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In this article, we develop a two-factor model of commodity prices that allows mean-
reversion in short-term prices and uncertainty in the equilibrium level to which prices

revert. Although these two factors are not directly observable, they may be estimated from
spot and futures prices. Intuitively, movements in prices for long-maturity futures contracts
provide information about the equilibrium price level, and differences between the prices for
the short- and long-term contracts provide information about short-term variations in prices.
We show that, although this model does not explicitly consider changes in convenience yields
over time, this short-term/long-term model is equivalent to the stochastic convenience yield
model developed in Gibson and Schwartz (1990). We estimate the parameters of the model
using prices for oil futures contracts and apply the model to some hypothetical oil-linked
assets to demonstrate its use and some of its advantages over the Gibson-Schwartz model.
(Commodity Prices; Real Options; Stochastic Dynamic Model)

1. Introduction
Stochastic models of commodity prices play a central
role when evaluating commodity-related securities
and projects. Early studies in this area typically as-
sumed that commodity prices followed a “random
walk” described by geometric Brownian motion.1 This
is the model of stock price uncertainty underlying the
famous Black-Scholes option pricing formula and it
leads to closed-form solutions in some interesting
cases. In this model, prices are expected to grow at
some constant rate with the variance in future spot
prices increasing in proportion to time. If prices in-
crease (or decrease) more than anticipated in one time
period, all future forecasts are increased (or de-
creased) proportionally.

More recently, a number of authors have considered
the use of mean-reverting price models and argued

that these models are more appropriate for many
commodities.2 Intuitively, when the price of a com-
modity is higher than some long-run mean or equilib-
rium price level, the supply of the commodity will
increase because higher cost producers of the com-
modity will enter the market—new production comes
on line, older production expected to go off line stays
on line—thereby putting downward pressure on
prices. Conversely, when prices are relatively low,
supply will decrease since some of the high-cost
producers will exit, putting upward pressure on
prices. When these entries and exits are not instanta-
neous, prices may be temporarily high or low but will
tend to revert toward the equilibrium level.

There are elements of truth in each of these simple
models of commodity prices. For most commodities,

1 See, for example, Brennan and Schwartz (1985), Paddock et al.
(1988), and Smith and McCardle (1998).

2 See, for example, Laughton and Jacoby (1993, 1995), Cortazar and
Schwartz (1994), Dixit and Pindyck (1994), and Smith and McCardle
(1999).
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there appear to be some mean reversion in prices but
there is also uncertainty about the equilibrium price to
which prices revert. In this article, we develop a
simple two-factor model of commodity prices that
captures both of these effects; the goal is to provide a
model that is more realistic than these standard mod-
els but yet simple enough to be useful for evaluating
real and financial options. In our model, the equilib-
rium price level is assumed to evolve according to
geometric Brownian motion with drift reflecting ex-
pectations of the exhaustion of existing supply, im-
proving technology for the production and discovery
of the commodity, inflation, as well as political and
regulatory effects. The short-term deviations—de-
fined as the difference between spot and equilibrium
prices—are expected to revert toward zero following
an Ornstein-Uhlenbeck process. These deviations may
reflect, for example, short-term changes in demand
resulting from variations in the weather or intermit-
tent supply disruptions, and are tempered by the
ability of market participants to adjust inventory lev-
els in response to changing market conditions.3

Although neither of these factors is directly observ-
able, the two factors in this model may be estimated
from spot and futures prices. If there are long-matu-
rity futures contracts for this commodity, then we can
estimate these two state variables accurately over
time: Intuitively, changes in the long-maturity futures
prices give information about changes in the equilib-
rium price, and changes in the difference between
near- and long-term futures prices give information
about the short-term deviations. If there are no traded
long-maturity futures contracts, then we must esti-
mate the levels of these state variables and may have
to treat them probabilistically. The short-term/long-
term model of commodity prices developed in here is
particularly convenient because it allows us to use
standard Kalman filtering techniques to estimate these
state variables in the same way as in Schwartz (1997).

Unlike most other recent models of commodity
prices, this short-term/long-term model does not ex-
plicitly consider convenience yields—defined in Bren-
nan (1991) as “the flow of services which accrues to the
owner of a physical inventory but not to the owner of
a contract for future delivery”—or stochastic conve-
nience yields, even when valuing futures contracts or
options on these futures. Nevertheless, our short-
term/long-term model is exactly equivalent to the
stochastic convenience yield model developed in Gib-
son and Schwartz (1990) in that the state variables in
each model can be represented as linear combinations
of the state variables in the other.

Although our short-term/long-term is formally
equivalent to the Gibson-Schwartz model, we believe
it has several advantages. While many find the notion
of convenience yields elusive, the idea of stochasti-
cally evolving short-term deviations and equilibrium
prices seems more natural and intuitive.4 Moreover,
these factors are more “orthogonal” in their dynamics,
which leads to analytic results that are more transpar-
ent and allow us to simplify the analysis of many
long-term investments. The new formulation also clar-
ifies some of the econometric issues that arise in
Schwartz (1997). In particular, we identify two param-
eters of the model that cannot be estimated with much
precision using futures prices and show that this
indeterminacy is irrelevant for valuation purposes.
Furthermore, the one-factor Orstein-Uhlenbeck and
geometric Brownian motion price models are simple
(nested) special cases of this two-factor model, which
facilitates empirical comparisons of model perfor-
mance. The short-term/long-term easily outperforms
these two simple models in our empirical compari-
sons. In addition, this article provides a more com-
plete probabilistic analysis of the model and a deeper
treatment of the use of Kalman filtering techniques (as
compared to Schwartz 1997), characterizing the accu-
racy of the state variables estimates and relating
Kalman filter estimates to implied estimates of the
state variables.3 Although one would intuitively expect positive price deviations to

correspond to periods with low inventories (and vice versa), we do
not explicitly model the role of storage decisions. See, e.g., Pindyck
(1993) and Routledge et al. (1999) for more complex models that
explicitly consider storage decisions and their impact on spot and
futures prices.

4 Indeed others, notably Ross (1997) and Pilopovic (1998), have
recently and independently developed multifactor price models
where the two-factors are interpreted as short- and long-term
factors.
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We begin by formally defining the short-term/long-
term model in §2 and deriving the distributions for
future spot prices. In §3, we describe the risk-neutral
version of the model and use it to derive closed-form
expressions for futures prices and for European op-
tions on these futures. In §4, we establish the relation-
ship between this model and the Gibson-Schwartz
stochastic convenience yield model. In §5, we discuss
the estimation of state variables and model parameters
and, in §6, we present empirical estimates based on
historical oil futures and forward prices as well as the
model comparison results. In §7, we apply our model
to some hypothetical real options problems. In §8, we
describe some extensions of the model and offer
concluding remarks.

2. The Short-Term/Long-Term
Model

Let S i denote the spot price of a commodity at time t.
We will decompose spot prices into two stochastic
factors as ln(S t) � � t � � t, where � t will be referred
to as the short-term deviation in prices and � t the
equilibrium price level. (Seasonality can be incorpo-
rated by including time-dependent constants in this
equation.) The short-run deviations (� t) are assumed
to revert toward zero following an Ornstein-Uhlen-
beck process

d� t � ��� tdt � ��dz�, (1)

and the equilibrium level (� t) is assumed to follow a
Brownian motion process

d� t � ��dt � ��dz�. (2)

Here dz � and dz � are correlated increments of stan-
dard Brownian motion processes with dz �dz � � � ��dt.
As indicated in the introduction, changes in the short-
term deviations (� t) represent temporary changes in
prices (resulting from, for example, unusual weather
or a supply disruption) that are not expected to
persist. Changes in the equilibrium level (� t) represent
fundamental changes that are expected to persist. The
mean-reversion coefficient (�) describes the rate at
which the short-term deviations are expected to dis-
appear and, as we will see below, �ln(0.5)/� can be

interpreted as the “half-life” of the deviations—the
time in which a deviation � t is expected to halve. The
short-term/long-term model includes the standard
geometric Brownian motion and Ornstein-Uhlenbeck
price models as special cases when there is uncertainty
about only one of the two factors.

We can write analytic forms for the distributions of
the state variables and spot prices in the short-term/
long-term model as follows. Given �0 and �0, following
the derivation in the Appendix, we find that � t and � t

are jointly normally distributed with mean vector and
covariance matrix:

E��� t, � t�� � �e ��t�0, �0 � ��t� and (3a)

Cov��� t, � t��

� � �1 	 e �2�t�
� �

2

2�
�1 	 e ��t�

�������

�

�1 	 e ��t�
�������

�
� �

2t � . (3b)

Given �0 and �0, the log of the future spot price is then
normally distributed with

E�ln�St�� � e ��t�0 � �0 � �� t and (4a)

Var�ln�St�� � �1 	 e �2�t�
� �

2

2�

� � �
2 t � 2�1 	 e ��t�

�������

�
. (4b)

The spot price is then log-normally distributed with
the expected price given by

E�St� � exp�E�ln�St�� � 1
2 Var�ln�St���

or ln�E�St�� � E�ln�St�� � 1
2 Var�ln�St��

� e ��t�0 � �0 � ��t

� 1
2 � �1 	 e �2�t�

� �
2

2�

� � �
2t � 2�1 	 e ��t�

�������

� � . (5)

As the forecast horizon increases (i.e., as t 3 �), the
e��t and e�2�t terms approach zero and the log of the
expected spot price approaches
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� �0 �
� �

2

4�
�

�������

� � � ��� � 1
2 � �

2�t. (6)

Thus, in the long run, the expected spot prices behave
as if they started at an “effective long-run price” of
exp(�0 � ��

2/4� � �������/�) and grow at a rate of (��

� 1
2 ��

2). This effective long-run price is slightly differ-
ent from the equilibrium price (exp(�0)) with the
constant difference reflecting the contribution of the
short-term volatility to expected spot prices.

Figure 1 shows some example probabilistic forecasts
generated by the model. Here we use parameter
estimates based on the Enron data (shown in Table 2
of §6.1 and modified as described in Footnote 9) and
show forecasts generated on May 16, 1996. On this
date, the state variables are estimated to be �0 � 0.119
and �0 � 2.857, corresponding to a current spot price
of $19.61 (�exp(�0 � �0)) and an equilibrium price of
$17.41 (�exp(�0)). The solid lines in Figure 1 describe
forecasts for spot prices and the dashed lines describe
forecasts for the equilibrium price. The center lines
show the expected value forecasts for each variable
and the upper and lower lines are “confidence bands”
for each variable such that there is a 90% and 10%
chance (respectively) that the variable will be below
that amount on that particular date. Here we see that
the spot price is expected to drop toward the equilib-
rium price, with the current deviation expected to be
halved in 7 months (� �ln(0.5)/�). The equilibrium
price is expected to grow over time at a constant rate

of 3.67% (��� � 1
2 ��

2). Comparing the two sets of
confidence bands, we see that most of the uncertainty
in near-term spot prices is due to uncertainty about
the short-term deviations, but, after a few years, most
of the uncertainty in spot prices is due to uncertainty
about the then-prevailing equilibrium price.

3. Risk-Neutral Processes and
Valuation

We now develop the “risk-neutral” version of the
model that we will use to value futures contracts and
options on these futures, as well as other commodity-
related investments. In the risk-neutral valuation par-
adigm one uses risk-neutral stochastic processes to
describe the dynamics of the underlying state vari-
ables, and discounts all cash flows at a risk-free rate
(see, e.g., Duffie 1992 for a rigorous development of
the risk-neutral valuation framework). In our model,
we introduce two additional parameters, 
� and 
�,
that specify constant reductions in the drifts for each
process. Specifically, we assume that these risk-neutral
stochastic processes are of the form

d� t � ���� t 	 
��dt � ��dz*� and (7a)

d� t � ��� 	 
��dt � ��dz*�, (7b)

where again dz*
� and dz*

� are increments of standard
Brownian motion processes with dz*

�dz*
� � � ��dt. The

risk-neutral process for the short-term deviation (� t) is
now an Ornstein-Uhlenbeck process reverting to
�
�/� (rather than 0 as assumed in the true process),
and the risk-neutral process for equilibrium prices is
still a geometric Brownian motion, but now has drift
�*

� 	 �� � 
� (rather than �� as assumed in the true
process). This form of risk adjustment is fairly stan-
dard (see, e.g., Schwartz 1995) and can be formally
justified by assuming that the two state variables are
priced according to the intertemporal asset pricing
models developed in Merton (1973) and Cox et al.
(1985). In these models, the risk premiums take the
form of adjustments to the drift of the stochastic
processes and, if we further assume that the correla-
tions between changes in the state variables and

Figure 1 Probabilistic Forecasts for Spot and Equilibrium Prices
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aggregate wealth in the economy are constant, then
these reductions in drift would also be constant.5

Given �0 and �0, following a derivation similar to
that of Equation (3), we find that under the risk-
neutral process, � t and � t are jointly normally distrib-
uted with mean vector and covariance matrix:

E*��� t, � t�� � �e ��t�0 	 �1 	 e ��t�
�/�, �0 � �*� t�,

Cov*��� t, � t�� � Cov��� t, � t��.

Here (and below) we use asterisks to denote expecta-
tions and variances taken with respect to the risk-
neutral process defined by (7a) and (7b) rather than
the “true” process defined by Equations (1) and (2).
Under this risk-neutral process, the log of the future
spot price, ln(S t) � � t � � t, is normally distributed
with

E*�ln�St�� � e ��t�0 � �0 	 �1 	 e ��t�
�/� � �*� t, (8a)

Var*�ln�St�� � Var�ln�St��. (8b)

Comparing Equations (4) and (8), we see that the risk
premiums reduce the log of the expected spot price by
(1 � e��t)
 �/� � 
 � t; this premium depends on time
but not the value of the state variables.

3.1. Valuing Futures Contracts
Let F T,0 denote the current market price for a futures
contract with time T until maturity. In the risk-neutral
valuation framework, futures prices are equal to the
expected future spot price under the risk-neutral pro-
cess and, assuming that interest rates are deterministic
(or, more generally, independent of spot prices), for-
ward prices are equal to futures prices (see, e.g., Duffie
1992). By Equation (8), we can write the futures prices
as

ln�FT,0� � ln�E*�ST��

� E*�ln�ST�� � 1
2 Var*�ln�ST��

� e ��T�0 � �0 � A�T� (9)

where A�T� � �*�T 	 �1 	 e ��T�

�

�

� 1
2 � �1 	 e �2�T�

� �
2

2�
� � �

2T

� 2�1 	 e ��T�
�������

� � .

The relationship between futures prices and ex-
pected spot prices is illustrated in Figure 2; here we
use the same parameters as in Figure 1 and again
show futures prices and forecasts from May 16, 1996.
The actual futures prices for that day are marked with
x’s in Figure 2 and will be discussed in §6. Comparing
Equations (5) and (9), we see that the risk premium for
the short-term deviations subtracts a constant amount
(
�/�) from the effective long-run price—the time-0
intercept of the line supporting long-term expected
spot prices in Figure 2 (this line is defined by Equation
(6))—and the risk premium (
�) for the equilibrium
level reduces the slope of long-term futures curve.
Changes in the equilibrium price over time shift these
long-term lines up and down, with the differences in
intercepts and slopes remaining constant. Changes in
short-term deviation lift or lower the front end of the
futures curve and expected spot price curve, with the
two curves sharing the same time-0 spot price.

From Equation (9), we see that the volatility of the
price (F T,0) for a futures contract maturing at time
T—the instantaneous variance of ln(F T,0)—is given by
e�2�T� �

2 � � �
2 � 2e��T� ��� �� �. The volatility is thus

independent of the state variables. For near maturity
futures contracts (i.e., T � 0), the volatility is equal to
the volatility of the sum of the short- and long-term
factors. As the maturity of the contract increases, the
short-term deviations make less of a contribution to
the volatility and, in the limit as T 3 �, the instanta-
neous volatility approaches the volatility of the equi-
librium price level (��). This volatility relationship is
illustrated in Figure 3 (again using the parameters
from the Enron data) along with the empirical volatil-

5 One could easily extend this basic model to allow for a short-term
risk premium that is a linear function of the short-term deviations;
i.e., 
 � � �� t � �. This would allow the possibility that the
short-term risk premium would be higher (or lower) in periods
when spot prices are higher than the long-run equilibrium level. In
this case, we could rewrite Equation (7a) with � in place of 
�, and
�* � � � � in place of �. Thus, with this extension, we would use the
risk-neutral mean-reversion rate �* when working with the risk-
neutral process and the true mean-reversion rate � when working
with the true process. We describe our estimates of this extended
model in Footnote 10.
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ities calculated from the Enron data. Here we can see
that the model fits the empirical volatilities well. The
“option volatilities” shown there will be discussed
shortly.

3.2. Valuing European Options on Futures
Contracts

We can use the risk-neutral approach to derive ana-
lytic forms for the value of European options on
futures contracts in this model. In this approach, the
value of a European option on a futures contract is

given by calculating its expected future value using
the risk-neutral process and discounting at the risk-
free rate. Let F T,t denote the price at time t of a futures
contract expiring at time T (T 
 t). From the formula
for current futures prices (Equation (9)), we can write
F T,t in terms of the time-t state variables as ln(F T,t)
� e��(T�t)� t � � t � A(T � t). Given current state
variables �0 and �0, because � t and � t are jointly
normally distributed under the risk-neutral process, 

	 ln(F T,t) is also normally distributed with

��t, T� � E*�ln�FT,t��

� e ���T�t�E*�� t� � E*�� t� � A�T 	 t�

� e ���T�t�e ��t�0 � �0 � �*�t � A�T 	 t�

� e ��T�0 � �0 � �*�t � A�T 	 t�,

� 
2 �t, T� � Var*�ln�FT,t��

� e �2��T�t�Var*�� t� � Var*�� t�

� 2e ���T�t�cov*�� t, � t�

� e �2��T�t��1 	 e �2�t�
� �

2

2�
� � �

2 t

Figure 3 Model and Empirical Volatilities

Figure 2 Futures Prices and Expected Spot Prices
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� 2e 	 ��T 	 t��1 	 e 	 �t�
�������

�
.

One can verify that under the risk-neutral process, the
expected futures price at time t (E*[F T, t] � exp(� (t,
T) � 1

2 � 
2 (t, T))) is equal to the time-t current futures

price F T,0 (given by Equation (9)). This equality follows
from the fact that futures prices are given by expected
spot prices under the risk-neutral process (F T,t

� E*t[S T]) and the law of iterated expectations
(E*[E*t[S T]] � E*[S T]).

The fact that future futures prices are log-normally
distributed under the risk-neutral process allows us to
write a closed-form expression for valuing European
put and call options on these futures. Explicitly, the
value of a European call option on a futures contract
maturing at time T, with strike price K, and time t
until the option expires, is

e �rtE*�max�FT,t 	 K, 0��

� e �rt�FT,0N�d� 	 KN�d 	 ��t, T���,

where d �
ln�F/K�

��t, T�
� 1

2 ��t, T�

and N(d) indicates cumulative probabilities for the
standard normal distribution (i.e., P(Z � d)). Simi-
larly, the value of a European put with the same
parameters is

e �rtE*�max�K 	 FT,t, 0��

� e �rt��FT,0N�d� � KN�d 	 ��t, T���.

These option valuation formulas are analogous to
the Black-Scholes formulas for valuing European op-
tions on stocks that do not pay dividends. Here the
stock price corresponds to the present value of the
futures commitment (e�rtF T,0) and the equivalent an-
nualized volatility would be � (t, T)/�t. Figure 3
shows these annualized “option volatilities,” assum-
ing that the option expires at maturity of the futures
contract (i.e., t � T). In this figure, we see that the
annualized option volatility, representing an average
of future futures volatilities, is greater than the instan-
taneous volatility of the underlying futures contract.
As the maturity of the futures contract increases (i.e.,
as T 3 �), the annualized option volatility ap-

proaches the volatility of the equilibrium level (��) as
most of the uncertainty about spot prices at maturity is
a result of uncertainty about then-prevailing equilib-
rium prices.

4. Relationship to the Gibson-
Schwartz Model

When compared to other recent models of commodity
prices, this short-term/long-term model is unusual in
that it makes no mention of convenience yields, let
alone stochastic convenience yields. Yet, as mentioned
in the introduction, the short-term/long-term model is
equivalent to the stochastic convenience yield model
developed in Gibson and Schwartz (1990) in that the
factors in each model can be represented as linear
combinations of the factors in the other.

To show this equivalence, we first briefly describe
the Gibson-Schwartz model. Adopting the notation of
Schwartz (1997), we let � t denote the time-t conve-
nience yield and let X t denote the log of the time-t
current spot price. The stochastic convenience yield
model assumes that these variables evolve according
to

dXt � �� 	 � t 	 1
2 � 1

2�dt � �1dz1, (10)

d� t � ��� 	 � t�dt � �2dz2, (11)

where dz 1 and dz 2 are correlated increments of stan-
dard Brownian motion process with dz 1dz 2 � �dt. The
convenience yield � t follows an Ornstein-Uhlenbeck
process with equilibrium level � and rate of mean
reversion �, and plays a role in spot price through its
appearance in the drift term in Equation (10). There is
no overlap in notations for the parameters of the two
models except for the mean-reversion parameter (�);
as we will see shortly, the mean-reversion parameters
coincide in the two models.

The variables in the long-term/short-term model
can be written in terms of the variables of the stochas-
tic convenience yield model as follows:

� t � short-term deviation �
1
�

�� t 	 ��, (12)
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� t � equilibrium price level

� Xt 	 � t � Xt 	
1
�

�� t 	 ��. (13)

To establish the equivalence of the two models, we can
write the stochastic process equations for the state
variables of the short-term/long-term model using the
equations for the stochastic convenience yield model
(Equations (10) and (11)) and relate the parameters in
the two models:

d� t �
1
�

d� t (using (12))

� �� 	 � t�dt �
�2

�
dz2 (using (10))

� ��� tdt �
�2

�
dz2 (using (12) again)

and

d� t � dXt 	
1
�

d� t (using (13))

� �� 	 � t 	 1
2 � 1

2�dt � �1dz1

	 �� 	 � t�dt 	
�2

�
dz2 (using (10) and (11))

� �� 	 � 	 1
2 � 1

2�dt � �1dz1 	
�2

�
dz2.

(rearranging)

Comparing these forms with Equations (1) and (2), we
see that the two models are equivalent if we relate the
parameters of the two models as shown in Table 1.

The risk premiums can be similarly related by
equating parameters in the risk-neutralized versions
of the two models. The risk-neutral version of the
short-term/long-term model is described in Equations
(7a) and (7b). In the stochastic convenience yield
model, the risk-neutral process sets the drift of the
spot price to be the risk-free rate (r) less the then-
prevailing convenience yield � t. The convenience
yield “paid” to the holder of the physical commodity
is thus analogous to a dividend yield paid to the
holders of common stocks. Explicitly, the risk-neutral
processes are assumed to be of the form

dXt � �r 	 � t 	 1
2 � 1

2�dt � �1dz*1,

d� t � ���� 	 � t� 	 
�dt � �2dz*2,

where dz*1 and dz*2 are correlated increments of stan-
dard Brownian motion process with dz*1dz*2 � �dt,
and r is the risk-free rate. Following an analysis
similar to that used to equate parameters of the true
processes, we can see that the values for 
� and 
�

shown in Table 1 make the two models equivalent.
Given the equivalence of the two models, we can
substitute terms from Table 1 into the equations
derived earlier for valuing futures and options con-
tracts in the short-term/long-term model and state the

Table 1 The Relationships Between Parameters in the Short-Term/Long-Term Model and the Stochastic
Convenience Model of Gibson and Schwartz (1990)

Short-Term/Long-Term Model Parameter

Definition in Terms of Stochastic Convenience Yield ModelSymbol Description

� Short-term mean-reversion rate �

�� Short-term volatility �2/�
dz � Short-term process increments dz 2

�� Equilibrium drift rate (� � � � 1
2 �1

2)
�� Equilibrium volatility (�1

2 � �2
2/�2 � 2��1�2/�)1/2

dz � Equilibrium process increments (� 1dz 1 	 (� 2/�)dz 2)(� 1
2 � � 2

2/� 2 	 2�� 1� 2/�) 	 1/2

��� Correlation in increments (��1 � �2/�)(�1
2 � �2

2/�2 � 2��1�2/�)�1/2


� Short-term risk premium 
/�

� Equilibrium risk premium � 	 r 	 
/�
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corresponding result in terms of the stochastic conve-
nience yield model.

Counting the parameters involved in each of the
two models, we find that the short-term/long-term
model has a total of seven parameters (�, ��, ��, ��, ���,

�, 
�) and the stochastic convenience yield model has
eight parameters (�, �, � 2, �, � 1, �, 
, r). Given the
formal equivalence of the two models, this suggests
that one of the parameters in the stochastic conve-
nience yield model is unnecessary or redundant. In-
deed, the risk-free rate r is, in a sense, unnecessary for
modeling spot prices: If we replace the risk-free rate r
with r �  and, in compensation, replace � t by � t � ,
� by � � , and � by � � , we find that X t and the
new � t follow the same true and risk-neutral processes
and lead to the same estimates of the state variables in
the short- and long-term model.6 The risk-free rate is
thus not required for specifying the spot price dynam-
ics (in either the true or risk-neutral process), for
valuing futures or forward contracts, or for estimating
the model from futures and forward prices. The risk-
free rate would, however, be required to value many
derivative securities (including options) and real as-
sets using either the stochastic convenience yield
model or the short-term/long-term model.

5. Estimating the State Variables
and Model Parameters

As indicated in the introduction, the state variables in
the short-term/long-term model are not directly ob-
servable and must be estimated from spot and/or
futures prices. If both short- and long-maturity futures
contracts are traded, intuitively, changes in the long-
maturity futures prices give information about
changes in the equilibrium price and changes in the
difference between near- and long-term futures prices
give information about the short-term deviations. If
there are no traded long-maturity futures contracts,
we may have to estimate the levels of the state
variables and treat them probabilistically. In both

cases, the estimates can be generated using Kalman
filtering techniques. The Kalman filter also facilitates
the calculation of the likelihood of observing a partic-
ular data series given a particular set of model param-
eters; this allows us to estimate parameters using
maximum likelihood techniques.

In this section, we briefly review the Kalman filter,
discuss its use in estimating state variables and pa-
rameters from spot and futures prices, and finally talk
about the use of implied methods for estimation.
Detailed accounts of Kalman filtering are given in
Harvey (1989) and West and Harrison (1996).

5.1. Kalman Filtering
The Kalman filter is a recursive procedure for com-
puting estimates of unobserved state variables based
on observations that depend on these state variables.
Given a prior distribution on the initial value of the
state variables and a model describing the likelihood
of the observations as a function of the true values, the
Kalman filter generates updated posterior distribu-
tions for these state variables in accordance with
Bayes’ rule. To formulate the short-term/long-term
model for use with the Kalman filter, we will work
with discrete time steps and define equations describ-
ing the evolution of the state variables and the rela-
tionship between the observed futures prices and the
state variables. Here the state variables are the short-
term deviation (� t) and equilibrium level (� t), and the
observations are the logs of the prices of the available
futures contracts. Casting this relationship in terms of
the Kalman filter, the evolution of the state variables is
described by the transition equation, which from Equa-
tion (3) can be written as

xt � c � Gxt�1 � �t, t � 1, . . . , nT (14)

where
xt 	 [� t, � t], a 2 � 1 vector of state variables;
c 	 [0, � �t], a 2 � 1 vector;

G � � e ��t 0
0 1 � , a 2 � 2 matrix;

�t is a 2 � 1 vector of serially uncorrelated, nor-
mally distributed disturbances with E[� t] � 0 and

Var[� t] � W 	 Cov[(�t, �t)] (given by Equation
(3b));

6 If we derive the stochastic convenience yield model in terms of the
short-term/long-term model, we see that the differences (� t � �),
(� � �), and (r � �) are uniquely determined but the specific
values of � t, �, �, and r are not.
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t 	 the length of the time steps; and
n T 	 the number of time periods in the data set.

The measurement equation describes the relationship
between the state variables and the observed prices.
From Equation (9), this is:

yt � dt � F�txt � vt, t � 1, . . . , nT, (15)

where:
yt 	 [ln F T1, . . . , ln F Tn], a n � 1 vector of

observed (log) futures prices with time maturities T 1,
T 2, . . . , T n;

dt 	 [A(T 1), . . . , A(T n)], a n � 1 vector;
Ft 	 [e��T11, . . . , e��Tn1], a n � 2 matrix; and
vt, a n � 1 vector of serially uncorrelated, normally

distributed disturbances with:

E�vt� � 0, Cov�vt� � V.

Everything in this formulation is derived directly from
our model with the exception of the introduction of
the measurement errors (v t). These measurement er-
rors can be interpreted as representing errors in the
reporting of prices (perhaps due to asynchronous
price quotes) or, alternatively, as errors in the model’s
fit to observed prices.

Given these equations and a set of observed futures
prices ( y t, t � 1, . . . , n T), we run the Kalman filter
recursively beginning with a prior distribution on the
initial values of the state variables ( x 0 � [� 0, � 0]). We
assume the prior is multivariate normal with mean
vector m0 and covariance matrix C0. In each subse-
quent period, we use the observation y t and the
previous period’s mean vector and covariance matrix
to calculate the posterior mean vector and covariance
matrix for the then-current state variables. Using the
notation of Equations (14) and (15), the mean and
covariance of the state variables conditioned on all of
the information available at time t are given by:

E�� t, � t� � mt � at � At�yt 	 ft�, (16a)

Var�� t, � t� � Ct � Rt 	 AtQtA�t, (16b)

where at 	 c � Gmt�1 and Rt 	 GtCt�1G�t � W are
the mean and covariance of (� t, � t) based on what is
known at period t � 1. Similarly, ft 	 dt � F�tat and
Qt 	 F�tRtFt � V are the mean and covariance of the

period-t futures prices given what is known at period
t � 1. The matrix At 	 RtFtQt

�1 defines a correction to
the predicted state variables (at) based on the differ-
ence between the (log) prices observed at time t ( y t)
and the predicted time-t price vector (ft).

5.2. Estimation of State Variables from Spot and
Futures Prices

The accuracy with which the state variables can be
estimated depends on the kind and quality of informa-
tion observed. Suppose that you observe only spot prices
in each period. In this setting, there will always be some
uncertainty in the estimates of the state variables be-
cause, given a change in spot price, it is impossible to tell
whether the change is due to a change in the short-term
deviation or a change in the equilibrium price or some
combination thereof. After running the Kalman filter for
a while, the variance in the state variable estimates
(given by (16b)) will approach an asymptotic value that
is independent of the particular price sequence observed
or the assumed prior distributions (see West and Harri-
son 1996, p. 162). To illustrate the accuracy of the state
variable estimates given spot price data, suppose we
observe spot prices once each week (i.e., t � 1 week)
and have zero measurement error associated with these
observations. Using the volatility estimates from the
Enron data (shown in Table 2), we find that the standard
deviations for the estimates of the short-term deviations
and equilibrium prices both asymptotically approach
0.07995. Thus, given only spot data, the state variables
can only be estimated within approximately �8%.7

If there is uncertainty about the level of the state
variables, the forecasts of spot and equilibrium prices
given in §2 must be augmented to reflect this addi-
tional uncertainty. If we let the �̂0 and �̂0 denote the
mean of the current state variable (given by Equation
(16a) as mt � [�̂0, �̂0]) and �̂�

2, �̂�
2, and �̂�� the

corresponding variances and correlation coefficient
(defined by the covariance matrix Ct given by Equa-

7 This asymptotic covariance matrix is difficult to compute analyti-
cally, but may be easily evaluated numerically. Increasing the
frequency of the samples from weekly to daily or finer time steps
does not significantly improve the ability to estimate the state
variables: With hourly samples rather than weekly samples, the
asymptotic standard deviations of this example are unchanged in
the first five decimal places.
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tion (16b)), then, from Equation (3), the mean and
variance for the state variables at time t is given by:

E��� t, � t�� � �e ��t�̂0, �̂0 � �� t� and

Cov��� t, � t��

� � �1 	 e �2�t�
� �

2

2�
�1 	 e ��t�

�������

�

�1 	 e ��t�
�������

�
� � t

2 �
� � e �2�t�̂ �

2 e ��t�̂���̂��̂�

e ��t�̂���̂��̂� �̂ �
2 � .

Comparing this with Equation (3), we see that the
uncertainty about the current state variables serves to
increase uncertainty about their future values by add-
ing terms to the covariance matrix. Although there
may be considerable uncertainty about the values of
the state variables at any time, this uncertainty has
relatively little impact on forecasts and futures prices.
If the state variable estimates are based on spot price
observations, the state variable estimates will be per-

fectly negatively correlated (since they must sum to
the observed log spot price) and the errors will cancel
each other in the short-term spot price forecasts. In the
longer term, the uncertainty about the short-term
deviation has little impact (as e��t approaches 0), and
the uncertainty about the current equilibrium price
(with variance �̂�

2) grows small compared with the
uncertainty due to potential changes in equilibrium
prices (with variance � �

2 t).
If, instead of observing only spot prices, we observe

prices for a vector of futures contracts with varying
maturities, there will typically be little uncertainty
about the state variables. In fact, if we observe prices
for two contracts with different maturities and have
zero measurement error, we can invert Equation (15)
and estimate the state variables exactly. With multiple
contracts and measurement errors for all contracts, we
cannot estimate the state variables exactly, but if the
measurement errors are small, there will be little
uncertainty in the state variable estimates. In the
empirical results of the next section, there is essentially
zero error in the state variable estimates.

Table 2 Maximum-Likelihood Parameter Estimates

Parameter Description

Futures Data Enron Data

Estimate
Standard

Error Estimate
Standard

Error

� Short-term mean-reversion rate 1.49 0.03 1.19 0.03
�� Short-term volatility 28.6% 1.0% 15.8% 0.9%

� Short-term risk premium 15.7% 14.4% 1.4% 8.2%
�� Equilibrium drift rate �1.25% 7.28% �3.86% 7.28%
�� Equilibrium volatility 14.5% 0.5% 11.5% 0.6%
�*

� Equilibrium risk-neutral drift rate 1.15% 0.13% 1.61% 0.12%
��� Correlation in increments 0.300 0.044 0.189 0.096

Standard deviation(s) of error for
measurement equation Contract Maturity Contract Maturity

s 1 � 1 mo. 0.042 0.002 2 mo. 0.027 0.001
s 2 � 5 mo. 0.006 0.001 5 mo. 0.006 0.001
s 3 � 9 mo. 0.003 0.000 8 mo. 0.000
s 4 � 13 mo. 0.000 12 mo. 0.002 0.000
s 5 � 17 mo. 0.004 0.000 18 mo. 0.000
s 6 � 2 yrs. 0.005 0.000
s 7 � 3 yrs. 0.014 0.003
s 8 � 5 yrs. 0.032 0.015
s 9 � 7 yrs. 0.043 0.036
s 10 � 9 yrs. 0.055 0.041
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5.3. Parameter Estimation
The Kalman filtering procedure allows us to estimate
the state variables over time given particular assump-
tions about the parameters of the process; all of the
previous probabilistic results assumed that the param-
eters of the process were known. The Kalman filtering
paradigm also allows one to efficiently calculate the
likelihood of a set of observations given a particular
set of parameters (see, e.g., Harvey 1989, Chapter 3.4
for details). By varying the parameters and rerunning
the Kalman filter for each set of parameters, we can
identify the set of parameters that maximizes this
likelihood function. In our short-term/long-term
model, there are seven model parameters to be esti-
mated (�, � �, � �, � �, � ��, 
 �, �*

�) plus the terms in the
covariance matrix for the measurement errors (V). In
general, there are (n � 1)n/ 2 free variables in the
covariance matrix, where n is the number of futures
contracts whose prices are observed (the matrix must
be symmetric). As in Schwartz (1997), we simplify the
estimation problem by assuming that V is diagonal
with diagonal elements (s 1

2, . . . , s n
2). We used the

“maxlik” routine in Gauss to numerically determine
parameter estimates and standard errors for these
estimates. To be sure that our maximum likelihood
estimation routine reaches a global (rather than local)
maximum, we reran the optimization problem from a
variety of initial parameter values. In all cases, we
started the Kalman filter with a prior mean (m0) and
covariance matrix (C0) based on the observed means
and covariance in the data. Although the likelihood
scores vary somewhat, the estimated state variables
and parameters did not appear to be very sensitive to
the assumed initial mean and covariance.

5.4. Implied State Variable and Parameter
Estimates

In some applications, rather than gathering historical
futures data and running the Kalman filter, it may be
easier to select state variables to fit the current futures
curve. For example, given estimates of the model param-
eters, one might set up a spreadsheet that calculates
model futures prices as a function of the current state
variables (using Equation (9)) and then choose values for
the state variables to minimize the squared differences
between the observed futures prices and those given by

the model. Graphically in Figure 2, we pick an equilib-
rium price and deviation to fit the model’s futures prices
to the observed futures prices, marked with xs in the
figure. The errors in the fit could be weighted to improve
the accuracy of the fit to particular parts of the futures
curves. These “implied” state variable estimates may
differ from those generated by running the Kalman filter
(notably, they do not depend on any prior state variable
estimates or any previous futures prices), but if the
futures prices are sufficiently informative and the errors
are weighted appropriately, these implied estimates will
be very similar to those generated by the Kalman filter.8

One could also incorporate option prices into this pro-
cess using the formulas of §3.2 to value options as a
function of the state variable estimates.

Implied methods could also be used to determine some
of the model parameters as well as the state variables. For
example, one might choose the risk-neutral equilib-
rium drift rate �*

� and the mean-reversion rate � to fit the
current futures curve. Similarly, given historical volatil-
ities for futures prices with varying maturities or implied
volatilities for options on near-term and long-term fu-
tures, we could estimate the volatility parameters (��, ��,
and ���) by choosing volatility parameters to fit the
observed futures or options volatilities (i.e., fitting the

8 To clarify this claim, first note using the definition of ft, we can
rewrite Equation (16a) as mt � E[� t, � t] � (I � A tF�t)at�1 � A t( y t

� dt). Assuming V and Rt are invertible, At can be rewritten as At

� R�tFt(F�tRtFt � V)�1 � (FtV
�1F�t � Rt

�1)�1FtV
�1; the first equality

follows from the definitions following Equation (16), and the second
equality can be verified by postmultiplying both sides by (F�tRtFt

� V) and premultiplying by (FtV
�1F�t � Rt

�1). The futures prices
will be “very informative” if FtV

�1F�t is large compared to Rt
�1;

intuitively this requires the measurement errors associated with the
futures (with covariance matrix V) to be small compared to the
uncertainty about the values of the state variables before seeing the
futures prices (with covariance matrix Rt). In this case, FtV

�1F�t will
dominate Rt

�1, At will approach (FtV
�1F�t)

�1FtV
�1, and AtF�t will

approach I. The means given by Equation (16a) therefore approach
mt � E[� t, � t] � (FtV

�1F�t)
�1FtV

�1(yt � dt). This expression is also
the solution to the weighted least squares problem of choosing mt to
minimize (yt � dt � F�tmt)�V�1(yt � dt � F�tmt). Thus when the
futures contracts are very informative, the Kalman filter estimates
are equivalent to minimizing the sum of squared errors in the
model’s fit to the current futures curve, provided we weight the
errors according to the precision matrix (V�1) for the measurement
errors.
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curves shown in Figure 3 to the observed data). While
these estimates will not be identical to those given by
maximum likelihood estimation, they may be easier to
generate and sufficient for many purposes.

6. Empirical Results
We describe estimates of our model based on two
different data sets; both were used in Schwartz (1997)
and are described in more detail there. In the first data
set, the observations consist of weekly observations of
prices for NYMEX crude oil futures contracts matur-
ing in the next month and in approximately 5, 9, 13,
and 17 months (5 contracts total). We use futures
prices from 1/2/90 to 2/17/95 with a total of 259 sets
of observations of 5 futures prices. These prices are
publicly available and were obtained from Knight-
Ridder Financial. The second data set consists of
proprietary historical crude oil forward price curves
made available by Enron Capital and Trade Re-
sources. This data set covers the time period from
1/15/93 to 5/16/96, and for each date we use prices
for 10 forward contracts, maturing in approximately 2,
5, and 8 months and in 1, 1.5, 2, 3, 5, 7, and 9 years. The
Enron data set includes a total of 163 sets of observa-
tions of 10 forward prices.

6.1. State Variable and Parameter Estimates
Table 2 shows maximum likelihood parameter esti-
mates for each data set and Figure 4 shows the
estimated values of the equilibrium price (given as
exp(� t)) and spot price (exp(� t � � t)) for the futures
data; the state variable estimates for the Enron data set
are similar in the time period where the two data sets
overlap. Both data sets show significant mean rever-
sion in the short-term deviations: In the futures data,
the “half-life” of the short-term deviations is approx-
imately 6 months (� �ln(0.5)/�) and, in the Enron
data set, the half-life is about 7 months. In both data
sets, we see that the spot prices are much more volatile
than the equilibrium prices, reflecting the substantial
short-term volatility. The spot prices were sometimes
above and sometimes below the equilibrium price
level with the greatest differences occurring during
the Gulf War in the summer and fall of 1990 (see
Figure 4), when spot prices rose above $40 per barrel

while the equilibrium price levels reached only $25
per barrel. Spot prices were well below the equilib-
rium levels during the last quarter of 1993 and first
quarter of 1994. This was a period when “ongoing
high production levels, by both Organization of Petro-
leum Exporting Countries (OPEC) and other coun-
tries, were more than sufficient to satisfy stagnant
global demand, resulting in a continuing increase in
worldwide petroleum inventory levels” (Energy Infor-
mation Administration (EIA) 1994, p. xi). The fact that
equilibrium prices did not follow spot prices down
suggests that market participants did not expect this
excess production to continue and, in fact, it did not:
“The onset of warm weather, speculation on changes
in self-imposed OPEC production levels, and tight
supplies all helped U.S. crude oil prices gradually
climb to the year’s high, $20.72, on June 16 [1994]”
(EIA 1995, p. xiii).

Table 3 shows the errors in the model’s fit to the
futures prices. In general, the model fits the mid-term
contracts best with larger errors for the very short- and
very long-term contracts. The largest errors were in
fitting the near-term contract in the futures data (a
mean absolute error in log prices of 0.0314) and in the
9-year contract in the Enron data (a mean absolute
error of 0.0332). In both data sets, some of the mid-
term futures prices were matched with essentially no
error, leading to a measurement error matrix (V) that
is positive semidefinite but not positive definite. The
accuracy of the model’s fit for particular contracts is
determined to a large extent by our assumptions about

Figure 4 Estimated Spot and Equilibrium Prices for the Futures Data
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the measurement errors. If, for example, we want to be
sure that the model perfectly replicates spot prices, we
could choose a measurement error covariance matrix
(V) with zero variance for the spot prices: With two
state variables to estimate in each period, we can
perfectly match prices for up to two contracts in each
period. The measurement error standard deviations
reported in Table 2 were selected to maximize the
likelihood of the data and can be thought of as
providing the best overall fit to the data. However, for
some applications, we might choose different error
covariance structures to obtain better fits for particular
contract maturities.

Examining the standard errors for the parameter
estimates in Table 2, we see that two parameters, the
long-term drift (��) and short-term risk premium (
�),
are not estimated with much accuracy. This indeter-
minacy can be explained graphically using Figure 2.
Because our observations consist of futures prices
(marked with xs in Figure 2), in each period, we get
good estimates of the spot price (� t � � t) and the
time-0 intercept of the line supporting the long-term
futures price. We also get a good estimate of the
risk-adjusted growth rate (�*

� � �� � 
�) because it is
the average growth rate for long-term futures prices.
The expected spot prices—represented by the upper
curve in Figure 2—are, however, never directly ob-
served, and we cannot accurately determine the pre-
cise location of this curve or its long-term slope. The
risk premiums 
� and 
� describe the differences

between the expected prices and futures prices and,
because price expectations are not observed, these risk
premiums are not well estimated. Errors in the esti-
mate of 
� appear in Table 2 as errors in the estimate
of ��, and errors in the estimate of 
� shift all of the
estimates of � t up or down by a constant (
�/�), with
the � t adjusting accordingly so as to preserve the sum
(� t � � t) corresponding to the log of the observed spot
price. In essence, using futures data, we can precisely
estimate the risk-neutral process for spot prices but
cannot precisely estimate the true process. We can see
this formally by examining the risk-neutral distribu-
tion for spot prices defined by Equation (8). First note
that, if we are given the risk-neutral drift (�*

� ), the true
equilibrium drift (��) plays no role in the risk-neutral
distribution for spot prices. Second, note that if we
replace 
� by 
� �  for any , and in compensation
replace �0 by �0 � /� and �0 by �0 � /�, the
risk-neutral distribution for spot prices is unchanged.
The two parameters that we cannot estimate thus do not
affect the risk-neutral distributions for spot prices (and,
more generally, the risk-neutral stochastic process for
spot prices) and hence do not affect the valuation of
securities and projects that depend only on spot prices.

These two dimensions of indeterminacy in the pa-
rameters in the short-term/long-term model (or the
corresponding dimensions in the Gibson-Schwartz
model) do not affect the robustness of the model for
use in valuation problems, although it does affect its
robustness for forecasting purposes. To precisely esti-

Table 3 Errors in the Model Fit to the Logarithm of Futures Prices

Futures Data Enron Data

Contract
Maturity

Mean
Error

Standard Deviation
of Error

Mean Absolute
Error

Contract
Maturity

Mean
Error

Standard Deviation
of Error

Mean Absolute
Error

1 mo. �0.0053 0.0414 0.0314 2 mo. 0.0104 0.0249 0.0207
5 mo. 0.0005 0.0044 0.0035 5 mo. 0.0017 0.0058 0.0049
9 mo. �0.0002 0.0025 0.0020 8 mo. 0.0000 0.0000 0.0000
13 mo. 0.0000 0.0000 0.0000 12 mo. �0.0006 0.0023 0.0019
17 mo. 0.0000 0.0035 0.0028 18 mo. 0.0000 0.0000 0.0000

2 yrs. 0.0012 0.0047 0.0040
3 yrs. 0.0040 0.0133 0.0121
5 yrs. 0.0042 0.0320 0.0276
7 yrs. �0.0076 0.0429 0.0318
9 yrs. �0.0245 0.0493 0.0332
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mate the risk premiums (
� and 
�) and true values of
the state variables, we would have to use a much
longer time series or include observations that depend
on the true price process rather than the risk-neutral
process (for example, published price forecasts). Al-
ternatively, we might use implied techniques like
those discussed in §5.4 to choose �� and 
� to match
exogenously specified price forecasts.9,10

6.2. Model Comparisons
We can also use these data sets to compare our model
with commonly used single-factor models in terms of
their abilities to capture the dynamics of futures prices.
As indicated in §2, our model includes geometric Brown-
ian motion and Ornstein-Uhlenbeck processes as special
cases when there is no uncertainty about one of the two
state variables. The geometric Brownian motion model is
given by considering uncertainty in equilibrium prices
only and taking �0, ��, and 
� to be zero. The geometric
Ornstein-Uhlenbeck model is given by assuming a con-

stant equilibrium price (which must be estimated) and
taking ��, ��, and 
� to be zero.

Table 4 shows the log-likelihood scores given by
maximum likelihood estimation of each model with
each data set. We see that the two-factor model has the
largest log-likelihood scores for each of the data sets.
Since the simpler models are restrictions of our two-
factor model, we can compare the differences in
log-likelihood scores for each data set to see whether
the additional parameters of the two-factor model
provide a statistically significant improvement in the
model’s ability to explain the observed data. The
relevant test statistic for this comparison is the chi-
squared distribution with 3 degrees of freedom (the
one-factor models are obtained by placing 3 restric-
tions on parameters in the two-factor model) and the
99th percentile of this distribution is 11.34. Given that
the log-likelihood scores increase by more than 600 in
all cases, we see that the improvements provided by
the short-term/long-term model are quite significant.

We can understand why the short-term/long-term
model outperforms these other models by considering
the shapes of the futures curves generated by each of
these models. Figure 2 shows an example for the short-
term/long-term model. In this figure, we see a situation
with a positive short-term deviation and the futures
curve starts high, decreases rapidly, and then trends
back up. In cases with negative short-term deviations,
the initial part of the curve is below the long-term trend.
If we observe the time series of futures curves, we see the
short end of the curve “flapping” around the long-term
trend as well as vertical shifts in the long-term trend. The
futures curve implied by the simple geometric Brownian
motion model would appear in Figure 2 as a straight
line; while this model allows this line to shift up and
down, it cannot capture the “flapping” that we see at the
short-end of the futures curve. The futures curve implied
by the Ornstein-Uhlenbeck process allows “flapping” at

9 Because equilibrium prices declined over this time period, we
obtain negative estimates for the expected growth of the equilib-
rium price level (��) in both data sets. This is not likely to be
representative of investor expectations of long-run growth during
that time period, and leads to a negative estimate of the long-term
risk premium (
� � �� � �*

� � �3.9% � 1.6% � �5.5%, for the Enron
data). If we fix the long-term expected growth rate at a value that is
more representative of investor expectations, say 3%, then the
long-term risk premium becomes well estimated and positive (
�

� 1.4% with standard error of 0.12% for the Enron data); all other
parameter estimates are essentially unchanged. The plots of Figures
1 and 2 both assume �� � 3% and use the estimate 
� � 1.4% to
generate price forecasts that are more representative of investor
expectations. To improve the readability of Figure 2, we have taken

� � 5% and modified the estimates of � t and � t to preserve the spot
price and futures prices. These modifications change the spot price
forecasts but preserve the model’s estimates of futures prices and
the risk-neutral process for spot prices.
10 If we allow the short-term risk premium to depend on the short-term
deviations as discussed in Footnote 5, using the Enron data, we find an
estimate of the risk-neutral mean-reversion rate (�*) of 1.19 (with a
standard error of 0.03) and a true mean-reversion rate (�) of 1.79 (with
a standard error of 0.87). These point estimates suggest that short-term
risk premiums are lower in periods with higher short-term deviations
(i.e., � � �* � � � 1.19 � 1.79 � �0.60), but given the magnitude of the
standard error for �, we cannot draw any conclusions about the sign of
this effect. Thus, here again, we can estimate the parameters of the
risk-neutral process well but cannot estimate corresponding parame-
ters of the true process well.

Table 4 Log-Likelihood Scores for Model Comparison

Model Futures Data Enron Data

Geometric Brownian Motion 3860 4995
Geometric Ornstein-Uhlenbeck Process 4331 5574
Short-term/Long-term Model 5140 6182
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the short end of the curve, but it does not allow for the
vertical shifts at the long end of the curve. The short-
term/long-term model allows both the short-term “flap-
ping” and the long-term shifts and hence fits the data
much better than these simpler models.

7. Illustrative Real Options
Applications

To illustrate some of the possible uses of the short-
term/long-term model, we consider two hypothetical
investments in oil properties. The first example is
representative of a long-term investment. In this case,
the firm owns the right to develop a property and can
exercise this option at any time. It costs $800,000 to
develop the property and there is a 3-year construc-
tion lag from the time that the development decision is
made and oil production begins. After the lag, oil
production starts at a rate of 5,000 barrels per year and
declines exponentially at a rate of 5% per year. The
second example is representative of a short-term de-
velopment option. In this case, development costs
$40,000, there is no construction lag, and oil is pro-
duced at an initial rate of 1,000 barrels of oil per year,
declining exponentially at a rate of 40% per year. To
simplify the analysis, for both projects we assume that
there are no operating costs, royalties or taxes and
that, once production starts, it continues indefinitely.

The problem is to determine the optimal exercise
strategy and the value of these investments in the
different possible price states.

We value these example projects using the risk-neutral
technique, using parameter estimates based on the En-
ron data (given in Table 2) and discounting at a risk-free
rate of 5% per year. Figures 5a and 5b display the results
for these examples, showing the value and optimal
exercise policies as a function of the equilibrium and
deviation state variables.11 The dark gray, upper surfaces
in these figures show the value of the property under the
optimal exercise policy. The lighter gray, lower surfaces
show the value of the property if the firm were forced to
exercise immediately. The darkest regions in each figure

11 These values and policies were calculated by solving a discrete-time,
infinite-horizon dynamic-programming problem where, in each pe-
riod, the owner can exercise the option to develop the field or hold it
until the next period. The value at exercise is given as the expected
discounted revenue over the infinite life of the project; these values
were calculated numerically. The equilibrium and deviation price
variables were discretized into 35 steps each, for a statespace with a
total of 1,225 different states; time was discretized into intervals of 0.1
year. The dynamic program was formulated as a linear program (as
described in Bertsekas 1995, p. 49) and solved using a commercial
linear programming package (CPLEX). For finite-horizon problems,
we can solve for optimal policies and values using multivariate lattice
models, analogous to those developed in Boyle et al. (1989) for
multivariate geometric Brownian motions.

Figure 5 Value Functions for the Short- and Long-Term Investments
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show where the two value surfaces coincide and it is
optimal to exercise the option to develop the field. The
zero plane is shown to provide a reference. The equilib-
rium prices are labeled in dollars per barrel (given as
exp(�t)) and the deviations are labeled as a percentage
increase or decrease over the equilibrium price (given as
exp(�t) � 1). The spot price is given as the equilibrium
price plus this proportional increase or decrease (St

� exp(�t � �t) � exp(�t) exp(�t)).
It is interesting to compare the sensitivities of the

optimal strategies to the state variables in the two
examples. In the short-term investment, the values
and policies are sensitive to both state variables and
the value increases with both the short-term deviation
and the equilibrium price. The equilibrium price at
which one would choose to exercise the option
changes substantially depending on the short-term
deviation. For example, for a �70% deviation, the
threshold equilibrium price is approximately $23 per
barrel. With negative deviations, we do not exercise
for any equilibrium price under $40 per barrel: In
these cases, the optimal policy suggests waiting for the
deviations to again turn positive. In some of these
cases, the optimal policy suggests waiting even
though the value given immediate exercise is higher
than in other cases where exercise is optimal. The
short-term deviations thus have an impact on the
timing of the investment decision beyond their impact
on the value of the investment.

In contrast, the values and policies for the long-term
investment are quite insensitive to the short-term
deviations. Even though the investment has positive
value whenever the equilibrium price exceeds approx-
imately $13 per barrel, it is not optimal to actually
exercise the option until prices reach approximately
$30 per barrel; these equilibrium price thresholds
change only slightly with the short-term deviations.
This insensitivity for the long-term investment is a
result of the three-year construction lag and the long
productive lifetime, both of which dampen the effect
of the short-term deviations. Because of this insensi-
tivity, when valuing long-term investments like this
one, we can simplify our analysis by reducing the
two-factor model to a single-factor model that consid-
ers uncertainty in equilibrium prices only. In these

applications, we would use the two-factor model to
estimate the current equilibrium price (since it is not
directly observed) but we would not model the short-
term deviations stochastically.

The ability to simplify the analysis of long-term
investments is one of the advantages of the short-
term/long-term model over the Gibson-Schwartz
model and other similar models. As discussed in §4,
assuming no uncertainty in the short-term deviations
in the short-term/long-term model is equivalent to
assuming no uncertainty in convenience yields in the
Gibson-Schwartz model. But if we assume no uncer-
tainty in convenience yields in the Gibson-Schwartz
model, we would use a volatility for the spot prices
that reflects uncertainty in both the short-term devia-
tions and equilibrium prices (given by ��

2 � ��
2

� 2������� in our notation and given by �1
2 in the

Gibson-Schwartz model) and is inappropriately large
for long-term investments: Using the Enron data, the
instantaneous volatility for spot prices is approxi-
mately 21% per year whereas the volatility for the
equilibrium price is only 11.5%. The factorization in
the short-term/long-term model can thus help sim-
plify the evaluation of long-term commodity invest-
ments in a way that is not so easily achieved using the
Gibson-Schwartz model. (See Schwartz 1998 for a
discussion of how to use the Gibson-Schwartz model
to value long-term commodity assets.)

8. Summary and Conclusions
In this article, we propose a new way of thinking
about the stochastic behavior of commodity prices and
develop a two-factor model that allows for short-term
mean-reverting variations in prices, and at the same
time allows uncertainty in the equilibrium level to
which prices revert. Although this short-term/long-
term model makes no mention of convenience yields,
the model turns out to be exactly equivalent to the
stochastic convenience yield model of Gibson and
Schwartz (1990) with the short-term price deviation
being a linear function of the instantaneous conve-
nience yield. The short-term/long-term model thus
provides an alternative interpretation of the results of
the stochastic convenience yield model in which
changes in short-term futures prices are interpreted as
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short-term price variations rather than as changes in
the instantaneous convenience yield.

Although our short-term/long-term model and the
Gibson-Schwartz stochastic convenience yield model
are formally equivalent, we believe that the short-
term/long-term model is easier to interpret and work
with for several reasons. First, whereas many find it
hard to think about “convenience yields” (let alone
stochastic convenience yields), the notions of short-
term variations and long-term equilibrium price levels
seem natural and lead to results that are more trans-
parent. For example, in the short-term/long-term
model we find that the volatility of prices for futures
contracts is given by the volatility of the sum of the
short- and long-term factors. As the maturity of the
contract increases, the futures volatility approaches
the volatility of the equilibrium price.

A second advantage of the short-term/long-term
model is that the two factors in the short-term/long-term
model are more “orthogonal” in their dynamics. In the
Gibson-Schwartz stochastic convenience yield model,
the convenience yield plays a role in the stochastic
process for the spot price. In the short-term/long-term
model, the only interaction between factors comes
through the correlation of their stochastic increments
(estimated at 0.189 and 0.300 for the two data sets), and
this correlation in increments is much less than the
correlation between increments in the stochastic conve-
nience yield model (estimated at 0.845 and 0.922 for the
same two data sets). This orthogonality allows us to
think more clearly about the impacts of each factor when
evaluating commodity-related projects and derivative
securities. In particular, for many long-term investments,
we may be able to safely ignore the short-term variations
and evaluate investments using a one-factor model that
considers uncertainty in equilibrium prices only, modeled
using a standard geometric Brownian motion process.

By separating short- and long-term price compo-
nents and using futures prices to distinguish between
them, we provide a conceptual framework for devel-
oping richer models of commodity price movements.
We have developed one such extension in which the
growth rate for the equilibrium price (��) is stochastic
(the details are available from the authors); this third
factor improves the model’s ability to fit long-term

futures prices and match changes in the growth rate
for long-term futures prices. Many other extensions
are possible. To improve the model’s ability to fit
short-term futures prices, we might consider the pos-
sibility of allowing the deviation reversion rate (�) to
be stochastic, incorporating lagged measurement er-
rors, or, to better fit option prices, allowing the short-
term volatility (��) to be stochastic. For some com-
modities, like electricity, we might consider adding
Poisson jumps to capture the impact of system fail-
ures. To improve the modeling of long-term price
uncertainty, we might consider alternative models of
equilibrium price movements. For example, one might
consider the use of a simple mean-reverting model for
equilibrium prices or an equilibrium price model, like
that discussed in Pindyck (1997), that allows “u-
shaped” price trajectories for long-run prices.

Although these extensions may improve the perfor-
mance of the model in terms of its ability to describe
the stochastic evolution of spot and futures prices, we
must balance our desire for fidelity in the price models
with the need for parsimony in the models used to
evaluate complex real or financial options. Given the
difficulty of valuing options on several state variables
(especially American-style options) and the fact that
price is typically one of many relevant uncertainties in
real options applications, the more complex models
may not be suitable for use in these applications.
Although the simple two-factor model that we de-
velop in this article is more complex than the com-
monly used one-factor models, we believe that this
additional complexity provides a much more realistic
model of the short- and long-term dynamics of com-
modity prices that can improve the quality of the
valuations with a minimum of additional effort.12

12 Jim Smith’s work on this project was supported in part by the
National Science Foundation under grant no SBR-9809176. The
authors are grateful for the helpful comments provided by an
associate editor and two anonymous referees.

Appendix
Derivation of Equation (3). We proceed by first finding the

mean vector and covariance matrix for a discrete-time approxima-
tion of the process based on the stochastic differential Equations (1)
and (2), and then take the limit as the time steps are made
infinitesimally small. The discrete-time approximation of the pro-
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cess with time steps of length t � t/n can be written as xt � c
� Qxt�1 � �t, where xt 	 [� t, � t], c 	 [0, � �t],

Q � �  0
0 1 � ,

 	 1 � �t, and �t is a 2 � 1 vector of serially uncorrelated,
normally distributed disturbances with E[�t] � 0, and

Var��t� � W � � � �
2t �������t

�������t � �
2t � .

With this process, the n-step ahead mean vector (mn) and covari-
ance matrix (Vn) are given recursively by mn � c � Qmn�1 and Vn

� QVn�1Q� � W, with m0 � x0 	 [� 0, � 0] and V0 � 0 (see, for
example, Harvey 1989, p. 109). Applying this recursion, we find

mn � � n�0, �0 � ��nt�,

Vn � � � �
2t �

i�0

n�1

 2i �������t �
i�0

n�1

 i

�������t �
i�0

n�1

 i nt� �
2 � .

(A symbolic processor like Mathematica or Maple is useful for
checking these recursive calculations.) We can rewrite the geometric
series in mn and Vn, using

�
i�0

n�1

 i �
1 	  n�1

1 	 
and �

i�0

n�1

 2i �
1 	  2�n�1�

1 	  2 .

The errors in these discrete time approximation are of an order
smaller than t (see Karlin and Taylor 1981, p. 160). Thus, if we take
the limit as n 3 � and t � t/n 3 0, then  n � (1 � �t/n) n

approaches e�kt,  2n approaches e�2kt, and

1 	  n�1

1 	 
t 3

�1 	 e ��t�

�
and

1 	  2�n�1�

1 	  2 t 3
�1 	 e �2�t�

2�
.

Substituting these limiting forms into the expressions for mn and Vn, we
arrive at the mean vector and covariance matrix given in Equation (3).
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