
B. Online Appendix

B.1. Constructing examples with nonmonotonic adoption policies

Assume c > 0 and the utility function u(w) is increasing and approaches −∞ as w approaches 0. Suppose
we have a prior distribution π2, initial wealth w0, and a likelihood function L(x|θ) (with L(x|θ) > 0 for all
x and θ) satisfying the MLR property such that waiting is strictly preferred to adopting and adopting is
strictly preferred to quitting. We will now construct a π1 and likelihood function L∗(x|θ) (satisfying the
MLR property) such that π2 �LR

π1 and it is optimal to adopt with π1 but not with π2.
Adopting being strictly preferred to quitting with π2 implies

s1 ≡ E[u(w0 + θ̃) |π2 ]− u(w0) > 0 . (B1)

Let θm denote the minimum point of support for π2. Note θm < 0, otherwise it would be optimal to adopt
immediately.

We now construct a new prior π1 such that π2 �LR
π1 and adopting is optimal with π1. Let θ` = −w+ c

and π1 be a new prior with mass p` (0 < p` < 1) at θ` is mixed with (1− p`) times π2; p` will be specified
shortly. With this construction, π2 �LR

π1. Let L∗ be an augmented likelihood function where we take
L∗(x|θ`) = L(x|θm) and L∗(x|θ) = L(x|θ) for all other θ and x. Since L(x|θm) is assumed to satisfy the
MLR property, L∗(x|θm) does as well.

We want to choose p` such that adopting is preferred to quitting, i.e., such that

E[u(w0 + θ̃) |π1 ]− u(w0) = ε

where ε may be arbitrarily chosen to satisfy 0 < ε < s1 and s1 is defined in (B1). This can be rewritten as

p` (u(w0 + θ`)− u(w0)) + (1− p`) (E[u(w0 + θ̃) |π2 ]− u(w0))

= p` (u(w0 + θ`)− u(w0)) + (1− p`)s1 = ε.

Solving for p`, we have

p` =
s1 − ε

s1 − (u(w0 + θ`)− u(w0))
.

The resulting p` will satisfy 0 < p` < 1 (because s1 > 0 and θ` < 0).
Because p` > 0 and L∗(x|θ) > 0 for all x and θ, the posterior probability Π(θ`;x, π1) must be positive

for all signals x. Since u(w + θ` − c) = −∞, the expected utility associated with waiting and then adopting
must also be −∞, for each signal. Thus it cannot be optimal to wait with π1.

Therefore, we have constructed an example of a nonmonotonic policy: with this π1 and π2 and likelihood
function L∗(x|θm), we have π2 �LR

π1 and it is optimal to adopt with π1 but not with π2.

B.2. Comment on Proposition 6.2(ii)

The result of Proposition 6.2(ii) generalizes to the setting where the underlying state θ (here the benefit of
technology) is changing over time (as in a partially observed Markov decision process), provided the state
transitions satisfy the MLR property. Let θk denote the state variable in period k and let ν(θk−1|θk) denote
the transition probabilities for θk−1 conditional on the current period state θk. The prior on next period’s
state is then:

η(θk−1;π) =

∫
θk

ν(θk−1|θk)π(θk) dθk

and the signal and posterior distributions are then

f(x;π) =

∫
θk−1

L(x|θk−1)η(θk−1;π) dθk−1 and
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Π(θk−1;π, x) =
L(x|θk−1)η(θk−1;π)

f(x;π)
.

If we assume that the technology transitions, as well as the signal process, satisfy the MLR property:
ν(θk−1|θ2k) �

LR
ν(θk−1|θ1k) for all θ2k ≥ θ1k and k, then the next-period prior η(π), predictive distribution for

signals f(π), and posteriors Π(π, x) are all LR improving with LR improvements in the prior π for the current
period. These results follow from Proposition 3.1. The proof of Proposition 6.2(ii) proceeds as before, except
in (A2) (and the preceding inequality) we have the prior on the next period state η(θ;πi) in place of πi(θ);
the same argument then applies.

B.3. Proof of Proposition 8.2

In this section, we focus on the case where the utility function is an exponential u(w) = − exp(−w/R) and
define the certainty equivalent as CE(u) = −R ln(−u). Also recall the “delta property” for exponential
utilities: CE(E[u(θ̃ + ∆) ]) = CE(E[u(θ̃) ]) + ∆.

We prove Proposition 8.2 with the aid of the following lemma.

Lemma B.1. With an exponential utility function and a signal process that satisfies the MLR property,

CE(E[u(w + θ̃) |π ])− CE(Uk(w, π))

is LR-increasing.

Proof. Note that

CE(E[u(w + θ̃) |π ])− CE(Uk(w, π))

= min

 0 (adopt)
CE(E[u(w + θ̃) |π ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ]) (wait)
CE(E[u(w + θ̃) |π ])− w (reject)

.

The reject term here, CE(E[u(w + θ̃) |π ]) − w, is LR-increasing because E[u(w + θ̃) |π ] is LR-increasing
and CE(u) is an increasing function. The adoption term (0) is trivially LR-increasing. Because minimum of
three LR-increasing functions is LR-increasing, we can complete the proof by showing the wait term above
is also LR-increasing.

From Proposition 7.2, we know that E[u(w + θ̃ − c) |π ]−E[Uk−1(w − c,Π(π, x̃)) | f(π) ] is sLR-increasing
with s(θ) = u(w0 + θ)− u(w0 + θ − c), so

E[u(w + θ̃ − c) |π ]− E[Uk−1(w − c,Π(π, x̃)) | f(π) ]

E[u(w0 + θ̃) |π ]− E[u(w0 + θ̃ − c) |π ]

is LR-increasing. Dividing the denominator by e−(w0−w)/R, we get that

E[u(w + θ̃ − c) |π ]− E[Uk−1(w − c,Π(π, x̃)) | f(π) ]

E[u(w + θ̃) |π ]− E[u(w + θ̃ − c) |π ]

is LR-increasing. With an exponential utility function, this ratio is equal to

e
c
R E[u(w + θ̃) |π ]− E[Uk−1(w − c,Π(π, x̃)) | f(π) ]

E[u(w + θ̃) |π ] (1− e c
R )

.

Because (1− e c
R ) < 0, we then have that

E[Uk−1(w − c,Π(π, x̃)) | f(π) ]

E[u(w + θ̃) |π ]
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is LR-increasing. Then

CE(E[u(w + θ̃) |π ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ]) = R ln

(
E[Uk−1(w − c,Π(π, x̃)) | f(π) ]

E[u(w + θ̃) |π ]

)
is LR-increasing because ln(u) is an increasing function.

Let Vk(π) be the risk-neutral value function, i.e., given by taking u(w) = w. In this case, the value
function is independent of wealth and can be written recursively as

V0(π) = 0,

Vk(π) = max

 E[ θ̃ |π ] (adopt)
0 (reject)
−c+ E[Vk−1(Π(π, x̃)) | f(π) ] (wait)

. (B2)

The following proposition implies Proposition 8.2 in the text.

Proposition B.1. For a risk-averse DM with an exponential utility function and a signal process that
satisfies the MLR property, we have

CE(E[u(w + θ̃) |π ])− CE(Uk(w, π)) ≤ E[ θ̃ |π ]− Vk(π) . (B3)

Proof. We have (as in the proof above)

CE(E[u(w + θ̃) |π ])− CE(Uk(w, π))

= min

 0 (adopt)
CE(E[u(w + θ̃) |π ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ]) (wait)
CE(E[u(w + θ̃) |π ])− w (reject)

(B4)

and

E[ θ̃ |π ]− Vk(π) = min

 0 (adopt)
E[ θ̃ |π ]− (−c+ E[Vk−1(Π(π, x̃)) | f(π) ]) (wait)
E[ θ̃ |π ] (reject)

. (B5)

For both the certainty equivalent difference (B4) and expected value difference (B5), the terminal cases
(k = 0) reduce to the reject cases.

We will show that (B3) holds using an induction argument. In the terminal case, we want to show that

CE(E[u(w + θ̃) |π ])− w ≤ E[ θ̃ |π ] .

This holds because the certainty equivalent for a risk-averse utility function is less than the expected value.
For the induction hypothesis, assume, for any w and π,

CE(E[u(w + θ̃) |π ])− CE(Uk−1(w, π)) ≤ E[ θ̃ |π ]− Vk−1(π) .

We will show that each component of (B4) is less than the corresponding component of (B5). This is trivially
true for the adopt option. For the reject options, this follows from the fact that the certainty equivalent is
less than the expected value, as in the terminal case. So we need to study the wait case and show that

CE(E[u(w + θ̃) |π ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ])

≤ E[ θ̃ |π ]− (−c+ E[Vk−1(Π(π, x̃)) | f(π) ]) . (B6)

Using the ∆-property for the exponential utility, we can subtract c from both sides of (B6) and (B6) is
equivalent to

CE(E[u(w + θ̃ − c) |π ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ]) ≤ E[ θ̃ |π ]− E[Vk−1(Π(π, x̃)) | f(π) ] .
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Since taking expectations over the posteriors is equivalent to taking expectations with the prior, this (and
(B6)) is equivalent to:

CE(E[ E[u(w + θ̃ − c) |Π(π, x̃) ] | f(π) ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ])

≤ E[ E[ θ̃ |Π(π, x̃) ] | f(π) ]− E[Vk−1(Π(π, x̃)) | f(π) ] . (B7)

Now consider the gambles involved on the left side of (B7). Let

a(x) = CE(E[u(w + θ̃ − c) |Π(π, x) ])

and
o(x) = CE(Uk−1(w + θ̃ − c,Π(π, x))) .

These are the certainty equivalents for adopting (a(x)) and following the optimal strategy (o(x)) conditioned
on observing the signal x. The difference in certainty equivalents on the left side of (B7) can then be
rewritten as:

δ := CE(E[u(a(x̃)) | f(π) ])− CE(E[u(o(x̃)) | f(π) ]) . (B8)

Given a signal x, because o(x) follows an optimal strategy whereas a(x) assumes adoption, we know that
a(x) ≤ o(x) for each x. Thus the gamble a(x̃) (with random signal) is first-order stochastically dominated
by o(x̃) and the certainty equivalent difference δ defined in (B8) must satisfy δ ≤ 0. Using the ∆-property
of the exponential utility, we then have

CE(E[u(a(x̃)− δ) | f(π) ])− CE(E[u(o(x̃)) | f(π) ]) = 0 , (B9)

so the risk-averse DM is indifferent between the gambles a(x̃)− δ and o(x̃).
From Lemma B.1, we know that the difference a(x) − o(x) is decreasing in x. Thus the cumulative

distribution functions for a(x̃)−δ and o(x̃), call them Fa−δ(x) and Fo(x), cross at most once. Given that the
risk-averse DM is indifferent between these two gambles, the cumulative distributions for two gambles must
cross exactly once. Furthermore, since δ ≤ 0, we know that a(x̃)− δ is “more prone to low outcomes” than
o(x̃), i.e., Fo(x)− Fa−δ(x) is first negative then turns positive (Hammond (1974)).6 Then, from Hammond
(1974), we know that a risk-neutral decision maker would prefer a(x̃)− δ to o(x̃), so

0 = CE(E[u(a(x̃))− δ) | f(π) ])− CE(E[u(o(x̃)) | f(π) ]) ≤ E[ a(x̃)− δ | f(π) ]− E[ o(x̃) | f(π) ] .

Using the ∆-property again, we have

CE(E[u(a(x̃)) | f(π) ])− CE(E[u(o(x̃)) | f(π) ]) ≤ E[ a(x̃)− o(x̃) | f(π) ] (B10)

Finally, from the induction hypothesis, for any signal x, we have

a(x)− o(x) = CE(E[u(w + θ̃ − c) |Π(π, x) ])− CE(Uk−1(w + θ̃ − c,Π(π, x)))

≤ E[ θ̃ |Π(π, x) ]− Vk−1(Π(π, x)) . (B11)

Using this and (B10), we then have

CE(E[ E[u(w + θ̃ − c) |Π(π, x̃) ] | f(π) ])− CE(E[Uk−1(w − c,Π(π, x̃)) | f(π) ])

= CE(E[u(a(x̃)) | f(π) ])− CE(E[u(o(x̃)) | f(π) ])

≤ E[ a(x̃)− o(x̃) | f(π) ]

≤ E[ E[ θ̃ |Π(π, x̃) ] | f(π) ]− E[Vk−1(Π(π, x̃)) | f(π) ]

The first inequality follows from (B10) and the second from (B11) and taking expectations. Thus we have
established (B7), thereby completing the proof.

6Hammond, III, J. S. 1974. Simplifying the choice between uncertain prospects where preference is nonlinear. Management
Sci. 20(7), 1047–1072.
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One might speculate that the result of Proposition 8.2 might apply to two exponential utility functions,
that is, if it is optimal to adopt with an exponential utility function with risk tolerance τ1, then it is also
optimal to adopt with an exponential utility function with risk tolerance τ2 ≥ τ1. However, this is not true.
Specifically, given the data of Table B.1 in a simple two-period problem (i.e., the DM can wait for one period)
and a cost c = 0.05 associated with waiting, we find that for risk tolerances less than ≈0.33, it is optimal to
quit immediately. For risk tolerances between ≈0.33 and ≈0.58, it is optimal to adopt immediately. For risk
tolerances between ≈0.59 and ≈23, it is optimal to wait. For risk tolerances greater than ≈24, it is optimal
to adopt. Thus, the optimal policies may be nonmonotonic with increasing risk tolerances, even within the
exponential utility family.

Table B.1: Data for example with exponential utilities

Likelihood
Benefit (θ) Priors Negative Positive

Low (-1) 0.05 0.10 0.90
High (70) 0.95 0.00 1.00

B.4. Proof of Proposition 9.1

Proof. To summarize terms for this proof, we define

gk(θ) = u(wk + δkθ)− u(wk + δk−1θ − δkc) ,
ak(θ) = u(wk + δkθ)− u(wk) .

We then have

g′k(θ) = δk(u′(wk + δkθ)− δu′(wk + δk−1θ − δkc)) ,
a′k(θ) = δku

′(wk + δkθ) .

The scaling function s(θ) is defined in (12). These functions behave as follows over the following intervals.

θ ≤ θ0 θ0 < θ < 0 0 ≤ θ
gk(θ) − + +
g′k(θ) + +/− +/−
ak(θ) − − +
a′k(θ) + + +
s(θ) + + +
s′(θ) 0 − −

(B12)

Most of these claims are straightforward to check based on the definitions. To see that g′k(θ) ≥ 0 for θ ≤ θ0,
note that we have wk + δkθ ≤ wk + δk−1θ − δkc; then g′k(θ) ≥ 0 follows because risk aversion implies the
marginal utility at the lower wealth level, u′(wk + δkθ), is larger than the marginal utility at the higher
wealth level, u′(wk + δk−1θ − δkc).

We want to show that with a DARA utility function, gk(θ) is s-increasing and ak(θ) is s-increasing given
the risk tolerance bound of the proposition. We consider three cases corresponding to the columns of (B12).

Case (i): θ ≤ θ0. In this region, s(θ) = K > 0 and gk(θ) and ak(θ) are both increasing and hence
s-increasing in this range.

Case (ii): 0 ≤ θ.7 In this region, s(θ) is positive and decreasing and ak(θ) is positive and increasing.
Thus ak(θ)/s(θ) is increasing, i.e., ak(θ) is s-increasing.

We know that gk(θ) is positive in this region and we want to show that gk(θ)/s(θ) is increasing. Taking

7If c = 0, then θ0 = 0 and gk(θ) = 0. In this case, define this region as 0 < θ and include θ = 0 in case (i) above.
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the derivative and rearranging, this is true if

g′k(θ)

gk(θ)
≥ s′(θ)

s(θ)
. (B13)

gk(θ) may be increasing or decreasing in this region; s(θ) is positive and decreasing. If gk(θ) is increasing,

g′k(θ)

gk(θ)
≥ 0 ≥ s′(θ)

s(θ)
= min

{
0, min

κ

g′κ(θ)

gκ(θ)

}
. (B14)

and (B13) holds. If gk(θ) is decreasing, then by construction of s(θ) in equations (11) and (12), we have

s′(θ)

s(θ)
= min

{
0, min

κ

g′κ(θ)

gκ(θ)

}
= min

κ

g′κ(θ)

gκ(θ)
. (B15)

The second equality above follows from the fact g′k(θ)/gk(θ) ≤ 0 in this case. Thus (B13) holds in this case
as well.

Case (iii): θ0 < θ < 0. In this region, s(θ) and gk(θ) behave exactly as in case (ii) and the same proof
shows that gk(θ) is s-increasing.

Now ak(θ) < 0 in this region and we want to show that ak(θ)/s(θ) is increasing. Taking the derivative
and rearranging, we find that this is increasing if

s′(θ)

s(θ)
≥ a′k(θ)

ak(θ)
=

δku
′(wk + δkθ)

u(wk + δkθ)− u(wk)
(B16)

for all k. This expression is analogous to (A7) in the case without discounting.
We work on the left side of (B16) first. From (11) and (12), we have

s′(θ)

s(θ)
= min

{
0, min

κ

δκ (u′(wκ + δκθ)− δu′(wκ + δκ−1θ − δκc))
u(wκ + δκθ)− u(wκ + δκ−1θ − δκc)

}
(B17)

≥ min

{
0, min

κ

δκ (u′(wκ + δκθ)− u′(wκ + δκ−1θ − δκc))
u(wκ + δκθ)− u(wκ + δκ−1θ − δκc)

}
.

(The inequality follows because we are subtracting a larger number in the numerator.) Now, using the
DARA assumption as in the proof without discounting, i.e., as in (A8), we have

δκ (u′(wκ + δκθ)− u′(wκ + δκ−1θ − δκc))
u(wκ + δκθ)− u(wκ + δκ−1θ − δκc)

≥ −δκρu(wκ + δκ−1θ − δκc) .

Since the utility is assumed to be risk averse, ρ(w) ≥ 0 for all w. The left side of (B16) satisfies

s′(θ)

s(θ)
≥ min

κ
−δκρu(wκ + δκ−1θ − δκc) . (B18)

Following the same argument as in the case without discounting (using the Taylor series approximation),
the right side of (B16) satisfies

δku
′(wk + δkθ)

u(wk + δkθ)− u(wk)
≤ 1

θ
. (B19)

Combining (B18) and (B19), we have

s′(θ)

s(θ)
≥ min

κ
−δκρu(wκ + δκ−1θ − δκc) ≥

1

θ
≥ δku

′(wk + δkθ)

u(wk + δkθ)− u(wk)
. (B20)
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Thus the necessary condition (B16) holds if minκ−δκρu(wκ + δκ−1θ − δκc) ≥ 1
θ or, equivalently, if

τu(wκ + δκ−1θ − δκc) ≥ −δκθ for all κ.

Since u(w) is assumed to be DARA (i.e., τu(w) is increasing), we need only check this condition at the
minimum possible value of θ, which in this case is the larger of the minimum value of θ or θ0.

B.5. The model with multiple information sources

Suppose there are L information sources with costs c1 ≥ . . . ≥ cL. In this case, the value function Uk(w, π)
can be written recursively as:

U0(w, π) = u(w),

Uk(w, π) = max



E[u(w + θ̃) |π ] (adopt)
u(w) (reject)
E[Uk−1(w − c1,Π1(π, x̃)) | f(π) ] (use source 1)
...
E[Uk−1(w − cL,ΠL(π, x̃)) | f(π) ] (use source L)

.

Here Π`(π, x) denotes the posterior distribution using the likelihood functions for information source `. If the
utility function is increasing and the likelihood functions all satisfy the MLR property, it is easy to show that
these value functions are LR-increasing using an argument like that for Proposition 4.1. These conditions
also ensure that rejection policies are monotonic (as in Proposition 5.1).

To study the adoption policies, we consider the differences between the value associated with immediate
adoption and the optimal value function, Gk(w, π) = E[u(w + δkθ̃) |π ] − Uk(w, π). In the multiple source
setting, this becomes

G0(w, π) = E[u(w + δ0θ̃)− u(w) |π ] ,

Gk(w, π) = min



0
E[u(w + δkθ̃)− u(w) |π ]
E[u(w + δkθ̃)− u(w + δk−1θ̃ − δkc1) |π ] + E[Gk−1(w − δkc1,Π1(π, x̃)) | f(π) ]
...
E[u(w + δkθ̃)− u(w + δk−1θ̃ − δkcL) |π ] + E[Gk−1(w − δkcL,ΠL(π, x̃)) | f(π) ]

.

The utility differences associated with information gathering from source ` are now

g`k(wk, θ) = u(wk + δkθ)− u(wk + δk−1θ − δkc`) , (B21)

where wk ∈ Wk ≡
[
wT − 1−δk

1−δ c1, wT −
1−δk
1−δ cL

]
is the range of possible NPVs of the DM’s wealth with

k periods to go, after paying the costs from different information sources in all previous periods; let wk =
minWk. We let θ` = −c`/(1−δ) be the critical value for information source `: the utility difference g`k(wk, θ)
is positive if θ > θ` and negative if θ < θ`.

We define the scaling functions as in the model with discounting (equations (11) and (12)), but taking
minimums over a larger set of ratios, representing the different possible information sources, different wealth
levels, as well as the different periods. For θ > θ1, let

φ(θ) = min

{
0, min
`,k,wk

{
g′`k(wk, θ)

g`k(wk, θ)
: g`k(wk, θ) > 0 and wk ∈Wk

}}
. (B22)

In the case of a single information source, this reduces to the definition (11) we used before: in the single
source case, wk is uniquely determined (Wk is a singleton) and g′`k(w, θ) > 0 whenever θ is greater than the
critical value for that one source. With multiple information sources, we have multiple critical values and
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want to consider ratios only when the denominator is positive. Note that the constraint g`k(wk, θ) > 0 is
satisfied if and only if θ > θ`; we will sometimes write this constraint in this form instead.

The scaling function s(θ) is then defined exactly as in the case with a single information source (12): pick
some constant K > 0 and take s(θ) = K for θ ≤ θ1 and, for θ > θ1,

s(θ) = K exp

(∫ θ

q=θ1

φ(q) dq

)
, (B23)

As before, this s(θ) is positive and (weakly) decreasing and, for θ > θ1, s′(θ)/s(θ) = φ(θ).
With this scaling function, we can then establish the analog of Proposition 9.1 with multiple information

sources. Note that here, unlike Proposition 9.1, the risk tolerance bound is required for both parts of the
proposition.

Proposition B.2. Suppose the DM is risk averse and her utility function u(w) is DARA. Define the scaling
function s(θ) as in (B23). If

τu(wk + δk−1θ
∗
k − δkc1) ≥ −θ∗k for all k

where θ∗k = max{δkθ, θ1}, then

(i) u(wk + δkθ)− u(wk + δk−1θ − δkc`), and

(ii) u(wk + δkθ)− u(wk)

are s-increasing for all `, k and wk ∈Wk.

Proof. The proof closely follows the proof for Proposition 9.1, but we have an additional case to consider.
We first consider part (ii) of the Proposition.

(ii) We want to show that ak(wk, θ) = u(wk + δkθ) − u(wk) is s-increasing. For θ ≤ θ1 and θ ≥ 0, the
proofs for ak(wk, θ) are exactly as for ak(θ) in Case (i) and Case (ii) in the proof of Proposition 9.1. For
θ1 < θ < 0, the proof proceeds as in Case (iii) in the proof of Proposition 9.1, except the minimums in (B17)
(and thereafter) are taken over the larger set used in the definition of the scaling function (B22), rather than
the set considered in (11). The result of that argument is that

τu(wk + δk−1θ − δkc`) ≥ −δkθ for all θ, ` such that θ < θ`, all k, and wk ∈Wk

is sufficient to ensure that ak(wk, θ) is s-increasing. Because the utility function is assumed to be DARA
(i.e., τu(w) is increasing), we need only check the smallest possible values of θ (which is θ∗k) and wk (which
is wk) and the largest cost c` (which is c1). Thus

τu(wk + δk−1θ
∗
k − δkc1) ≥ −δkθ∗k for all k

is sufficient to ensure that ak(wk, θ) is s-increasing.

(i) We want to show that g`k(wk, θ) is s-increasing. For θ ≤ θ1, the proof for g`k(wk, θ) proceeds exactly
like that for gk(θ) in Case (i) in the proof of Proposition 9.1. For θ ≥ θ`, we know that g`k(wk, θ) > 0 and
the proof proceeds as in Cases (ii) and (iii) in the proof of Proposition 9.1, with the minimums in (B14) and
(B15) are taken over the larger set used in the definition of the scaling function with multiple information
sources (B22). Note that no utility assumptions (e.g., risk tolerances bounds) are required in this case.

With multiple information sources, we also have to consider the case where ` > 1 and θ satisfies θ1 <
θ < θ`. Here g`k(wk, θ) < 0 for this `, but g`′k(wk, θ) > 0 for more expensive sources `′. (This case does not
arise with a single information source.) To show g`k(wk, θ) is s-increasing in this region, we need to show

s′(θ)

s(θ)
≥ g′`k(wk, θ)

g`k(wk, θ)
. (B24)
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As in the proof for ak(θ) in Case (iii) of Proposition 9.1, we can use the DARA assumption to show that
the left side of (B24) satisfies

s′(θ)

s(θ)
≥ −δkρu(wk + δk−1θ − δkc`) for all ` such that θ < θ`, all k, and wk ∈Wk . (B25)

The argument here is the same but the minimum in (B14) is taken over the larger set used in the definition
of the scaling function with multiple information sources (B22).

We work on right side of (B24) next. Using a Taylor series expansion of u at wk + δkθ, we can write

u(wk + δk−1θ − δkc`) = u(wk + δkθ)− δk ((1− δ)θ + c`)u
′(wk + δkθ) +

1

2
δ2k ((1− δ)θ + c`)

2
u′′(w∗0)

where wk + δkθ ≤ w∗0 ≤ wk + δk−1θ − δkc` (recall that we are considering the case where θ < θ`). We can
then write the right side of (B24) as:

g′`k(wk, θ)

g`k(wk, θ)
=
δk (u′(wk + δkθ)− δu′(wk + δk−1θ − δkc`))

u(wk + δkθ)− u(wk + δk−1θ − δkc`)

=
δk (u′(wk + δkθ)− δu′(wk + δk−1θ − δkc`))

δk ((1− δ)θ + c`)u′(wk + δkθ)− 1
2δ

2
k ((1− δ)θ + c`)

2
u′′(w∗0)

=
u′(wk + δkθ)− δu′(wk + δk−1θ − δkc`)

((1− δ)θ + c`)u′(wk + δkθ)− 1
2δk ((1− δ)θ + c`)

2
u′′(w∗0)

≤ u′(wk + δkθ)− δu′(wk + δk−1θ − δkc`)
((1− δ)θ + c`)u′(wk + δkθ)

where the inequality follows because u is assumed to be concave (thus u′′(w∗0) ≤ 0). Rearranging, the right
side of (B24) then satisfies

g′`k(θ)

g`k(θ)
≤ 1

(1− δ)θ + c`

(
1− δ u

′(wk + δk−1θ − δkc`)
u′(wk + δkθ)

)
Because wk + δkθ < wk + δk−1θ − δkc` in this case, we have,

u′(wk + δk−1θ − δkc`)
u′(wk + δkθ)

< 1.

Since (1− δ)θ + c` < 0, this implies

1

(1− δ)θ + c`

(
1− δ u

′(wk + δk−1θ − δkc`)
u′(wk + δkθ)

)
<

(1− δ)
(1− δ)θ + c`

≤ 1

θ
,

Thus, in this case, we have

g′`k(θ)

g`k(θ)
≤ 1

θ
. (B26)

Combining (B25) and (B26), we see that the necessary condition (B24) holds if

min
`, k,wk

{
− δkρu(wk + δk−1θ − δkc`) : ` such that θ < θ`, wk ∈Wk

}
≥ 1

θ
(B27)

or, equivalently, if

τu(wk + δk−1θ − δkc`) ≥ −δkθ for all ` such that θ < θ`, all k, and wk ∈Wk

Because the utility function is assumed to be DARA (i.e., τu(w) is increasing), as in the part (ii) above, we
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need only check the smallest possible values of θ and wk and the largest cost c`. Thus

τu(wk + δk−1θ
∗
k − δkc1) ≥ −δkθ∗k for all k

is sufficient to ensure that(B24) holds, which implies g`k(wk, θ) is s-increasing in the region where θ satisfies
θ1 < θ < θ`.

Proposition B.2 then implies that adoption policies are monotonic, using exactly the same argument as in
Proposition 7.2.
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