Cho and McCardle (2009) study
information acquisition in technology adoption deci-
sions when there are multiple dependent technologies.
The model of McCardle (1985) can also be viewed as
a variation on the sequential hypothesis testing prob-
lem studied inWald (1945) where the uncertainty is the
economic benefit associatedwith adopting the technol-
ogy rather than the truth of posited null and alternative
hypotheses.

Of course, risk aversion and information gathering
are central themes in decision analysis. LaValle (1968)
provides an early study of the value of information
with risk aversion; see also the review in Hilton (1981).
The conclusions in this literature are mostly negative:
e.g., there is no monotonic relationship between the
degree of absolute or relative risk aversion and the
value of information (Hilton 1981, Theorem 2). Oth-
ers have made progress focusing on specific problems.
For example, Bickel (2008) studies a single-period two-
action linear-loss problem (essentially accept a risk or
reject it) with exponential utility, focusing on the case
with normally distributed uncertainties. Abbas et al.
(2013) also study the effects of risk aversion on the
value of information in a single-period problem with
two actions; they find that the value of imperfect infor-
mation may increase or decrease with the DM’s degree
of risk aversion. Here we consider a dynamic version
of the two-action problem with repeated opportunities
for information gathering. We consider general utili-
ties and provide conditions that lead to some positive
results about the structure of information gathering
policies.

Riskaversion isalsoofgrowing interest in thebroader
operations research and operations management liter-
ature. For example, Eeckhoudt et al. (1995) study the
impact of risk aversion in the classic newsvendor prob-
lem. Similarly, Chen et al. (2007) study the impact of
risk aversion in classic dynamic inventory manage-
ment models, focusing on structural properties of the
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models. Zhu and Kapuscinski (2015) study a mul-
tiperiod, multinational, risk-averse newsvendor fac-
ing exchange rate risks. The latter two studies use a
present certainty equivalent framework (Smith 1998)
that assumes an exponential utility function and leads
to tractable DP models; Eeckhoudt et al. (1995) con-
sider a more general utility analysis but in a single
period setting. Our paper is analogous to these in that
we study the effects of incorporating risk aversion in a
classic model in the operations research literature.
Finally, this paper builds on and contributes to

the literature on structural properties of DPs. Smith
and McCardle (2002) synthesize some of these struc-
tural property results for DPs and relate these results
to stochastic dominance. Lovejoy (1987a, 1987b) pro-
vides sufficient conditions for monotonic policies
for DPs and partially observable DPs, exploiting
super/submodularity results (e.g., Topkis 1978). As
mentioned above, these super/submodularity argu-
ments do not work in the technology adoption model
with risk aversion. Milgrom and Shannon (1994) show
that single-crossing policy differences are sufficient to
obtain monotone policies, though they focus on single-
period problems rather than DPs (see also Athey 2002).
As we will see, the s-increasing property is convenient
for use with DP models and enables the use of single-
crossing arguments to establish the monotonicity of
policies.

2. The Model
In this section, we begin by describing the general
model. We then present a specific numerical example
that we will use to illustrate our later results.

2.1. The Model
A DM is contemplating purchasing a new technology
that yields an uncertain benefit denoted by θ ∈Θ ⊆ �;
we can think of θ as representing the net present value
of the stream of benefits provided by the technology.
The DM’s beliefs about the benefit of the technology
are described by a probability distribution. For ease
of notation, we will assume the DM’s probability dis-
tribution is continuous and has a density π over Θ.
For discrete spaces, we can interpret π as a probabil-
ity mass function and consider sums instead of inte-
grals; more general probability measures could also be
considered.
Time is discrete. In each period, the DM starts with

a prior distribution π and must choose whether to
adopt the technology, reject it, or gather additional
information:

• If she adopts the technology, she receives an
uncertain benefit θ with distribution π.1

• If she rejects the technology, she receives nothing
and stops gathering information.

• If she waits and gathers additional information,
she pays c (c > 0) in that period and observes a signal
x ∈ X, drawn with likelihood function L(x | θ). After
observing signal x, the DM proceeds to the next period
with a new distribution on benefits Π(θ;π, x) given by
updating the prior π using Bayes’ rule,

Π(θ;π, x)� L(x | θ)π(θ)
f (x;π) ,

where f (x;π) is the predictive distribution for signals
x, f (x;π) �

∫
θ

L(x | θ)π(θ) dθ. We will assume L(x | θ)
> 0 for all x and θ; this ensures that the predictive
distributions satisfy f (x;π) > 0 and the posterior dis-
tributions Π(θ;π, x) are well defined for all signals x.
We will write the posterior distribution as Π(π, x)

when we want to consider the posterior as a function
of the prior π and observed signal x. Similarly, we will
write the predictive distribution for signals as f (π).

Let u(w) denote the DM’s utility function for
wealth w. The DM’s value function (or derived util-
ity function) with k periods remaining and prior π,
Uk(w , π), can be written recursively as

U0(w , π)� u(w),
Uk(w , π)

� max


Ɛ[u(w + θ̃) | π] (adopt),
u(w) (reject),
Ɛ[Uk−1(w − c ,Π(π, x̃)) | f (π)] (wait).

(1)

Here, when waiting, the DM observes a random sig-
nal x̃, updates her prior π to posterior Π(π, x̃) after
seeing the signal, and continues to the next periodwith
her wealth reduced by the cost c of gathering informa-
tion. This formulation assumes there is no discounting
of costs or benefits; we will discuss an extension to a
model with discounting in Section 9. The expectations
in (1) can be written more explicitly as

Ɛ[u(w + θ̃) | π]�
∫
Θ

u(w + θ)π(θ) dθ and

Ɛ[Uk−1(w ,Π(π, x̃)) | f (π)]

�

∫
X

Uk−1(w ,Π(π, x)) f (x;π) dx.

When writing expectations, we will place tildes on the
random variable involved and condition the expecta-
tion on the distribution assumed for the random vari-
able. To ensure these expectations are well defined, we
will assume that u(w+θ) is π-integrable for all w and π
encountered.

The DM is risk neutral if her utility function u(w)
is linear, risk averse if u(w) is concave, and risk seek-
ing if u(w) is convex. We let ρu(w) � −u′′(w)/u′(w)
denote the coefficient of (absolute) risk aversion for util-
ity function u and let τu(w) � 1/ρu(w) � −u′(w)/u′′(w)
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be the risk tolerance. A utility function u(w) exhibits
decreasing absolute risk aversion (is DARA) if it is strictly
increasing; concave (i.e., risk averse); twice differen-
tiable; and ρu(w) is decreasing or, equivalently, τu(w) is
increasing. A utility exhibits constant absolute risk aver-
sion (is CARA) if τu(w) is a constant; a CARA utility is
either linear or exponential. A utility function u2 ismore
risk tolerant than utility function u1 if τu2

(w) > τu1
(w)

for all w and is more risk averse if the reverse inequal-
ity holds.

2.2. An Illustrative Example
We will illustrate our results using a specific numeri-
cal example. In this example, we assume that the value
of the technology is θ � p − 0.5 where the DM starts
with a beta distribution on the parameter p; that is,
π(p) ∝ p(α−1)(1 − p)(β−1). We assume the cost c of infor-
mation is 0.01. Signals follow a Bernoulli process with
positive (+) signals occurring with probability p and
negative (−) signals with probability 1 − p. Applying
Bayes’ rule, if we start in one period with a beta prior
with parameters (α, β), we enter the next period with
parameters (α + 1, β) if a positive signal is observed
and with (α, β + 1) if a negative signal is observed.
Thus, the precision (α + β) increases by one in each
period. The mean of the beta distribution is α/(α + β)
and the expected benefit of the technology is therefore
α/(α+β)−0.5. In this setting, rather thanworkingwith
full distributions π as a state variable, we can instead
work with (α, β) as the state variable or, equivalently,
with the expected benefit of the technology and the
precision of the distribution as state variables.
We first consider the case where the DM is risk neu-

tral with u(w)� w; we will assume the initial wealth is

Figure 1. (Color online) Results for the Illustrative Example with Risk Neutrality
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equal to $1.06. (This initial wealth has no impact on the
optimal policy given risk neutrality.) We will consider
the infinite horizon limit by taking the number of peri-
ods remaining to be very large. The optimal policy for
this example is shown in Figure 1(a). Here the x-axis
corresponds to the precision (α+ β) and the y-axis rep-
resents the expected benefit (α/(α+ β)−0.5). The DM’s
beliefs can be represented by a point in this figure and
will move from left to right as the DM gathers informa-
tion. One such path is shown as the jagged line in the
figure: this DM starts with α � 2.25 and β � 1.75 (thus
precision α + β � 4) and observes a signal sequence
(−,+,−,+,−,−) before rejecting the technology. In Fig-
ure 1(a), we see that the adoption (rejection) thresholds
decrease (increase) as the precision increases, converg-
ing toward θ � 0.
Figure 1(b) shows the values associated with adopt-

ing, waiting, and rejecting, as a function of the expected
value of the technology given precision α+ β � 10; this
corresponds to a vertical slice in Figure 1(a). The DM
starting with precision 4 would reach this level of pre-
cision after six periods of waiting and would then have
wealth 1.0. In this figure, consistent with Figure 1(a), if
the expected benefit is less than approximately −0.03,
it is optimal to reject the technology. If the expected
benefit is more than 0.03, it is optimal to adopt the tech-
nology. Between these two levels, it is optimal to wait
and gather additional information. The optimal value
function (1) is the upper envelope of the three func-
tions shown in the figure. All of these functions are
increasing and convex in the expected benefit.

Figure 2 shows analogous results for the case with
risk aversion. Here we assume the DM starts with
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Figure 2. (Color online) Results for the Illustrative Example with Risk Aversion
(b) Value function slice, given � + � = 10
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initial wealth $1.06 (as before) and has a power util-
ity function u(w) � 1.2 − 0.2w(1−γ) where γ � 6 is the
coefficient of relative risk aversion, i.e., the DM’s risk
tolerance is one-sixth of her wealth, τu(w) � w/6. (The
utility function is scaled so its value and slope match
that of the risk-neutral utility function u(w) � w at
w � 1.0.) Examining the optimal policy regions in Fig-
ure 2(a), we see that the risk-averse DM is more con-
servative in adopting (she requires a much higher
expected benefit before adopting) and rejects in many
scenarios where a risk-neutral DM would wait or
adopt. In particular, on the example path in Figure 1(a)
where theDM starts with α�2.25 and β�1.75, the risk-
averse DMwould reject the technology after observing
a single negative signal.
Figure 2(b) shows the expected utilities associated

with adopting, waiting, and rejecting in the same set-
ting as Figure 1(b). As in Figure 1(b), it is optimal to
reject for low expected benefits, optimal to adopt for
high expected benefits, and optimal to wait between
these two levels. Again, all of these functions are
increasing in the expected benefit. The value given
adoption is concave in the expected benefit, reflecting
the DM’s risk aversion. The optimal value function (the
upper envelope) and the value with waiting are con-
vex in the lower range and concave in the higher range,
where adoption is optimal or likely in future periods.

3. Preliminaries
The example of the previous section illustrates the
kinds of results that onemight hope to establish as gen-
eral properties of the technology adoption model and
as general effects of risk aversion. To study monotonic-
ity properties of the model, we will rely heavily on the

likelihood-ratio order on distributions and the mono-
tone likelihood-ratio property for the signal’s likeli-
hood functions. In this section, we briefly review these
definitions and some important related properties.
Definition 3.1 (LR-Dominance and Related Definitions).
(i) π2 likelihood-ratio (LR) dominates π1 (π2 �LRπ1) if
π2(θ2)π1(θ1) > π2(θ1)π1(θ2) for all θ2 > θ1.
(ii) A signal process has the monotone-likelihood-

ratio (MLR) property if the signal space X is totally
ordered and L(x | θ2) �LRL(x | θ1) for all θ2 > θ1.
(iii) A function V(π) defined on distributions on Θ

is LR-increasing if V(π2) > V(π1) whenever π2 �LRπ1;
V(π) is LR-decreasing if −V(π) is LR-increasing.

Note that if π1(θ) > 0 for all θ, the condition defin-
ing LR-dominance is equivalent to π2(θ)/π1(θ) being
increasing in θ. In the illustrative example of Sec-
tion 2.2, increasing α in the beta priorwhile holding the
precision α + β constant leads to a LR-improvement in
the distribution. Thus moving upward in Figures 1(a)
or 2(a) or to the right in Figure 1(b) or 2(b) corresponds
to a LR-improvement in the prior. If we assume that
positive signals are greater than negative signals, the
Bernoulli signal process satisfies the MLR property.

The key properties of the LR-order that we will
use are (i) LR-dominance implies first-order stochas-
tic dominance; (ii) LR-dominance survives Bayesian
updating; and (iii) if the signal process satisfies the
MLR property, the LR-order leads to natural mono-
tonicity properties in signals. These properties are well
known.
Proposition 3.1 (Properties of the LR-Order). (i) If π2 �LR
π1, then Ɛ[v(θ̃) | π2] > Ɛ[v(θ̃) | π1] for any increasing func-
tion v(θ).
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(ii) Given any signal x, the posteriors are LR-ordered if
and only if the priors are LR-ordered: that is, π2 �LRπ1 ⇔
Π(π2 , x) �LRΠ(π1 , x), for all x.
(iii) If the signal process satisfies the MLR property,

then
(a) π2 �LRπ1⇒ f (π2) �LR f (π1)
(b) For any prior π, x2 > x1⇔Π(π, x2) �LRΠ(π, x1).

These properties of the LR-order imply that expec-
tations of increasing functions generate LR-increasing
functions and the LR-increasing property is preserved
by Bayesian updating. These results are critical for
establishing monotonicity properties in our model and
will be generalized to s-increasing functions in Sec-
tion 6.

Proposition 3.2 (Properties of LR-Increasing Functions).
(i) If v(θ) is increasing in θ, then Ɛ[v(θ̃) | π] is LR-in-
creasing.
(ii) Suppose the signal process satisfies the MLR

property and V(π) is a LR-increasing function; then
Ɛ[V(Π(π, x̃)) | f (π)] is LR-increasing.
Here part (i) follows from Proposition 3.1(i) and the

definition of LR-increasing. Part (ii) uses each element
of Proposition 3.1; seeUS (2009), Lemma 3.5 for a proof.

As discussed in the introduction, we will consider
single-crossing properties of policy differences and
define single-crossing functions as follows.

Definition 3.2 (Single-Crossing Functions). (i) v(θ) is
single crossing if, for all θ2 > θ1, v(θ1) > 0 implies
v(θ2) > 0 and v(θ1) > 0 implies v(θ2) > 0.
(ii) V(π) is LR-single crossing if, for all π2 �LRπ1,

V(π1) > 0 implies V(π2) > 0 and V(π1) > 0 implies
V(π2) > 0.

We note that single-crossing functions v(θ) generate
LR-single-crossing functions V(π) in much the same
way that increasing functions generate LR-increasing
functions in Proposition 3.2(i).

Proposition 3.3 (Generating Single-Crossing Functions).
If v(θ) is single crossing, then Ɛ[v(θ̃) | π] is LR-single
crossing.

Proof. See, e.g., Karlin (1968, Chapter 1, Theorem 3.1,
p. 21). �

4. Straightforward Properties
A number of properties of the risk-neutral model gen-
eralize in a straightforwardmanner to the risk-sensitive
model. In this section, we focus on the monotonicity
and convexity results that we will use later and briefly
mention some other properties.

4.1. Monotonicity of the Value Function
We first show that if the signal process satisfies
the MLR property and the DM’s utility function is

increasing, the optimal value function is monotonic in
that LR-improvements in the prior distribution π lead
to higher values. The proof is analogous to the proof for
the risk-neutral case (see Proposition 3.6 in US 2009).

Proposition 4.1 (Monotonicity of the Value Function).
Suppose the DM’s utility function u(w) is increasing in w
and the signal process satisfies the MLR property. Then, for
all k and w, the value function Uk(w , π) is LR-increasing
in π.

Proof. We show this by induction. The terminal value
function, U0(w , π)� u(w), is independent of π and thus
trivially LR-increasing for all w. The value if the DM
adopts (Ɛ[u(w + θ̃) | π]) is LR-increasing by Proposi-
tion 3.2(i) since u(w +θ) is increasing in θ. The value if
the DM rejects, u(w), is independent of π and trivially
LR-increasing. Now suppose Uk−1(w , π) is LR-increas-
ing for all w. By Proposition 3.2(ii), the value if the DM
waits, Ɛ[Uk−1(w − c ,Π(π, x̃)) | f (π)], is LR-increasing.
Thus,Uk(w , π), as themaximumof three LR-increasing
functions, is also LR-increasing. �

As discussed following Definition 3.1, the signal
process in the illustrative example satisfies the MLR
property and movements to the right in Figures 1(b)
and 2(b) correspond to LR-improvements in the prior.
In these figures, it is evident—both with risk neutrality
and with risk aversion—that the values corresponding
to adopting, rejecting, and waiting are all increasing
with such improvements, so the optimal value function
(the upper envelope of these functions) is also increas-
ing in this direction.

4.2. Convexity
Convexity in the priors π follows exactly as in the case
with risk neutrality. Here we do not need to place any
assumptions on the utility function (e.g., the utility
function need not be increasing or concave) or on the
signal process (e.g., the likelihood function need not
satisfy the MLR property).

Proposition 4.2 (Convexity). (i) For all k and w, the value
function Uk(w , π) is convex in π.

(ii) If it is optimal to adopt (reject) with priors π1 and π2,
then it is also optimal to adopt (reject) with prior απ1 +

(1− α)π2 for any α such that 0 6 α 6 1.

Proof. See US (2009) Propositions 6.2 and 6.3. �

This convexity result follows because the expected
utility associated with adoption is linear in the prob-
abilities and can be interpreted as an aversion toward
uncertainty about the prior π. The convex combination
πα � απ1 + (1− α)π2 can be interpreted as there being
probability α of π1 prevailing and probability (1 − α)
of π2 prevailing. A convex value function means that
the DMwould prefer to resolve this uncertainty before
beginning the information-gathering process (for an
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expected utility of αUk(w , π1)+ (1−α)Uk(w , π2)) rather
than begin the information-gathering process with
this uncertainty unresolved (for an expected utility of
Uk(w , πα)). Intuitively, if the DM knew whether π1
or π2 prevailed, she could make better adoption, rejec-
tion, and/or information gathering decisions.2

4.3. Other Straightforward Extensions
In addition to thesemonotonicity and convexity results,
a number of other results generalize in a straightfor-
wardmanner fromthe risk-neutral to risk-aversemodel.
We state a few of these results informally:

• Increasing the informativeness of the signal pro-
cesses (in the sense of Blackwell 1951) makes the DM
better off and encourages information gathering.

• Cheaper information (reducing c) makes the
DM better off, encourages information gathering, and
delays adoption. If c � 0, it is always optimal to gather
additional information until period T − 1; the DM will
then decide whether to adopt or reject in period T − 1.
In this case, information is free and potentially valu-
able and, with no discounting, delaying adoption is not
harmful.

• Increasing the number of periods remaining (k)
makes the DM better off and encourages information
gathering. However, there are diminishing returns to
increasing the number of periods remaining:

—the expected utilities converge for all priors, and
—if the utility function is strictly increasing, the

DMwill almost certainly stop gathering information at
some point.

Here “makes the DM better off” means the value
function (weakly) increases with the given change in
assumptions and “encourages information gathering”
means that if it is optimal to gather more information
with the initial assumption, then it remains optimal to
gather information with the change. These results are
discussed in US (2009) and risk aversion does not play
a significant role in the proofs or interpretation.

5. Monotonicity of the Policies
We next consider how the optimal policy responds to
changes in the prior on benefits. As discussed in the
introduction, with risk neutrality, if the signal process
satisfies the MLR property, we get monotonic poli-
cies as well as monotonic value functions: along any
chain of LR-improving distributions, the optimal action
moves from rejection toward adoption, perhaps pass-
ing through the information gathering region. In the
illustrative example, moving up in Figure 1(a) or 2(a)
corresponds to a LR-improvement and we can see that,
in both the risk-neutral and risk-averse cases, the opti-
mal policies are monotonic in this sense. The mono-
tonicity of the rejection policy is easy to establish
in both the risk-neutral and risk-averse models. The
monotonicity of the adoption policy is more difficult to

establish, and, as we demonstrate in Section 5.3 below,
this monotonicity need not hold with risk aversion.

5.1. Rejection Policies
Monotonicity of rejection policy follows under the
same conditions required to ensure that value func-
tions are LR-increasing.

Proposition 5.1 (Monotonicity of Rejection Policies). Sup-
pose the DM’s utility function is increasing and the signal
process satisfies the MLR property. If it is optimal to reject
with prior π2, it is also optimal to reject with any prior π1
such that π2 �LRπ1.

Proof. Consider the difference between the optimal
value and the value given by rejecting, Fk(w , π) �
Uk(w , π) − u(w). If it is optimal to reject given prior π2,
we have Uk(w , π2) � u(w) and thus Fk(w , π2) � 0. If
we assume that the DM’s utility function is increas-
ing and the signal process satisfies the MLR property,
Uk(w , π) is LR-increasing (by Proposition 4.1) and thus
Uk(w , π1)6Uk(w , π2)� u(w). However, since Uk(w , π1)
corresponds to the optimal action and rejecting is a
possible action, we know Uk(w , π1) > u(w). Therefore,
Uk(w , π1) � u(w) and it is optimal to reject given π1
as well. Thus the monotonicity of rejection policy fol-
lows under the same conditions required to ensure that
value functions are LR-increasing. �

5.2. Adoption Policies
The monotonicity of the adoption policy is more dif-
ficult to establish because the optimal value and the
value from adopting both potentially change with π.
Let Gk(w , π) � Ɛ[u(w + θ̃) | π] − Uk(w , π) be the dif-
ference between the value associated with immediate
adoption and the optimal value function; note that
Gk(w , π) 6 0. We can write Gk(w , π) recursively as

G0(w ,π)�Ɛ[u(w+ θ̃)−u(w) |π],
Gk(w ,π)

�min


0 (adopt),
Ɛ[u(w+ θ̃)−u(w) |π] (reject),
Ɛ[u(w+ θ̃)−u(w+ θ̃−c) |π]

+Ɛ[Gk−1(w−c ,Π(π, x̃)) | f (π)] (wait).

(2)

If we assume that information is free or that the
DM is risk neutral or risk seeking, we can show
the utility difference Gk(w , π) is LR-increasing using
a straightforward induction argument. The terminal
utility difference, G0(w , π), is LR-increasing if the
utility function is increasing (this follows from Propo-
sition 3.2(i)). The terms associated with adopting and
rejecting in (2) are also LR-increasing. For the induc-
tion hypothesis, suppose Gk−1(w , π) is LR-increasing.
Proposition 3.2(ii) implies that the expected continua-
tion value, Ɛ[Gk−1(w ,Π(π, x̃)) | f (π)], is LR-increasing.
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Now consider the “reward” associated with waiting
in (2),

Ɛ[u(w + θ̃) − u(w + θ̃− c) | π]. (3)

If information is free (i.e., c � 0), this reward term
reduces to 0 and is trivially LR-increasing. In the risk-
neutral casewith u(w)�w, the reward term (3) reduces
to a constant c and is also trivially LR-increasing. If the
DM is risk seeking (i.e., the utility function is convex),
the utility difference

u(w + θ) − u(w + θ− c), (4)

is increasing in θ and the reward term (3) is LR-in-
creasing (again, by Proposition 3.2(i)). The sum of two
LR-increasing functions is LR-increasing, so adding
the reward term (3) and the continuation value, we
know that the term associated with waiting in (2)
is LR-increasing. Thus, the functions associated with
each choice in (2) are all LR-increasing, and then Gk(π),
as the minimum of three LR-increasing functions, is
LR-increasing. This leads to the following proposition.

Proposition 5.2 (Monotonicity of Adoption Policies in
Special Cases). Suppose that the signal process satisfies the
MLR property, the utility function is increasing and one of
the following holds:
(i) information is free (c � 0),
(ii) the DM is risk neutral, or
(iii) the DM is risk seeking.

If it is optimal to adopt with prior π1, it is also optimal to
adopt with any prior π2 such that π2 �LRπ1.

Proof. Because Gk(π) is LR-increasing (as argued be-
fore the proposition) and Gk(π) 6 0, if it is optimal to
adopt for π1 (i.e., Gk(π1) � 0), then it is also optimal to
adopt for π2 (i.e., Gk(π2)� 0) if π2 �LRπ1. �

If the DM is risk averse (i.e., u(w) is concave) and
c > 0, the argument underlying the result of Propo-
sition 5.2 breaks down as the utility difference (4)
is now decreasing rather than increasing and conse-
quently the reward term (3) is LR-decreasing rather
than LR-increasing.We can see the difficulty in the risk-
averse case by comparing Figures 1(b) and 2(b). In the
risk-neutral case, the difference between adoption and
waiting is increasing when moving from left to right in
Figure 1(b). In the risk-averse case in Figure 2(b), this
difference is initially increasing but then decreases.
In the next subsection, we provide an example that

demonstrates that the adoption policy need not be
monotonic, even with a reasonable utility function.
However, we will show in Section 7 that we will have
monotonic policies if we assume the utility function
is not “too risk averse.” We first note that in the spe-
cial case where there are only two possible technology
values, policies will be monotonic without any spe-
cial utility assumptions (beyond assuming that u(w)

is increasing) or assuming the signal process satisfies
the MLR property. In this case, we appeal to the con-
vexity result of Proposition 4.2 rather than increasing
difference arguments to establish the monotonicity of
the optimal policies.

Proposition 5.3 (Monotonicity of Policies with Two Out-
comes). Suppose the DM’s utility function is increasing
and there are two possible technology values. If it is optimal
to adopt with prior π1, then it is also optimal to adopt with
any prior π2 such that π2 �LRπ1. Similarly, if it is optimal
to reject with prior π2, then it is also optimal to reject with
any prior π1 such that π2 �LRπ1.

Proof. Let θl and θh denote the two possible values
of θ and p be the probability associated with θh and
(1 − p) with θl . If 0 6 θl , θh (or 0 > θl , θh), given that
the utility function is increasing, it would clearly be
optimal to adopt (or reject) for any p. Now assume
θl < 0 < θh . With two outcomes, increasing p is an LR-
improvement and all possible priors are convex combi-
nations of the priors with p � 0 and p � 1. If it is optimal
to adopt with probability p1, because it is optimal to
adopt with probability p � 1, convexity of the adop-
tion region (Proposition 4.2) implies that it is optimal
to adopt with any probability p2, such that p1 6 p2 6 1.
A similar argument holds for the rejection result. �

One implication of this result is that any example
demonstrating the nonmonotonicity of the adoption
policy must involve at least three different technology
values.

5.3. Nonmonotonic Adoption Policies
We show that adoption policies need not be monotonic
by considering the two-period example illustrated in
the decision trees of Figure 3. Here the DM is assumed
to have a logarithmic utility functionwith initial wealth
$23.002. There are three possible technology values (θ):
low (−$20.00), medium (−$10.55), or high (+$25.00).
The DM can adopt or reject immediately or wait and
pay $3 to observe a signal that may be positive or
negative. We consider two different priors π1 and π2
as shown in Table 1, corresponding to Figures 3(a)
and 3(b), respectively. The likelihoods for the signals
L(x | θ) are the same in both cases and are shown in
Table 1. Here π2 LR-dominates π1 and the signal pro-
cess satisfies the MLR property. The corresponding
predictive distributions for the signals and posteriors
are shown in Figures 3(a) and (b).

The expected utilities are shown below and left of the
decision and chance nodes in the decision trees of Fig-
ure 3; the optimal choices are indicated with bold lines.
In Figure 3(a) with prior π1, it is optimal for the DM
to adopt immediately. In Figure 3(b) with prior π2, it is
optimal for the DM to wait and decide after observing
a signal, adopting if the signal is positive and rejecting
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Figure 3. An Example with a Nonmonotonic Optimal Policy
(a) It is optimal to adopt with π1

Wealth Utility

0.08 Low (–20)
1.099

Adopt 0.35 Med (–10.55)
2.522

3.177
0.57 High (+25)

3.871

0.15 Low (–20)
–6.215

Adopt 0.65 Med (–10.55)
2.246

1.266
0.19 High (+25)0.41 Negative

3.8072
2.996

Reject
1 2.996

Wait (–3) 0.03 Low (–20)
–6.215

3.171
Adopt 0.14 Med (–10.55)

2.246
3.293

3.8071
3.293

Reject
2.996

Reject

3.002

12.452

48.002

0.002

9.452

45.002

20.002

0.002

9.452

45.002

20.002

23.002 3.136
3.136

0.59 Positive 0.83 High (+25)

(b) It is optimal to wait with π2

Wealth

0.00 Low (–20)
3.002

Adopt 0.38 Med (–10.55)
12.452

3.358

48.002

0.00 Low (–20)
0.002

Adopt 0.77 Med (–10.55)

0.23 High (+25)

9.452
2.603

45.0022
2.996

Reject
2 20.002

Wait (–3)
0.002

3.363
Adopt

9.452
3.587

0.62 Positive
45.0021

3.587
Reject

20.002

Reject
23.002

Utility

1.099

2.522

3.871

–6.215

2.246

3.807

2.996

–6.215

2.246

3.807

2.996

3.136
3.136

0.62 High (+25)

0.38 Negative

0.00 Low (–20)

0.14 Med (–10.55)

0.86 High (+25)

otherwise. Thus, the optimal policy for this example
is not monotonic in the prior: a LR-improvement in
the prior—changing from π1 to π2—leads the DM to
switch from adopting to waiting.
It is not difficult to understand what is happening in

this example. With prior π1, there is a 0.08 probabil-
ity of having the low outcome with a technology value
of −$20. With an initial wealth of $23.002, this outcome
would leave the DM with a wealth of $3.002. If the
DM waits and adopts after a positive signal, there is
a reduced chance (≈ 0.03) of this low outcome. How-
ever, taking into account the costs of waiting ($3), in
this case the DM is left with a wealth of only $0.002,
which is a near ruinous outcome with a logarithmic
utility function, with a large negative utility. However,
with prior π2, there is no chance of having the low
outcome and thus there is no chance of having the
near ruinous outcome if the DM waits; in this case, it
is optimal to wait. Here, as we reduce (or eliminate)
the probability of the disastrous outcome, we need the

Table 1. Data for the Example of Figure 1

Priors Likelihood L(x | θ)

Scenario Benefit θ π1 π2 Negative Positive

Low −20.00 0.08 0.00 0.78 0.22
Medium −10.55 0.35 0.38 0.77 0.23
High +25.00 0.57 0.62 0.14 0.86

intermediate, but still negative, third outcome to make
waiting attractive.

The essential features of this example are positive
information gathering costs c and a utility function
that approaches −∞ as wealth approaches zero. Given
any specific nonmonotonicity—that is, priors π1 and π2
such that π2 �LRπ1 and it is optimal to adopt with π1
and optimal to gather information with π2—if we
reduce the cost c (holding all else constant), for suf-
ficiently small positive c, the nonmonotonicity will
disappear, as it will become optimal to gather informa-
tion with π1 as well as π2. As noted in Proposition 5.2,
adoption policies are monotonic if c � 0; thus c > 0 is
necessary to have a nonmonotonicity. Given any c > 0,
if we have a utility function that approaches −∞ as
wealth approaches zero—such as the log utility in the
example above or the power utility—we can construct
a nonmonotonicity. Specifically, given a π2 (and like-
lihood function) such that waiting is strictly preferred
to adopting and adopting is strictly preferred to quit-
ting, we can define a prior π1 such that π2 �LRπ1 by
adding mass at a

¯
θ such that w +

¯
θ − c � 0, taking the

mass to be small enough so adopting is still preferred to
quitting. The expected utility associated with adopting
after waiting given

¯
θ is u(w +

¯
θ− c)�−∞ and waiting

is unattractive; adopting is then optimal with π1. (We
formalize this construction in Online Appendix B.1.)
Thus, given c > 0, a utility function that approaches
−∞ as wealth approaches zero is sufficient for creating
examples with nonmonotonic policies.
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6. s-Increasing and sLR-Increasing
Functions

As discussed in Section 5 the policy differences
Gk(w , π) in Equation (2) are not necessarily LR-increas-
ing with risk aversion and this can lead to nonmono-
tonic policies. To establish monotonicity of the policies,
we will provide conditions that ensure that these dif-
ferences will cross at most once as we LR-improve the
prior distribution. Unfortunately, single crossing is a
difficult property to work with in DP models. Whereas
sums and weighted sums of increasing functions will
be increasing, sums andweighted sums of single cross-
ing functions need not be single crossing. Thus, in a
DP, even if the reward function and continuation value
are both single crossing, their sum (or expectation)
need not be. Instead, we define new properties that
are weaker than increasing and LR-increasing but still
imply the desired single-crossing properties.

Definition 6.1 (s-Increasing Functions). Let s(θ) be a
scaling function such that s(θ) > 0 for all θ and s(θ) > 0
for some θ and let S(π)� Ɛ[s(θ̃) | π].
(i) v(θ) is s-increasing if v(θ2)s(θ1) > v(θ1)s(θ2) for all

θ2 > θ1.
(ii) V(π) is sLR-increasing if V(π2)S(π1)>V(π1)S(π2)

for all π2 �LRπ1.

Note that if s(θ) > 0 for all θ, s-increasing is equiva-
lent to v(θ)/s(θ) being increasing in θ and sLR-increas-
ing is equivalent to V(π)/S(π) being LR-increasing.
If the scaling function s(θ) is a positive constant,
s-increasing is equivalent to the ordinary sense of
increasing. However, with nonconstant scaling func-
tions, s-increasing functions need not be increasing.
Similarly, constant functions need not be s-increasing.
We can think of s-increasing as being “sort of” in-

creasing, as the properties of increasing functions that
we used to show the policy differences were increasing
hold for s-increasing functions as well.

Proposition 6.1 (Properties of s-Increasing Functions).
Given a scaling function s(θ) satisfying the conditions of
Definition 6.1,
(i) For any scalar α, αs(θ) and −αs(θ) are both

s-increasing.
(ii) If v1(θ) and v2(θ) are s-increasing, then for any

α, β > 0, αv1(θ)+ βv2(θ) is also s-increasing.
(iii) The maximum or minimum of two or more

s-increasing functions is also s-increasing.
(iv) Pointwise limits of s-increasing functions are also

s-increasing.
(v) Suppose s(θ) is single crossing and v(θ) is

s-increasing.
(a) If s(θ)� 0, then v(θ) 6 0.
(b) If s(θ1) > 0 and θ2 > θ1, then v(θ1) > 0 implies

v(θ2) > 0 and v(θ1) > 0 implies v(θ2) > 0.

These same properties hold for sLR-increasing functions
with V(π) and S(π) replacing v(θ) and s(θ) and π2 �LRπ1
replacing θ2 > θ1.

These results are straightforward to prove. Part (i) of
the proposition says that functions αs(θ) can be inter-
preted as “s-constants.” Recall from Section 5.2 that the
utility differences (4) are constant in the risk-neutral
case but decreasing in the risk-averse case, when we
wanted it to be constant or increasing. We will choose
a scaling function s(θ) so that these utility differences
are s-constant or s-increasing. We then use parts (ii)
and (iii) above in a recursive proof to show that the
policy differences are sLR-increasing. Parts (ii) and (iv)
of Proposition 6.1 imply that s-increasing is a closed
convex cone (C3) property in the sense of Smith and
McCardle (2002); such properties arise frequently and
quite naturally in stochastic DPs.

Proposition 6.1(v) is a single-crossing result. If
s(θ) > 0 for all θ (and thus s(θ) is single crossing), then
this result reduces to the assertion that an s-increasing
function is single crossing, in the same way that an
increasing function is single crossing. Allowing s(θ) to
be zero for some θ can provide some additional flexi-
bility. In regions where s(θ) � 0, an s-increasing func-
tion v(θ) must be nonpositive but no other conditions
are placed on v(θ). However, if s(θ) is single cross-
ing and s(θ0) > 0, then the single-crossing condition is
“switched on” at θ0 and v(θ) must be single crossing
for θ > θ0.
We now show that the analog of Proposition 3.2

holds for s-increasing functions; that is, expectations
of s-increasing functions generate sLR-increasing func-
tions and the sLR-increasing property is preserved by
Bayesian updating. These results (and the properties
of Proposition 6.1) are the key results for establishing
monotonic policies in the technology adoption model
with risk aversion.

Proposition 6.2 (Propertiesof sLR-IncreasingFunctions).
Let s(θ) be a scaling function as in Definition 6.1.
(i) If v(θ) is s-increasing, then Ɛ[v(θ̃) | π] is sLR-

increasing.
(ii) Suppose the signal process satisfies theMLR property,

V(π) is a sLR-increasing function and s is single-crossing;
then Ɛ[V(Π(π, x̃)) | f (π)] is sLR-increasing in π.

Proof. See Appendix A.1. �

We also note that the result that Bayesian updating
preserves the sLR-increasing property (part (ii) above)
generalizes to the settingwhere θ is changing over time
(as in a partially observable Markov decision process),
provided these transitions satisfy the MLR property.
We discuss this in more detail in Appendix B.2.

We conclude this section with a brief discussion
of properties that are related to s-increasing. First,
the definition of s-increasing functions is related to

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

3.
34

.2
9]

 o
n 

18
 S

ep
te

m
be

r 
20

17
, a

t 1
1:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Smith and Ulu: Risk Aversion, Information Acquisition, and Technology Adoption
Operations Research, 2017, vol. 65, no. 4, pp. 1011–1028, ©2017 INFORMS 1021

log-supermodularity (see, e.g., Athey 2002), which is
also referred to as “totally positive of order 2” (see,
e.g., Karlin 1968). A nonnegative function f (x) is log-
supermodular (or totally positive of order 2) if log f (x)
is supermodular. In the case where x � (i , θ) with i ∈
{1, 2} and θ2 > θ1, this is equivalent to requiring

f (1, θ2) f (2, θ1) 6 f (1, θ1) f (2, θ2).

If we take f (1, θ) � s(θ) and f (2, θ) � v(θ), this re-
duces to the condition defining s-increasing. How-
ever, s-increasing, unlike log-supermodularity, does
not require v(θ) to be nonnegative. This is important
in our application in the technology adoption model
because the functions involved may be positive or
negative.
A second related property is “signed-ratio mono-

tonicity” (SRM), which was introduced in Quah and
Strulovici (2012) and is used to “aggregate the single
crossing property.” Specifically, Quah and Strulovici
(2012) show that the weighted sum of two single-
crossing functions will be single crossing if and only
if the two functions satisfy the SRM condition. They
also provide conditions that ensure that the integral
of a family of single-crossing functions will be single
crossing. However, their conditions for aggregation are
not satisfied in the technology adoption model and we
could not apply these results in this setting.

7. Adoption Policies with Risk Aversion
We now return to the problem of showing that the
adoption policies in the technology adoption model
with risk aversion have a monotonic structure. Specif-
ically, we will show that, given certain utility assump-
tions and a particular choice of scaling function s(θ),
the difference between the value associated with
immediate adoption and the optimal value function,
Gk(w , π), is sLR-increasing.
Consider the recursive form of the policy difference

Gk(w , π) given in (2). To show Gk(w , π) is sLR-increas-
ing, we will take the scaling function to be utility dif-
ference associated with waiting in (2):

s(θ)� u(w0 + θ) − u(w0 + θ− c). (5)

Here w0 � w − kc is the DM’s wealth if she starts with
wealth w with k periods remaining and waits for k
periods. If c > 0 and the DM’s utility function u(w) is
strictly increasing and concave (i.e., risk averse), s(θ)
is a positive and decreasing function. With this scaling
function, an s-increasing function v(θ)may be decreas-
ing when v(θ) is positive but must be increasing when
v(θ) is negative.
To establish the monotonicity result for adoption

policies, we will place assumptions on the DM’s util-
ity function to ensure the reward functions asso-
ciated with waiting and rejecting in (2) are both
sLR-increasing.

Proposition 7.1 (Utility Conditions). Suppose c > 0 and the
DM’s utility u(w) exhibits decreasing absolute risk aversion
(is DARA); i.e., τu(w) is increasing. Define w0 and s(θ) as
in (5). For all ∆ > 0,
(i) u(w0 +∆+ θ) − u(w0 +∆+ θ− c) is s-increasing.
(ii) u(w0 +∆+θ)− u(w0 +∆) is s-increasing if τu(w0 +

¯
θ − c) > −

¯
θ where

¯
θ is the smallest possible value of θ (or

less than or equal to all possible θ) .
If u(w) is CARA, then (i) and (ii) hold and no risk toler-

ance bound is required in (ii).
Proof. See Appendix A.2. �

The lower bound on the risk tolerance in the assump-
tion of part (ii)—the assumption that theDM is not “too
risk averse” given the lowest possible wealth state—
rules out the behavior that leads to nonmonotonic poli-
cies in the example of Section 5.3. This condition can be
viewed either as limiting the worst possible outcome

¯
θ

for a given utility function or as constraining the utility
function in light of the worst possible outcome.

We can now assemble the pieces and show that,
given these utility assumptions, Gk(w , π) is sLR-in-
creasing and thus the adoption policies are monotonic.
The proof proceeds as in Proposition 5.2 but with
s-increasing and sLR-increasing properties replacing
increasing and LR-increasing.
Proposition 7.2 (Monotonicity of Adoption Policies with
Risk Aversion). Suppose the assumptions of Proposition 7.1
are satisfied and the signal process satisfies the MLR prop-
erty. If it is optimal to adopt with prior π1, it is also optimal
to adopt with any prior π2 such that π2 �LRπ1.
Proof. We define the scaling function s(θ) as in Propo-
sition 7.1 and use an induction argument to show that
Gk(wk , π) is sLR-increasing. For the terminal case, by
Proposition 7.1(ii) (with ∆ � 0), u(w0 + θ) − u(w0) is
s-increasing; then by Proposition 6.2(i), G0(w0 , π) is
sLR-increasing.
For the inductive step, let wk � w0 + kc and assume

that Gk−1(wk−1 , π) is sLR-increasing. Let us consider
the utility differences for the three different possible
actions defining Gk(wk , π):

(i) Adopting yields 0, which is trivially sLR-increas-
ing.

(ii) Rejecting yields Ɛ[u(wk + θ̃) − u(wk) | π]. The
function u(wk + θ) − u(wk) is s-increasing by Proposi-
tion 7.1(ii) (with ∆� kc). Ɛ[u(wk + θ̃)−u(wk) | π] is then
sLR-increasing by Proposition 6.2(i).
(iii) Waiting yields Ɛ[u(wk + θ̃) − u(wk + θ̃ − c) | π]

plus a continuation value. The function inside the
expectation, u(wk + θ) − u(wk + θ − c), is s-increasing
by Proposition 7.1(i) (with ∆ � kc); its expectation
Ɛ[u(wk + θ̃) − u(wk + θ̃ − c) | π] is then sLR-increas-
ing by Proposition 6.2(i). The continuation value
Ɛ[Gk−1(wk−1 ,Π(π, x̃)) | f (π)] is sLR-increasing by the in-
duction hypothesis and Proposition 6.2(ii). By Proposi-
tion 6.1(ii), the sum of reward and continuation value
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(both of which are sLR-increasing) is sLR-increasing.
Thus the utility difference associated with waiting is
sLR-increasing.
Because the minimum of three sLR-increasing

functions is also sLR-increasing (Proposition 6.2(iii)),
Gk(wk , π) is sLR-increasing. Note that S(π) > 0 for
all π, because s(θ) > 0; S(π) is thus LR-single crossing.
Gk(wk , π) is therefore also LR-single crossing (Propo-
sition 6.1(v)). If it is optimal to adopt with prior π1
(i.e., Gk(wk , π1)� 0), then because Gk(w , π) is LR-single
crossing, we have Gk(w , π2) > 0. Since Gk(wk , π2) 6 0,
wemust have Gk(wk , π2)� 0, which implies that is opti-
mal to adopt with prior π2. �

Thus, if the DM is not too risk averse in the states
with bad outcomes, we will have policies that are
monotonic in π, just as in the risk-neutral case and as
one might expect to hold more broadly.
How restrictive are these utility conditions? Con-

sider the case of a DM with a power utility u(w) �
−w1−γ where γ > 1 (γ � 1 is the log utility); the risk
tolerance is τu(w) � w/γ. The risk tolerance bound of
Proposition 7.1 can then be written as

τu(w0 + ¯
θ− c) > −

¯
θ ⇔ w0 + ¯

θ− c
γ

> −
¯
θ

⇔ w0 − c > −(1+ γ)
¯
θ. (6)

This condition can be interpreted as requiring theDM’s
wealth (net of information gathering costs) to be able
to endure losses that are (1+ γ) times the worst possi-
ble technology outcome

¯
θ, without hitting the ruinous

zero wealth state with −∞ utility. A typical value of γ
for an individual might range between 2 and 10, so the
risk tolerance condition is satisfied for such an indi-
vidual if the worst possible technology outcome repre-
sents less than 1/3 to 1/11 of the DM’s wealth.
The risk tolerance bound of Proposition 7.1 can be

sharpened given additional information about the util-
ity function. In particular, the right side of the bound
(−

¯
θ) is based on a first-order linear approximation

(from above) where u(w) ≈ u(w +
¯
θ) −

¯
θu′(w +

¯
θ); see

Equation (A.9). Since this linear approximation could
be exact, we cannot improve the bound without mak-
ing additional assumptions about the utility beyond it
being DARA. However, if we assume a particular form
for the utility function, we can improve the bound by
calculating the relevant utilities exactly. For instance,
if we consider a power utility with γ ranging from 2
to 10 (as above) and assume that the cost c of gather-
ing information is less than 1% of the DM’s wealth, the
risk tolerance condition is satisfied if the worst possi-
ble technology outcome represents less than (approx-
imately) 98.3% (for γ � 2) to 12.7% (for γ � 10) of the
DM’s wealth. Thus the risk-tolerance bound of Propo-
sition 7.1 is conservative but can be improved given
additional information about the utility function.

8. Changing Risk Attitudes
How do changes in risk tolerance affect policies? Con-
sidering the results for the illustrative example in Fig-
ure 2(a), we see that (i) if it is optimal to adopt in
the risk-averse case, it is also optimal to adopt in the
risk-neutral case and (ii) if it is optimal to reject in the
risk-neutral case, it is optimal to reject in the risk-averse
case. These results seem intuitive.

The rejection result is true in general: rejection yields
a constant w and thus the certainty equivalent of reject-
ing is unaffected by changes in risk attitude. In con-
trast, adopting and waiting, as risky gambles, have
larger certainty equivalents for a more risk-tolerant
DM. Thus, we have the following.

Proposition 8.1 (Rejection Policies with Changing Risk
Tolerance). If it is optimal for one DM to reject given
prior π, any more risk-averse DM should also reject given
the same prior π.

This implies that a risk-averse DM will reject a tech-
nology before a less risk-averse or risk-neutral DM, as
was the case in the illustrative example, on the sample
path shown in Figures 1(a) and 2(a).

As with changing priors, comparing the adopt and
wait options with different risk tolerances is more com-
plex as it requires comparing expected utilities or cer-
tainty equivalents for adopting and waiting, both of
which will change with changes in risk tolerance. It is
not too difficult to construct examples like that of Sec-
tion 5.3 where increasing risk tolerance leads the DM
to switch from adopting to waiting. For instance in the
example of Figure 3(a), with a utility function u(w) �
ln(w), as shown there, it is optimal to adopt immedi-
ately. If we instead consider the more risk tolerant util-
ity function u(w)� ln(1+w), it is optimal to wait. Here,
as discussed in Section 5.3, the cost of waiting puts the
DM with a log utility in a state with near-zero wealth
if the technology value turns out to be bad. However,
the more risk tolerant DM with u(w) � ln(1 + w) is
less sensitive to this incremental cost and finds wait-
ing more attractive. Thus, we cannot hope for a general
result that says increasing risk tolerance encourages
adoption.

Can we identify reasonable assumptions on the util-
ity functions—for example, bounds on the risk tol-
erances as in Proposition 7.1—that would rule out
such counterintuitive examples? The short answer is
no because such examples are not limited to scenar-
ios with extreme risk aversion. To illustrate, again
consider payoffs in the simple two-period example of
Figure 3(a). Here we see that gathering information
reduces the probability of encountering bad outcomes,
but the cost of the information makes the outcomes
worse. The fact that the bad outcomes become worse
can lead risk-averse DMs to choose not to pay for infor-
mation in cases where more risk-tolerant DMs will
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gather information. For example, if we had a DM with
a risk-averse utility functionwho is indifferent between
waiting and adopting in the example of Figure 3(a)
(and prefers both waiting and adopting to rejecting),
we can construct amore risk-averse utility function that
assigns a lower utility to the worst outcome, leaving all
other utilities unchanged. The DM with this new util-
ity function would prefer adopting to waiting, despite
being more risk averse.
We can, however, provide a positive result in the case

where we compare the choices of a DM with constant
absolute risk aversion (a CARA DM) with those of a
risk-neutral DM. The proof uses the monotonicity of
the optimal policy with respect to changes in the prior.

Proposition 8.2 (Adoption Policies for CARA and Risk-
Neutral DMs). Suppose the signal process satisfies the MLR
property. If it is optimal for a CARA DM to adopt given
prior π, then a risk-neutral DM should also adopt given the
same prior π.

Proof. See Online Appendix B.3. �

This result does not generalize to allow comparisons
between a DM with an arbitrary risk-averse utility
function with a risk-neutral DM. Similarly, one might
speculate that the result of Proposition 8.2 would allow
comparisons between two CARA DMs. That is, one
might think that if it is optimal to adopt with constant
risk tolerance τ1, then it would also be optimal to adopt
with constant risk tolerance τ2 > τ1. However, this is
not necessarily true, as we demonstrate following the
proof of Proposition 8.2 in the online appendix.

9. Discounting
So far we have not considered discounting. In practice,
discounting may be an important consideration: infor-
mationmay be inexpensive or free, but time consuming
to gather. In these cases, an important “cost” of gath-
ering information is the delay in receiving the benefit
of the technology. Discounting poses some new ana-
lytic challenges, but they can be addressed using the
same tools we used earlier. In this section, we consider
the model with discounting and then briefly discuss an
extension with multiple information sources.

9.1. Model with Discounting
We will consider the model with discounting where,
as is typical in the decision analysis literature (see, e.g.,
Baucells and Sarin 2007), the utility function is defined
on current wealth plus the net present value (NPV) of
the net benefit of the technology; all costs and benefits
are discounted back to the present value, which is the
value with T periods to go.3 In this formulation, note
that both positive and negative benefits are discounted,
so delay reduces the risks (in NPV terms) associated
with adoption.

Given a per-period discount factor δ (0 6 δ 6 1), let
δk � δ

T−k denote the discount factor for costs incurred
or benefits received with k periods to go. The value
function with discounting is then

U0(w ,π)�u(w),
Uk(w ,π)

�max


Ɛ[u(w+δk θ̃) |π] (adopt)
u(w) (reject)
Ɛ[Uk−1(w−δk c ,Π(π, x̃)) | f (π)] (wait).

(7)

Note that with discounting (δ < 1), if information is free
(c � 0), the reject option will be (weakly) dominated
by the option to wait, but the DM still faces a trade-
off between the information provided by waiting and
the “cost” associated with the delay in receiving the
benefits.

In this model with discounting, the results on the
monotonicity of the value function (Proposition 4.1)
and convexity of the value functions and policies
(Proposition 4.2) continue to hold as before. Similarly,
the policy results for rejection and adoption under risk-
neutrality and with two outcomes continue to hold as
before (Propositions 5.1–5.3, respectively). The mono-
tonicity of the adoption policies with risk aversion also
continues to hold as before, but we need to be careful
with our selection of scaling functions and in defining
the utility conditions. The difference between the value
associated with immediate adoption and the optimal
value function, Gk(w , π)� Ɛ[u(w + δk θ̃) | π] −Uk(w , π),
can be written recursively as

G0(w ,π)�Ɛ[u(w+δ0θ̃)−u(w) |π],
Gk(w ,π)

�min


0 (adopt),
Ɛ[u(w+δk θ̃)−u(w) |π] (reject),
Ɛ[u(w+δk θ̃)−u(w+δk−1θ̃−δk c) |π],
+Ɛ[Gk−1(w−δk c ,Π(π, x̃)) | f (π)] (wait).

(8)

The utility differences associated with waiting in (8)
(analogous to the utility differences (4)) are now

gk(θ)� u(wk + δkθ) − u(wk + δk−1θ− δk c), (9)

where wk � wT − ((1 − δk)/(1 − δ))c is the NPV of the
DM’s wealth with k periods to go, after paying the
information cost c in all previous periods. We let θ0 �

−c/(1− δ) denote the critical value such that the utility
difference gk(θ) is positive if θ > θ0 and negative if
θ < θ0. In the negative case, the benefit of discounting
bad outcomes by one additional period exceeds the
cost of gathering information for that period.

How should we choose a scaling function s(θ) in
this setting? For θ 6 θ0, the utility differences gk(θ)
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are not positive and increasing in θ; in this region, we
will take s(θ) to be a positive constant. For θ > θ0,
gk(θ) is positive but may be increasing or decreasing.
If gk(θ) > 0 and s(θ) > 0 and both are differentiable,
gk(θ)will be s-increasing if and only if

g′k(θ)
gk(θ)

>
s′(θ)
s(θ) . (10)

(This follows from differentiating gk(θ)/s(θ) and rear-
ranging.) In Section 7, we took s(θ) to be the utility
difference with zero periods remaining (g0(θ)) because
without discounting andwith a DARA utility function,
this utility difference is decreasing most rapidly at the
lowest wealth level (that is, the ratio g′k(θ)/gk(θ) on
the left in (10) is decreasing in k) and (10) is satisfied
for all k. However, with discounting, this utility dif-
ference need not be decreasing and the most rapidly
decreasing utility difference may not be the one at the
lowest wealth level. We will take the scaling function
to be a positive constant if the ratios g′k(θ)/gk(θ) are all
positive and otherwise take s(θ) to track the minimum
ratio in (10). Specifically, for θ > θ0, we define

φ(θ)� min
{
0,min

k

g′k(θ)
gk(θ)

}
. (11)

We then pick some immaterial constant K > 0 and take
s(θ)� K for θ 6 θ0 and, for θ > θ0,

s(θ)� K exp
(∫ θ

q�θ0

φ(q) dq
)
, (12)

Note that this s(θ) is positive and (weakly) decreasing
and, for θ > θ0, s′(θ)/s(θ) � φ(θ). This construction
thus ensures that the utility differences gk(θ) will sat-
isfy (10) and hence will be s-increasing.

With this choice of scaling function, we then have
the analog of Proposition 7.1.

Proposition 9.1 (Utility Conditions with Discounting).
Suppose the DM is risk averse and her utility function u(w)
is DARA. Define the scaling function s(θ) as in (12); then
for all k,

(i) u(wk + δkθ) − u(wk + δk−1θ− δk c) is s-increasing.
(ii) u(wk + δkθ) − u(wk) is s-increasing if τu(wk +

δk−1θ
∗
k − δk c) > −θ∗k where θ∗k � max{δk ¯

θ, θ0} .
Proof. The proof uses arguments similar to those
in the proof of Proposition 7.1; see Online
Appendix B.4. �

The monotonicity of the optimal adoption policies
follows exactly as in Proposition 7.2.

Proposition 9.2 (Monotonicity of Adoption Policies with
Risk Aversion and Discounting). Suppose the assumptions
of Proposition 9.1 are satisfied and the signal process satisfies
the MLR property. If it is optimal to adopt with prior π1, it is
also optimal to adopt with any prior π2 such that π2 �LRπ1.

Note that with discounting the “worst possible out-
come” θ∗k that must be considered in the risk tolerance
bound is the larger of the lowest possible technology
outcome (in NPV terms) δk ¯

θ and θ0 � −c/(1 − δ). If
information gathering is free (c � 0), then the risk toler-
ance bound reduces to the trivial requirement τu(wk +

δk−1θ
∗
k − δk c) > 0; i.e., any degree of risk aversion is

fine and the DARA assumption is also not necessary.
With c > 0 and δ � 1, we have θ0 � −∞ and the results
of Propositions 9.1 and 9.2 reduce to the correspond-
ing results without discounting. With a CARADM, we
did not need a risk tolerance bound to establish the s-
increasing properties without discounting (see Propo-
sition 7.1). With discounting, a risk tolerance bound is
needed in the CARA case: the bound given in Proposi-
tion 9.1 is sufficient, but, as discussed at the end of Sec-
tion 7, this bound can be tightened given more infor-
mation about the utility function.4

9.2. Multiple Information Sources
There are, of course, many possible ways one could
extend this model, beyond incorporating discounting.
One possibility is to includemultiple information gath-
ering options, with different costs and signal processes
(described by their likelihood functions). For exam-
ple, one might include a costless “passive waiting”
optionwhere the DMwaits without observing any use-
ful information. Such a passive waiting option would
weakly dominate quitting, as it is costless. However,
without discounting, there would be no benefit to pas-
sive waiting over quitting: if the DM is passively wait-
ing, she would never learn anything and adoption
would have no chance of becoming preferred to wait-
ing or quitting. Similarly, if the DM is risk neutral or
risk seeking, there is no benefit associated with pas-
sivewaiting, evenwith discounting. Butwith discount-
ing and risk aversion, such a passive waiting option
may be attractive because, as mentioned earlier, delay
reduces the risks (in NPV terms) associated with adop-
tion and information gathering. Thus it may optimal
to passively wait and then gather information or adopt
later, when the gamble is less risky.

With multiple information sources, the model will
have the same general structure as in the single source
case. The value functions will be increasing and convex
(as in Propositions 4.1 and 4.2(i)) and the adoption
and rejection regions will be convex (as in Proposi-
tion 4.2(ii)). Given bounds on the risk tolerances like
those of Proposition 9.1, we will have monotonic re-
jection and adoption thresholds: along any chain of
LR-improving prior distributions, we move away from
the rejection region and toward the adoption region,
perhaps passing through the information gathering
region. This can be established by generalizing the
definition of the scaling function (12) to include util-
ity differences (9) for each information source in the
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minimum of (11); see the discussion in Appendix B.5
for details. However, it is difficult to say much about
the choice of information sources within the informa-
tion gathering region. Clearly an information source
that is cheaper and more informative (in the sense of
Blackwell 1951) than other sources would be preferred,
but it is not clear how the DM should trade off between
sources with different costs and qualities.

10. Conclusions
In this paper, we have studied the impact of risk aver-
sion on information gathering decisions in a tech-
nology adoption model. We find that most of the
structural properties from the risk-neutral case con-
tinue to hold in the risk-averse case: the value functions
are increasing and convex and the optimal policies
are monotonic provided the DM is not too risk averse
in scenarios with bad technology outcomes. We also
showed that the risk-averse DM will reject a technol-
ogy before a risk-neutral DM and, if the DM has a
CARA utility function, the risk-averse DM will adopt
later than a risk-neutral DM.
We view these results to be mostly positive: in most

practical settings the information gathering policies
should behave as expected. To return to the exam-
ples mentioned in the first paragraph of the paper, in
the context of a consumer contemplating purchasing a
Tesla, though the stakes may be large enough to induce
considerable risk aversion, information is inexpensive
and such a consumer is unlikely to be ruined (or nearly
so) if the car turns out to be a disappointment. In this
case, positive reviewswould likely encourage adoption
(i.e., buying the car), as we would intuitively expect.
Similarly a farmer considering planting a new variety
of soybeans or corn, information gathering (e.g., plant-
ing a new variety on a test plot) may be expensive, but
a poor outcome would likely not be ruinous. The same
would likely be true for a large electric utility consid-
ering building a power plant based on a new technol-
ogy. In these cases, policies would also likely behave
as expected. However, when the downside risks are
extreme and information gathering is expensive—as it
may be for an entrepreneur considering investing his
life savings to attempt to commercialize a new idea—
the optimal policies may exhibit counterintuitive non-
monotonicities like those in the example of Section 5.3.
In this case, it may be optimal for the entrepreneur to
invest in information gathering with one prior (π2 in
the example) but be optimal to plunge in and adopt the
new technologywithout gathering additional informa-
tion given aworse prior (like π1). In such a case, a failed
venture may be bad, but failing after paying significant
information gathering costs may be ruinous. Reducing
the probability of a bad technology outcome (moving
from π1 to π2) may then encourage the entrepreneur to
gather information.

Though the main goal of this paper was to study
the technology adoption model with risk aversion, the
proof techniques we used may prove useful in other
contexts. The s-increasing property is a flexible gener-
alization of the ordinary sense of increasing that is con-
venient for DPs and partially observable Markov DPs,
as sums of s-increasing functions will be s-increasing
and the sLR-increasing property survives Bayesian
updating. The fact the s-increasing property implies
the single-crossing condition may make it useful for
studying policies in other DP models. In the tech-
nology adoption model, the desired monotonic policy
results could not be established using standard increas-
ing difference (i.e., supermodularity) arguments. How-
ever, given an appropriate scaling function, it was not
difficult to show that the relevant policy differences
are s-increasing; this then ensures the single-crossing
properties required for the desired policy results.
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Appendix A
A.1. Proof of Proposition 6.2
Proof. Proposition 6.2(i). We proceed as follows:

S(π1)V(π2)−S(π2)V(π1)
�
(i)
Ɛ[s(θ̃) |π1]Ɛ[v(θ̃) |π2]−Ɛ[s(θ̃) |π2]Ɛ[v(θ̃) |π1]

�
(ii)

∫
θ1

∫
θ2

s(θ1)v(θ2)(π1(θ1)π2(θ2)−π2(θ1)π1(θ2))dθ1 dθ2

�
(iii)

∬
θ2>θ1

s(θ1)v(θ2)(π1(θ1)π2(θ2)−π2(θ1)π1(θ2))dθ1 dθ2

+

∬
θ2<θ1

s(θ1)v(θ2)(π1(θ1)π2(θ2)−π2(θ1)π1(θ2))dθ1 dθ2

�
(iv)

∬
θ2>θ1

s(θ1)v(θ2)(π1(θ1)π2(θ2)−π2(θ1)π1(θ2))dθ1 dθ2

+

∬
θ2>θ1

s(θ2)v(θ1)(π1(θ2)π2(θ1)−π2(θ2)π1(θ1))dθ1dθ2

�
(v)

∬
θ2>θ1

(s(θ1)v(θ2)−s(θ2)v(θ1))︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
(a)

· (π1(θ1)π2(θ2)−π2(θ1)π1(θ2))︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
(b)

dθ1 dθ2

>
(vi)

0

Here, in the third equality, we decompose the region of inte-
gration into sets θ1 < θ2 and θ1 > θ2. (When θ1 � θ2, the inte-
grand is zero.) In the fourth equality, we convert the second
set into the first by changing variables θ1→ θ2 and θ2→ θ1.
Rearranging gives the fifth equality. Here, the (a) term is non-
negative because v is s-increasing and the (b) term is non-
negative because π2 �LRπ1. The final inequality then follows
and V(π) is sLR-increasing. �
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Proposition 6.2(ii). The proof of Proposition 6.2(ii) is anal-
ogous to a result of Karlin (1968, Chapter 3 Theorem 5.1).
However, our assumptions are different fromKarlin’s and the
proof has some important differences. We comment on these
differences following the proof.

Proof. We first consider the case where S(π1) � 0. Since
s(θ) is assumed to be single-crossing in θ, by Proposi-
tion 3.3, S(π) is LR-single-crossing. By Proposition 6.1(v)(a),
we have V(π1) 6 0. Since S(π2) > 0, we have V(π1)S(π2) 6
V(π2)S(π1)� 0, as desired. For the remainder of the proof, we
assume that S(π1)> 0, which implies S(π2)> 0 since π2 �LRπ1
and S(π) is LR-single crossing (see Proposition 3.3).

Because S(π) is linear in π, Ɛ[S(Π(π, x̃)) | f (π)]� S(π). The
desired result is then equivalent to

Ɛ[S(Π(π1 , x̃)) | f (π1)]Ɛ[V(Π(π2 , x̃)) | f (π2)]
− Ɛ[S(Π(π2 , x̃)) | f (π2)]Ɛ[V(Π(π1 , x̃)) | f (π1)] > 0 (A.1)

To simplify, we introduce notation Vi j � V(Π(πi , x j)), Si j �

S(Π(πi , x j)), and fi j � f (x j ;πi).Our standing assumption that
L(x | θ) > 0 for all θ and x ensures that fi j > 0 and the poste-
rior distributions Π(πi , x j) are well defined. Our assumption
that S(π1) > 0 (and hence S(π2) > 0) implies the priors have
some mass in the region where s(θ) > 0, which implies the
posteriors that Π(πi , x j)will as well; this implies Si j > 0.

We can then rewrite (A.1) as

Ɛ[S(Π(π1 , x̃)) | f (π1)]Ɛ[V(Π(π2 , x̃)) | f (π2)]
− Ɛ[S(Π(π2 , x̃)) | f (π2)]Ɛ[V(Π(π1 , x̃)) | f (π1)]

�
(i)

∫
x1

∫
x2

[S11 f11V22 f22 − S21 f21V12 f12] dx1 dx2

�
(ii)

∫
x1

∫
x2

[
V22

S22
S11S22 f11 f22 −

V12

S12
S12S21 f12 f21

]
dx1 dx2

�
(iii)

∬
x2>x1

[
V22

S22
S11S22 f11 f22 −

V12

S12
S12S21 f12 f21

]
dx1 dx2

+

∬
x2<x1

[
V22

S22
S11S22 f11 f22 −

V12

S12
S12S21 f12 f21

]
dx1 dx2

+

∬
x2�x1

[
V22

S22
S11S22 f11 f22 −

V12

S12
S12S21 f21 f12

]
dx1 dx2

�
(iv)

∬
x2>x1

[
V22

S22
S11S22 f11 f22 −

V12

S12
S12S21 f12 f21

]
dx1 dx2

+

∬
x2>x1

[
V21

S21
S12S21 f12 f21 −

V11

S11
S11S22 f11 f22

]
dx1 dx2

+

∫
x1

[
V21

S21
S11S21 f11 f21 −

V11

S11
S11S21 f11 f21

]
dx1

�
(v)

∬
x2>x1

[(
V22

S22
− V11

S11

)
︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸

(a)

(S11S22 f11 f22 − S12S21 f12 f21)︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
(b)

+

(
V22

S22
− V12

S12︸¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈︸
(c)

+
V21

S21
− V11

S11︸¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈︸
(d)

)
S12S21 f12 f21︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸

(e)

]
dx1 dx2

+

∫
x1

(
V21

S21
− V11

S11

)
︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸

(f)

S11S21 f11 f21︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸
(g)

dx1

> 0.

Here, in the third equality, we decompose the region of inte-
gration into sets x1 < x2 and x1 > x2 and x1 � x2. (The set
x1 � x2 will have zero mass with continuous distributions but
may have positive mass with discrete or more general distri-
butions.) In the fourth equality, we convert the second set into
the first by changing variables x1→ x2 and x2→ x1. We also
rewrite the third integral taking into account the restriction
to the set x1 � x2 and substituting x2→ x1.

Each of the terms identified in the fifth expression above is
nonnegative. Terms (e) and (g) are nonnegative because each
term in the product is nonnegative. For (a), (c), (d), and (f),
nonnegativity follows from the fact that V is sLR-increasing
(as shown in Proposition 6.2(i)), which implies Vi2 , j2/Si2 , j2 >
Vi1 , j1/Si1 , j1 whenever (i2 , j2)> (i1 , j1). Unpacking the notation,
this is equivalent to

S(Π(πi2 , x j2 ))V(Π(πi1 , x j1 )) 6 S(Π(πi1 , x j1 ))V(Π(πi2 , x j2 ))

where Π(πi1 , x j1 ) �LRΠ(πi1 , x j1 ) whenever (i2 , j2) > (i1 , j1);
i.e., the posteriors are LR-dominant whenever the priors are
LR-dominant and/or the signals are higher.

Nonnegativity of (b) is equivalent to showing that Si j fi j is
log-supermodular in (i , j). Unpacking the notation and using
Bayes’ rule, this is equivalent to the following:

S11S22 f11 f22 − S12S21 f12 f21

� S(Π(π1 , x1)) f (x1;π1)S(Π(π2 , x2)) f (x2;π2)
− S(Π(π1 , x2)) f (x2;π1)S(Π(π2 , x1)) f (x1;π2)

�

(∫
θ

s(θ)L(x1 | θ)π1(θ)
f (x1;π1)

dθ
)

f (x1;π1)

·
(∫

θ

s(θ)L(x2 | θ)π2(θ)
f (x2;π2)

dθ
)

f (x2;π2)

−
(∫

θ

s(θ)L(x1 | θ)π2(θ)
f (x1;π2)

dθ
)

f (x1;π2)

·
(∫

θ

s(θ)L(x2 | θ)π1(θ)
f (x2;π1)

dθ
)

f (x2;π1)

�

(∫
θ

s(θ)L(x1 | θ)π1(θ) dθ
) (∫

θ

s(θ)L(x2 | θ)π2(θ) dθ
)

−
(∫

θ

s(θ)L(x1 | θ)π2(θ) dθ
) (∫

θ

s(θ)L(x2 | θ)π1(θ) dθ
)

> 0.

In the third equality, we cancel the predictive distributions
f (xi ;π j)with the denominators in the posterior distributions.
The final inequality is equivalent to∫

θ

L(xi | θ)π j(θ)(s(θ) dθ) (A.2)

being log-supermodular in (i , j), which can be established
using the “basic composition formula” for log-supermodular
functions (see, e.g., Karlin 1968). By assumption L(xi | θ) is
log-supermodular in (xi , θ) (this is equivalent to the mono-
tone likelihood assumption) and π j(θ) is log-supermodular
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in ( j, θ) (this is equivalent to assuming π2 �LRπ1). Taking the
measure to be (s(θ) dθ), the basic composition formula then
implies that (A.2) is log-supermodular or, equivalently, that
the inequality above holds. This implies the (b) term above is
nonnegative, thereby completing the proof. �

We now comment on the differences between this proof
and that of Karlin (1968, Chapter 3 Theorem 5.1). First, Kar-
lin requires the functions V and S to be positive. However V
appears only in the numerator of fractions (in terms (a), (c),
(d), and (h) above) and negative values for V do not cause
difficulties. Second, Karlin assumes that Si j and Vi j are both
log-supermodular in (i , j). This is not assumed here and
indeedmay not be true in our setting. Specifically, Karlin uses
the assumption that Si j is log-supermodular in (i , j) to show
term (b) above is nonnegative. We show (b) is nonnegative
using the fact the likelihoods and denominators of the pos-
terior distributions cancel; this then reduces the problem to
a setting where we can use the basic composition formula to
show (b) is nonnegative.

A.2. Proof of Proposition 7.1
Proof. (i) To show u(w0 +∆ + θ) − u(w0 +∆ + θ − c) is s-in-
creasing, let

h(θ)� u(w0 +∆+ θ) − u(w0 +∆+ θ− c)
u(w0 + θ) − u(w0 + θ− c) . (A.3)

We want to show h(θ) is increasing. Differentiating h and
rearranging, we find that h(θ) is increasing if

u′(w0 +∆+ θ) − u′(w0 +∆+ θ− c)
u(w0 +∆+ θ) − u(w0 +∆+ θ− c)

>
u′(w0 + θ) − u′(w0 + θ− c)
u(w0 + θ) − u(w0 + θ− c) . (A.4)

For ∆� 0, (A.4) holds trivially with equality.
For ∆ > 0, (A.4) is implied by the assumption that u is

DARA. To see this, define f (u)� u′(u−1(u)) (the inverse is well
defined since u is assumed to be strictly increasing) and note
that f ′(u) � −ρu(u−1(u)), which is assumed to be increasing.
Thus f (u) is convex. We can rewrite (A.4) as

f (u2) − f (u1)
u2 − u1

>
f (u4) − f (u3)

u4 − u3
. (A.5)

where u2 � u(w0+∆+θ), u1 � u(w0+∆+θ− c), u4 � u(w0+θ),
and u3 � u(w0 +θ− c). Note that u2 > u1, u4 > u3, u2 > u4, and
u1 > u3. We can interpret (A.5) as a comparison of slopes of
two chords of a convex function, with the chord for the left
term involving larger values (u2 , u1) than the chord for the
right (u4 , u3). Since f is convex, the slopes of these chords are
increasing with larger values; thus (A.5) holds.

(ii) To show u(w0 +∆+ θ) − u(w0 +∆) is s-increasing, let

h(θ)� u(w0 +∆+ θ) − u(w0 +∆)
u(w0 + θ) − u(w0 + θ− c) . (A.6)

Wewant to show this h(θ) is increasing.Note that the denom-
inator is positive and decreasing (since u is increasing and
concave). If θ > 0, the numerator in (A.6) is nonnegative and
increasing in θ (since u is increasing). Thus, if θ > 0, h(θ) is
increasing.

Now assume that θ < 0. Taking the derivative of h and
rearranging, we find that h(θ) is increasing if

u′(w0+θ)−u′(w0+θ−c)
u(w0+θ)−u(w0+θ−c) >

u′(w0+∆+θ)
u(w0+∆+θ)−u(w0+∆)

. (A.7)

As in the proof of part (i) of this proposition, the term on
left of (A.7) can be interpreted as the slope of a chord of
the convex function f (u)� u′(u−1(u)), taken at points u2 �

u(w0 + θ), u1 � u(w0+θ− c), where u2 > u1. Since f is convex,
the derivative of the function f , f ′(u) � −ρu(u−1(u)), evalu-
ated at the smaller value u1 must be less than the slope of
this chord. Thus we have

u′(w0 + θ) − u′(w0 + θ− c)
u(w0 + θ) − u(w0 + θ− c) > −ρu(w0 + θ− c). (A.8)

Now consider the right side of (A.7). Using a Taylor series
expansion of u at w0 +∆+ θ, we can write

u(w0 +∆)�u(w0 +∆+θ)−θu′(w0 +∆+θ)+ 1
2θ

2u′′(w∗0) (A.9)

where w0 +∆+ θ 6 w∗0 6 w0 +∆ (recall that we are consider-
ing the case where θ < 0). We can then write the right side
of (A.7) as

u′(w0 +∆+ θ)
u(w0 +∆+ θ) − u(w0 +∆)

�
u′(w0 +∆+ θ)

θu′(w0 +∆+ θ) − (1/2)θ2u′′(w∗0)
6

1
θ

(A.10)

where the inequality follows because u is assumed to be con-
cave (thus u′′(w∗0) 6 0). Combining (A.8) and (A.10), we see
that (A.7) holds if −ρu(w0 + θ − c) > 1/θ or, equivalently, if
τu(w0 + θ− c) > −θ.

Given that the risk tolerance τu(w) is assumed to be
increasing, we can check this risk tolerance bound by consid-
ering

¯
θ, the smallest possible value of θ, as stated in Propo-

sition 7.1(b).
We can verify that the desired results hold with CARA

utility functions u, i.e., u(w)�−exp(−w/τ) by differentiating
the functions h(θ) defined in (A.3) and (A.6). �

Endnotes
1 In US (2009), we included a fixed cost paid at the time of adoption.
This fixed cost can be incorporated into the net benefit θ, without
loss of generality.
2Note that the value function given adoption in Figure 2(b) is con-
cave with respect to the mean of the underlying beta distributions,
holding the precision constant. In Proposition 4.2, we are considering
convex combinations (mixtures) of general distributions. A convex
combination of two beta distributions with the same precisionwould
not yield a beta distribution. Thus there is no contradiction between
the result of Proposition 4.2 and the concavity evident in Figure 2(b).
3Keeney and Raiffa (1993) describe three methods for discounting
income streams in decision analysis models with risk aversion. The
first is to calculate expected utilities for each period and discount
these expected utilities. The second is to take certainty equivalents
for each period and discount these certainty equivalents. The third
approach, which we follow here, is to discount the income streams
to NPVs and assess a utility function over NPVs. This third approach
is typically used in decision analysis practice; see, e.g., McNamee
and Celona (2005). Baucells and Sarin (2007) show that only the third
approach satisfies certain desirable concavity and discounting prop-
erties; they conclude this is the “best approach” (p. 95) and discuss
other issues.
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4 In the risk-seeking case, the utility differences (9) are negative for
θ < θ0 and may be increasing or decreasing in this region. How-
ever, the differences are increasing when θ > θ0. We can establish
monotonicity of adoption policies for the risk-seeking case by using
a scaling function s(θ) such that s(θ) � 0 for θ 6 θ0 and s(θ) is a
positive constant for θ > θ0.
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