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A.  Incorporating A Stochastic Growth Rate 

Looking at the errors shown in Table III for the model fit to the Enron data, we see that the greatest 

errors are at the long-end of the futures curve.  Examining the errors more closely, we find that the reason 

for this poor fit is that the "slope" at the long-end of the futures curve has apparently changed over time, 

while the model assumes this to be constant.  For example, in Figure 2 we see that the slope of the 

model's fit to the long-term futures prices exceeds that of the actual futures price.  A simple way to 

accommodate these changes in slope would be to use the short-term/long-term model to determine futures 

prices, but allow the equilibrium growth rate (µξ) or its risk-adjusted counterpart (µ*
ξ) to vary from period 

to period to fit then-current futures prices.  This approach is easy to implement1 and provides an improved 

fit to futures curves, but it is theoretically inconsistent in that it allows parameters to vary that are not 

treated as stochastic when valuing the futures and options on these futures.  In this section, we describe an 

extension of the short-term/long-term model in which the growth rate for the equilibrium price (µξ) is 

modeled as stochastic and futures and options are valued reflecting this additional source of uncertainty.  

This uncertainty in equilibrium growth rates may reflect uncertainty about the rate of discovery or 

depletion of new reserves, uncertainty about demand growth over time, and/or uncertainty about inflation.  

As we will see, incorporating this third factor greatly improves the model's ability to fit long-term futures 

prices. 

A.1 The Extended Model 

In this extension, we assume that the short-term deviations (χt) and equilibrium prices (ξt) follow 

the stochastic differential equations (1) and (2) but with the equilibrium growth rate (µξ) in equation (2) 

being replaced by and stochastic factor µt that follows a stochastic process described by 
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 dµt  =  −η(µt − µ̄) dt  + σµ dzµ  . (A1) 

Here dzµ denotes increments of standard Brownian motion process that are correlated with the increments 

in equations (1) and (1) with pairwise correlations given by ρχµ, and ρξµ, respectively.  Thus we assume 

that the long-term growth rate follows a mean-reverting process with a "natural home" or "long-term 

mean" equal to µ̄.  If, for example, you believe that prices should grow with interest rates, as in 

Hotelling's classic model of prices for exhaustible resources, equation (A1) is equivalent to assuming that 

interest rates evolve as in Vasicek (1977).  More generally, interest rates and equilibrium growth rates 

may follow distinct processes, but we might expect them to possess similar dynamics.2   

In valuing futures contracts, we assume that the risk-neutral version of (A1) is of the form  

 dµ*
t  =  (−η(µt − µ̄) − λµ) dt  + σµ dzµ

*  , (A2) 

with µ*
0 = µ0 so that the risk premiums again take the form of a constant reduction in drift.  Thus, the risk-

neutral process for µt is an Ornstein-Uhlenbeck process reverting to µ̄* ≡ µ̄ − λµ/η rather than µ̄.  Given 

this assumption, we can derive the risk-neutral joint distribution for the three-factor model following a 

derivation similar to that of equation (3); see the appendix.  Given χo
* = χ0, ξo

* = ξ0, and µo
* = µ0, we find 

that χ t
*, ξ t

*, and µ t
* are jointly normally distributed with mean vector and covariance matrix: 

 E[(χ t
*, ξ t

*,  µ t
*)] =  [ e−κtχ0 − (1−e−κt)λχ/κ , ξ0 + (µ̄*−λξ)t + (µ0−µ̄*)

(1−e−ηt)
η  , µ0−(µ0−µ̄*) (1−e−ηt) ] (A3a) 

 Cov[(χ t
*, ξ t

*, µ t
*)]  =   







σ11(t)  σ12(t)  σ13(t) 
 σ12(t)  σ22(t)  σ23(t) 
 σ13(t)  σ23(t)  σ33(t)

 (A3b) 

                                                                                                                                                                           

1 Since µ*
ξ enters equation for future prices linearly (equation 9), we could use standard Kalman filtering techniques 

to estimate equation µ*
ξ as well as χt and ξt.   

2 Schwartz (1997) develops a three-factor commodity price model where the three factors are spot prices, 
convenience yields, and interest rates.  The only impact of interest rates in that model is through discounting in the 
valuation of the futures and forward contracts and, in the empirical analysis, interest rates are estimated 
independently of spot prices and convenience yields.  Here, the third factor relates directly to the futures curve and 
thereby provides better fits to futures prices. 
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where    σ11(t) = σχ
2(1−e−2κt)

2κ   , 

   σ12(t) = ρχξσχσξ
(1−e−κt)

κ  + 
ρχµσχσµ

η  



(1−e−κt)

κ   − 
(1−e−(κ+η)t)

(κ+η)   , 

   σ13(t) = ρχµσχσµ
(1−e−(κ+η)t)

(κ+η)   , 

   σ22(t) = σξ
2t + 

ρξµσξσµ

η 



t − 

(1−e−ηt)
η  + 

σµ
2

η2



t − 2

(1−e−ηt)
η  + 

(1−e−2ηt)
2η   , 

   σ23(t) = ρξµσξσµ
(1−e−ηt)

η  + 
σµ

2

η 



(1−e−ηt)

η  + 
(1−e−2ηt)

2η   , 

   σ33(t) = σµ
2(1−e−2ηt)

2η   . 

(The joint distribution for the true, as opposed to risk-neutral, stochastic process may be found by 

substituting zeros for the risk premiums.)   

Under this risk-neutral distribution, the log of the future spot price (Xt
*) is normally distributed with: 

 E[Xt
*]  =  e−κtχ0 − (1−e−κt)λχ/κ + ξ0 + (µ̄−λξ)t + (µ0−µ̄*)

(1−e−ηt)
η   

 Var[Xt
*]  =  =  σ11(t) + σ22(t) + 2σ12(t)  .  

Following the same analysis as in the two-factor model, we find a futures price FT,0 satisfying 

 ln(FT,0) =  ln(E[St
*])  (A4) 

  =  E[XT
*] +  

1
2 Var[XT

*]  

   =  e−κTχ0 + ξ0 + (µ0 − µ̄*)
(1−e−ηT)

η   +  B(T) 

where B(T) depends on the time to maturity but is independent of the state variables (χ0, ξ0, µ0): 

 B(T) = −(1−e−κT)λχ/κ  +  (µ̄* − λξ)T + 
1
2(σ11(T) + σ22(T) + 2σ12(T)) . 

Thus, as in the two-factor model, the log of the futures price is a linear function of the state variables.  

This allows us to estimate state variables over time using standard Kalman filtering techniques and 
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estimate model parameters using maximum likelihood methods.  We can also derive analytic formulas for 

European options following a derivation analogous to that of section 3. 

As in the two-factor model, the instantaneous volatility of futures prices depends on the time to 

maturity but is independent of the state variables.  From equation (A4), this volatility is given as  

 σ2(FT,0) = e−2κTσχ
2 + σξ

2  + σµ
2 (1−e−ηT)2

η2  + 2e−κTρχξσχσξ  + 2e−κT(1−e−ηT)
η ρχµσχσµ +2

(1−e−ηT)
η ρξµσξσµ .  

This volatility relationship is illustrated in Figure A1, using the parameter estimates from the Enron data 

described below.  Here, as with the two-factor model, the volatility in prices for near maturity futures 

contracts (i.e., T = 0) is equal to the volatility of the sum of the short-term deviation and equilibrium 

levels (σ2(F0,0) =σχ
2 +σξ

2  + 2ρχξσχσξ).  As the maturity of the contract increases, the short-term deviations 

make less and less of a contribution to the volatility and the volatility decreases.  As maturity increases 

more, the volatility begins to increase as the uncertainty about the equilibrium growth rate begins to play 

a larger role (the σµ
2 (1−e−ηT)2/η2 term is increasing in T).  As T → ∞, σ2(FT,0) approaches a constant σξ

2  + 

σµ
2/η2 + 2ρξµσξσµ/η (= 13.6% per year with the Enron data).  Comparing this volatility curve to that of 

Figure 3, we see that the two- and three-factor lead to similar volatilities, with the three-factor model 

leading to slightly higher volatility estimates for very long-term futures contracts (13.6% vs. 11.5%).  The 

option volatilities and observed volatilities are also shown and may be interpreted like those in Figure 3. 
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Figure A1:  Volatility estimates for three-factor model. 
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A.2  Empirical Results 

We estimate this extended model using the Kalman filtering and maximum likelihood approach 

described in section 5 with the Enron data.  We chose not to use the futures data in this context because 

we felt that their relatively short maturities (up to 18 months) would not allow us to accurately identify 

changes in the equilibrium growth rate over time.  In contrast, the Enron data includes contracts with 

maturities up to 9 years and changes in the expected growth rate are more transparent. 

The parameter estimates for this extended model are shown in Table A1.  Here we see that the 

model fits the observed futures prices quite well:  the standard errors for the measurement equation are 

less than 1 percent for all but the near-term contract which has a standard deviation of error of about 2%.  

Overall, the likelihood function has increased from 6,182 for the two-factor model with the same data set 

to 7,464.3  Examining the estimated values of new state variable (µt) (see Figure A2), we see that the 

equilibrium growth rate has changed substantially over the time horizon covered by the data set, starting 

around -9% and moving up to around -4% in late 1993.  Because the futures prices do not directly depend 

on the values of µt (as discussed in the previous section), we do not place much confidence in the levels 

of the state variables µt presented in Figure A2.  The values of the risk-adjusted growth rate (µt − λξ) are 

more reliably estimated and are also shown in Figure A2.  The estimates for the other two state variables 

are qualitatively similar to those shown in Figure 4 and are not shown here. 

 

                                                      

3 We can compare these results to those obtained using Schwartz's (1997) three-factor model on this same data set 
(see his Table 9).  There the overall likelihood function is 6,287 and the standard errors are similar to those obtained 
using the two-factor model. 
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 Enron Data 
 

Parameter 
 
Description 

  
Estimate 

Standard 
Error 

κ Short-term mean-reversion rate 1.26  0.03  
σχ Short-term volatility 14.5% 1.0% 
λχ Short-term risk premium 

 
1.4% 6.0% 

σξ Equilibrium volatility 
 

13.3% 0.7% 

η Mean-reversion rate for eq. growth rate .226  .014  

µ̄ Mean eq. growth rate -4.9%  8.3%  

µ̄* Risk-adjusted mean eq. growth rate -8.6  8.8%  

(µ̄* − λξ) Risk-adjusted mean eq. growth rate 0.1% 0.1% 

σµ Volatility in eq. growth rate 
 

3.3% 0.2% 

ρχξ Correlation between dev. and eq.  .267  .113  
ρχµ Correlation between dev. and growth  -.138  .100  

ρξµ Correlation between eq. and growth  
 

-.524  .060  

Standard deviation(s) of error Contract   
    for measurement equation Maturity  

s1 " 2 mo. 0.021 0.001 
s2 " 5 mo. 0.004 0.000 
s3 " 8 mo. 0.000 . 
s4 " 12 mo. 0.002 0.000 
s5 " 18 mo. 0.002 0.000 
s6 " 2 yrs. 0.003 0.000 
s7 " 3 yrs. 0.005 0.000 
s8 " 5 yrs. 0.006 0.001 
s9 " 7 yrs. 0.000 . 
s10 

 

" 9 yrs. 0.008 0.001 

NT Number of time periods (weeks)  163  
N Number of futures contracts  10  
     
 Log Likelihood  7,463.7  
    

 

Table A1:  Parameter estimates for the three factor model 
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Figure A2:  Estimates of the equilibrium growth rate over time 
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Examining the parameter estimates for three-factor in Table A1 and comparing them to the 

corresponding estimates for the two-factor model in Table 2, we see that those parameters that appear in 

both models have similar estimates.  Examining the new parameters, we see that the equilibrium growth 

rate has a volatility (σµ) of approximately 3.3% per year and reverts more slowly than the short-term 

deviations (η = .226, corresponding to a half-life of approximately 3 years).  Given the relatively short 

time series, we find that we cannot accurately estimate the mean growth rate (µ̄) or its risk-adjusted 

counterpart (µ̄* ≡ µ̄ − λµ/η).  We can, however, obtain a reasonably precise estimate of (µ̄* − λξ), because 

of the role this term plays in determining the long-term futures prices (see equation (A4)).  Taking 

differences of these estimates, we find point estimates for the risk premiums of λξ = 8.7% and λµ = 0.85%, 

with relatively large standard errors (approximately 8%).  As in section 6, this reflects the fact that the 

risk-neutral spot price process does not depend on these risk premiums and estimates of these parameters 

rely on the dynamics of the implied state variable process.   

In summary, this three-factor model provides much improved fits to futures prices over time.  

Though the formulas for valuing futures and European options are analytic, they are substantially more 

complicated than the corresponding formulas for the two-factor model.  This additional complexity would 

seem worthwhile when valuing futures or options on futures with long maturities or long-lived real 

options.   

Additional Reference 

Vasicek, O. 1977, An equilibrium characterization of the term structure, Journal of Financial Economics 
5, 177-188. 

Appendix 

Derivation of Equation (A3):  This derivation is analogous to the derivation of equations (3).  Here the 
transition equation is given as xt = c + Q xt-1 + ηt with xt ≡ [χt, ξt, µt], c ≡ [−λχ∆t, −λξ∆t, ηµ̄*∆t],  

 Q  ≡ 






φ1 0 0
0 1 ∆t
0 0 φ2

 ,  
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φ1 ≡ 1−κ∆t, φ2 = 1−η∆t, ηt is a vector of serially uncorrelated, normally distributed disturbances with 
E[ηt] = 0 and  

 Var[ηt] = W ≡  






σχ
2∆t ρχξσχσξ∆t ρχµσχσµ∆t

ρχξσχσξ∆t σξ
2∆t ρξµσξσµ∆t

ρχµσχσµ∆t ρξµσξσµ∆t σµ
2∆t

  . 

Applying the same recursive procedure as before (mn = Q mn-1 and with m0 = x0 ≡ [χ0, ξ0]), the n-step 
ahead mean vector (mn) is given as: 

 mn  =  







 φ1

nχ0 −λχ∑i=0
n-1φ1

i

 ξ0 −λξn∆t +µ0∆t∑i=0
n-1φ2

i  + ηµ̄*∆t2∑i=0
n-2

 
 ∑j=0

i φ1
j

 φ2
nµ0 +ηµ̄*∆t∑i=0

n-1φ2
i

  . 

Most of these expressions were encountered in the derivation of equation (3) and have similar limiting 
forms here.  The one new expression is the double summation in the second entry.  Recognizing the 
nested geometric series and taking the limit as n → ∞ and ∆t = t/n → 0, this can be rewritten as  

 ∆t2∑i=0
n-2

 
 ∑j=0

i φ2
j = ∆t2∑

i=0

n-2





 1 − φ2

i

1 − φ2
 = 

∆t2

1 − φ2
 

(n-1) + 
1 − φ2

n-2

1 − φ2
 → 

1
η



t + 

1 − e−ηt

η  . 

Thus the mean vector approaches 

 mT =  






 e−κtχ0 −λχ(1 − e−κt)/κ
 ξ0 −λξt +µ0(1 − e−ηt)/η + µ̄*(t + (1 − e−ηt)/η)

 e−ηtµ0 +µ̄*(1 − e−ηt)
   , 

which with some rearrangement leads to the form in equation (A3a). 
 

To derive the covariance matrix, we proceed term by term through the matrix, beginning in each case 
with the terms given by applying discrete time recursion (Vn = Q Vn-1 Q' + W with V0 = 0) and taking the 
limits as n → ∞ and ∆t = t/n → 0.  Let σijn denote the entry in the ith row and jth column of Vn.  The first 
term, σ11n, is similar that encountered in the derivation of equation (3b): 

 σ11n = σχ
2∆t∑i=0

n-1φ1
2i  →  σ11(t) = σχ

2(1−e−2κt)
2κ   

The recursion for the second term yields  

 σ12n = ρχξσχσξ∆t∑i=0
n-1φ1

i  + ρχµσχσµ∆t2 ∑i=1
n-1(φ1

i ∑j=0
i-1  φ2

j)   . 

The first part of this expression is familiar.  We can handle the second term by recognizing the nested 
geometric series: 

 ∆t2 ∑i=1
n-1(φ1

i ∑j=0
i-1  φ2

j) = ∆t2 ∑
i=1

n-1
φ1

i 



1−φ 2

i-1

1−φ2
 =  

φ1∆t2

1−φ2
 



 1−φ1

n-2

1−φ1
 − 

 1−(φ1φ2)
n-2

1−φ1φ2
  . 

Taking the limit, we then find  

 σ12n → σ12(t) = ρχξσχσξ
(1−e−κt)

κ  + 
ρχµσχσµ

η  



(1−e−κt)

κ   − 
(1−e−(κ+η)t)

(κ+η)   . 
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For σ13n,we find a familiar form,  

 σ13n = ρχµσχσµ∆t∑i=0
n-1(φ1φ2)

i → σ12(t) = ρχµσχσµ
(1−e−(κ+η)t)

(κ+η)  . 

For σ22n, the recursion yields,  

 σ22n = σξ
2n∆t + ρξµσξσµ∆t2∑i=0

n-2
 
 ∑j=0

i φ2
j + σµ

2∆t3 ∑i=0
n-2

 
 ((∑j=0

i φ2
j)(∑j=0

i φ2
j)) 

The limit of the first term (σξ
2n∆t) is straightforward.  We encountered a form similar to the second term in 

the derivation of mn.  The third term can be rewritten using  
 

 ∆t3 ∑i=0
n-2

 
 ((∑j=0

i φ2
j)(∑j=0

i φ2
j))= ∆t3∑i=0

n-2
 
 











1−φ2

i

1−φ2 



1−φ2

i

1−φ2
 = 

∆t3

(1−φ2)2∑i=0
n-2(1−2φ2

i +φ2
2i) . 

Taking the limit of this expression and the others in σ22n, we have 

 σ22n → σ22(t) = σξ
2t + 

ρξµσξσµ

η 



t − 

(1−e−ηt)
η  + 

σµ
2

η2



t − 2

(1−e−ηt)
η  + 

(1−e−2ηt)
2η  . 

For σ23n, the recursion yields  

 σ23n = ρξµσξσµ∆t∑i=0
n-1φ2

i  + σµ
2∆t2  ∑i=1

n-1(φ2
i ∑j=0

i-1  φ2
j) . 

The first term is, by now, familiar.  We encountered a term similar to the second in our derivation of 
σ12(t), albeit with φ1 in place of one of the φ2.  Taking the limit gives,    

 σ23n  → σ23(t) = ρξµσξσµ
(1−e−ηt)

η  + 
σµ

2

η 



(1−e−ηt)

η  + 
(1−e−2ηt)

2η  

Finally, the expression for σ33 and σ33(t) are analogous to the expressions for σ11 and σ11(t)./// 
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