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In Markov models of sequential decision processes, one is often interested in showing that the value function is monotonic, convex, and/or
supermodular in the state variables. These kinds of results can be used to develop a qualitative understanding of the model and characterize
how the results will change with changes in model parameters. In this paper we present several fundamental results for establishing these
kinds of properties. The results are, in essence, “metatheorems” showing that the value functions satisfy property P if the reward functions
satisfy property P and the transition probabilities satisfy a stochastic version of this property. We focus our attention on closed convex
cone properties, a large class of properties that includes monotonicity, convexity, and supermodularity, as well as combinations of these and
many other properties of interest.

1. INTRODUCTION

Stochastic dynamic programming models are pervasive in
the operations research, management science, and eco-
nomics literature. In the study of these models, the
researchers often attempt to establish certain structural
properties of the value functions—such as monotonicity,
convexity, or supermodularity—to develop a qualitative
understanding of the model and to derive comparative
statics results that describe how the results of the model
change with changes in model parameters. For example,
in his classic paper on valuing options on stocks, Merton
(1973) shows that the value of a call option on a stock is an
increasing convex function of the underlying stock price.
This result is then paired with Rothschild and Stiglitz’s
(1970) results on stochastic dominance to conclude that
increases in the “riskiness” of the underlying stock increase
the value of the call option. The real options literature is
full of similar results in nonfinancial contexts (see, e.g.,
Dixit and Pindyck 1994).
The specific question that motivated this paper was the

following: What is required to ensure that the value func-
tion for a dynamic program will be increasing and convex?
What we found is that the arguments and assumptions we
used to ensure that the value function is increasing and
convex were perfectly analogous to those used to show that
the value function is increasing. To show that the value
function is increasing in the underlying state variable, it
suffices to show that the reward function is increasing and
that the transition probabilities are increasing in the sense
of first-order stochastic dominance (or exhibit “positive

persistence”). To establish convexity as well, it suffices to
show that the reward functions are convex and the tran-
sition probabilities exhibit what we will call “stochastic
convexity” defined in terms of a stochastic dominance
ordering. Pushing further, we found that a variety of other
properties can be established using the same argument.
In this paper, we present a set of “metatheorems” that

provide conditions describing when value functions will
possess certain properties. We begin in §2 by introducing
three dynamic programming models that will be used to
illustrate the results of the paper. In §3, we define the class
of properties that we consider “closed convex cone” or C3
properties. This is a large class of properties that includes
monotonicity, convexity, and supermodularity (and combi-
nations of these properties) as well as many other properties
of interest. Our main result in this section (Proposition 1)
shows that each of these properties can be represented by
a system of inequalities with a particular form. In §4, we
study properties of conditional expectations and derive nec-
essary and sufficient conditions for conditional expectations
to satisfy a particular property. The main result in this sec-
tion shows that conditional expectations will satisfy a C3
property P if the random variables satisfy a stochastic ver-
sion of the property, defined by the same system of inequal-
ities with stochastic dominance inequalities replacing the
scalar inequalities. In §§5 and 6 we apply these funda-
mental results to Markov reward and decision processes.
The main results there can be summarized as saying that
the value functions will satisfy property P if the reward
functions satisfy property P and the transition probabilities
satisfy a stochastic version of this property.
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Specific properties of dynamic programs have been
studied in numerous examples and with varying degrees
of generality. Monotonicity properties are particularly well
studied. For example, Derman (1963) studies monotonicity
properties in a model of optimal replacement rules for
decaying systems (see also Ross 1983, p. 36–38). Stokey
and Lucas (1989, p. 267–268) present general conditions
that guarantee the value function will be monotonic in
the underlying state variable; see also Müller (1997). Con-
vexity and concavity properties have been derived in many
specific models, including the options examples mentioned
earlier. Hinderer (1984) studies the properties “increasing
and convex” and “increasing and concave” with some gen-
erality. Supermodularity properties of dynamic programs
are discussed in general and in specific examples in Topkis
(1998). Our metatheorems unify these disparate results into
a common framework and provide specific conditions that
can be used to establish these and other properties in par-
ticular applications.
The analytic framework of this paper is closely related

to, and to some extent inspired by, Athey (1998), who pro-
vides a general characterization of stochastic dominance
relationships and studies properties of stochastic objective
functions. Like us, she focuses on closed convex cone
properties (her definition of “CCC properties” corresponds
to what we call “C5 properties”) and considers properties
of stochastic objective functions in a general and abstract
manner, similar to the treatment in our §§3 and 4. We
believe, however, that the inequality representation pro-
vided by our Proposition 1—a new, necessary, and suffi-
cient condition for closed convex cone properties—greatly
simplifies and clarifies the study of properties of stochastic
objective functions. We also differ in our choice of appli-
cations. While Athey applies her results to comparative
statics problems in nondynamic settings (e.g., principal
agent problems, portfolio problems), our interest focuses
on stochastic dynamic programs. Müller (1997) also uses
stochastic dominance relationships in his study of mono-
tonicity properties of dynamic programs.

2. EXAMPLE APPLICATIONS

In this section, we introduce three dynamic programming
models where we apply the results of the paper. The first
two examples can be viewed as real options models, where
we are interested in valuing options to invest in nonfinan-
cial assets; these were the kind of examples that originally
motivated this research. The third example is a stochastic
multiproduct inventory model where the goal is to develop
a minimum cost ordering policy. These examples are sum-
marized in Table 1.
In each of these models, we index periods counting

backwards from the terminal stage (k = 0) to the current
stage where there are k periods to go. The value functions
v∗k�xk�, describing the value in period k as a function of the

then-current state xk, can be represented recursively as

v∗k�xk�≡ sup
ak∈Ak

	rk�ak� xk�

+�kE
v∗k−1�x̃k−1�ak� xk���� for k > 0� (1)

v∗0�x0�≡ 0�

where ak denotes the action selected in this period (from
set Ak); rk�ak� xk� is the reward earned in state xk when
action ak is selected, and x̃k−1�ak� xk� denotes the random
next-period state, where the probabilities associated with
the next-period state are conditioned on starting in state xk
and choosing action ak.

The goal of the paper is to study properties of these value
functions v∗k and the limiting forms of these value functions
v∗�x� = limitk→	v∗k�x� (if they exist), and present condi-
tions that ensure that v∗k and v∗ satisfy these properties.
Given the recursive structure of the models, proofs about
properties of value functions usually proceed by induction.
To show that v∗k satisfies a property P for all k, we start by
showing that v∗0 satisfies P and then showing that, if v∗k−1

satisfies P for period k− 1, it satisfies P for period k as
well. Properties of the limiting form v∗ can be established
by showing that the set of functions satisfying this property
is closed and therefore contains this limiting function.

2.1. Copper Mine Model

Our first example is a discrete-time version of the model of
a copper mine developed in Brennan and Schwartz (1985).
Suppose a firm owns and operates a copper mine and
must decide each period whether to operate the mine, tem-
porarily close the mine, or abandon it altogether. There are
costs associated with operating the mine when open and
with maintaining the mine when closed, as well as costs
associated with opening, closing, or abandoning the mine.
The revenue associated with operating the mine depends
on the price of copper, and these prices are assumed to
follow a discrete-time geometric Brownian motion process.
We assume that when the mine operates it produces copper
at a fixed rate.
The state variable in this model can be written as xk =

�sk� pk�, where sk indicates the status of the mine (open,
closed, or abandoned) and pk denotes the logarithm of the
copper price in period k. Given pk, the next period’s log-
price p̃k−1�pk� is normally distributed with mean pk +�
and standard deviation � . The value function can then be
written as

v∗k�sk� pk�

=max
{−c�abandoned� sk�

+�E
v∗k−1�abandoned� p̃k−1�pk����

− c�closed� sk�+�E
v∗k−1�closed� p̃k−1�pk����

− c�open� sk�+� exp�pk�
+�E
v∗k−1�open� p̃k−1�pk���

}
�
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Table 1.

Model Copper Mine Technology Adoption Inventory Problem

State �xk� xk = �sk� pk) where xk = �mk� sk� where xk = n-vector of inventory levels
sk = state of the mine at beginning mk = estimate of technology value for n products ∈ �n

of period ∈ (open, closed, or at beginning of period ∈ �1

abandoned) sk = precision of estimate ∈ �1+
pk = log-price of copper ∈ �1

Actions (ak� ak = state of mine at the end of ak = technology choice in period ak = n-vector of order quantities
period ∈ (open, closed or ∈ (adopt, investigate, reject) for products; must be non-
abandoned) negative ∈ �n+

Rewards rk�ak� sk� pk� rk�ak�mk� sk� rk�ak� xk�
�rk�ak� xk��

=



−c�ak� sk� + if ak = open

� exp�pk�
−c�ak� sk� otherwise

=



Amk−K if ak = adopt
−c if ak = investigate
0 if ak = reject

= c�ak�+E
l�x̃k−1�ak� xk���

where x̃k−1 is defined below

Transitions x̃k−1�ak� sk� pk��� x̃k−1�ak�mk� sk� t� x̃k−1�ak� xk�
�x̃k−1�ak� xk�� = �ak� p̃k−1�pk��

=




�−	�	� if ak = adopt
or reject

�m̃k−1�mk� sk�� otherwise
sk+ t�

= ak+xk− z̃k
where p̃k−1 is N�pk+���2�. where z̃k is the random

demand in period k

where m̃k−1 is N�mk� t/sk�sk+ t��.
Property P For each sk, v�sk�pk��� is increasing v�mk� sk� t� is increasing and convex in v�xk� is convex in xk
�v�xk�� and convex in pk and increasing in

�
mk, decreasing in sk, satisfies the
“mixing property” and is increasing
in t.

Property P∗ For each ak and sk, v�ak� xk�pk�� is For each ak, v�ak�mk� sk� t� is increasing v�ak� xk� is jointly convex in
�v�ak� xk�� increasing and convex in pk and and convex in mk, decreasing in sk, ak and xk

increasing in � satisfies the “mixing property,” and is
increasing in t.

where c�sk−1� sk� denotes the costs of operating or mainte-
nance costs and any costs of switching from a mine in state
sk to one in sk−1. The decision to abandon the mine can
be made irreversible by assuming the costs associated with
switching out of an abandoned state are infinitely large. �
is the revenue per unit price of copper and given as the pro-
duction rate less any proportional taxes or royalties. � > 0
is the discount factor.
We will show that the value function is increasing and

convex in pk for each sk and further, that increases in “risk”
induced by increasing the standard deviation � for the
price process lead to increases in the value function. As we
will see, these conclusions do not depend on the specific
assumptions about the price process and will hold for any
process with transitions that are stochastically increasing
and convex, in a sense to be described later.1

2.2. Technology Adoption Model

This model is developed in McCardle (1985) and further
analyzed in Lippman and McCardle (1987). Suppose a firm

is considering adopting a technology whose value is uncer-
tain and denoted by �. In period k the firm’s uncertainty
about � is described by a normal distribution with mean mk

and precision sk. (Precision is the reciprocal of variance.)
The firm can reject the technology and receive zero, adopt
the technology and receive an expected value of Amk−K,
or pay a cost c > 0 and investigate the technology further.
Investigating the technology further yields a noisy obser-
vation of the value of the technology; the observation is
normally distributed with mean � and precision t. The firm
then updates its estimate of � according to Bayes’ rule:
Next period’s mean estimate m̃k−1 is normally distributed
with mean mk and precision sk�sk+ t�/t, and next period’s
estimate will have precision sk + t (see, e.g., Pratt et al.
1995). The state variable for the problem is thus given by
xk = �mk� sk�, and the value function is given by

v∗k�mk� sk�=max	0�Amk−K�−c
+�E
v∗k−1�m̃k−1�mk� sk�� sk+ t����

To place this in the format of Equation (1), where the pro-
cess is assumed to continue for each action, we can assume
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that if the technology is adopted or rejected, in the next
state the estimated value is −	 and the precision is 	
(or sufficiently large negative and positive numbers), so the
firm will choose to reject and receive a reward of zero in
all subsequent periods. (This is done in Table 1.) Alterna-
tively, we could expand the state space to include a variable
indicating that the technology has been adopted or rejected
in much the same way as the previous example where the
state of the mine (open, closed, or abandoned) is explicitly
modeled.
We will show that this value function is increasing and

convex in mk, decreasing in the prior precision sk (more
precision means there is less uncertainty about the value of
the new technology) and increasing in the precision t of
the observation. We will also show that the value functions
satisfy the following mixing property: For any  � 0� sk � 0
and mk�0�5v

∗
k�mk + �� sk +  �+ 0�5v∗k�mk − �� sk +  � �

v∗k�mk� sk� where �
2 = /�sk�sk+ ��. Intuitively, the prop-

erty captures the idea that earlier resolution of uncertainty
about the value of the technology is preferred to later: The
magnitude of � is chosen so that the variance resolved in
the estimate (a 50–50 chance of being revised to mk+ �
or mk−�� is equal to the variance lost �1/sk−1/�sk+ ��
by increasing the precision of the revised estimate from sk
to sk+ . This property will be used in showing that the
value function is increasing in the precision of the obser-
vation t. Our assertion that the value function is increasing
in t contradicts Lippman and McCardle (1987) who claim
the opposite; their error can be traced back to incorrectly
assuming the preposterior precision to be (sk+ t�2/t instead
of sk�sk+ t�/t.

2.3. Stochastic Inventory Model

This is a classic model, developed in Karlin (1960) and
discussed in many places including Zipkin (2000). In each
period, a firm observes its current inventories and decides
how much of each of n products to order from its sup-
pliers or produce. Demand for the products in each period
is random and assumed to be independent from period to
period and independent of the order quantities and inven-
tory levels. Let xk denote the n-vector of inventories at the
beginning of period k; let ak denote the n-vector of quan-
tities of products ordered and delivered in period k; and let
z̃k denote the random n-vector of demands for products in
period k. The total available for sale in period k is given
by xk+ak and, assuming that unmet demand in one period
carries over to the next, the next period starting inven-
tory is x̃k−1 = ak+xk− z̃k. (Unmet demand is thus treated
as negative inventory.) The cost of ordering quantities ak
is given by a convex function c�ak�, with the convexity
reflecting potential diseconomies of scale in purchasing or
manufacturing the product. There are holding costs asso-
ciated with carrying unsold inventory as well as penalty
costs associated with unmet demand; these combined costs
are described by a convex loss function l�xk−1�. The value

function for this model, describing the expected present
value of costs under the optimal ordering policies, is

v∗k�xk�=min
ak�0

	c�ak�+E
l�x̃k−1�ak� xk��

+�v∗k−1�x̃k−1�ak� xk�����

where � > 0 is a discount factor. We will show that v∗k�xk�
is jointly convex in the vector of inventory levels xk.

3. CLOSED CONVEX CONE PROPERTIES

We begin by defining the class of properties of value
functions that we will study. The examples highlighted in
the previous section—increasing, decreasing, convex, the
mixing property—are all members of this general class of
functions. In this section, we consider a number of addi-
tional examples and provide a general inequality-based rep-
resentation of these properties. We conclude this section by
considering examples of properties that may be of interest
in some applications but are not C3 properties and cannot
be represented in this form.

3.1. Definitions

We consider real-valued functions defined on a parameter
space ! with typical element ". While most of our exam-
ples concern properties of functions defined on �1 or �n,
our results will hold for real-valued functions defined on
arbitrary sets !. A set of functions � forms a convex cone
if for any f1� f2 ∈ � and scalars a�b � 0� af1+bf2 ∈ � .

Definition 1. P is a closed convex cone property (C3
property) if the set of functions satisfying P forms a closed
convex cone in the topology of pointwise convergence.

Definition 2. P is a closed convex cone containing con-
stants property (C5 property) if it is a C3 property and
constant functions satisfy P.

To illustrate these definitions consider the following exam-
ples of C3 and C5 properties.
1. Constant. A function f is constant on ! if there exists

a constant c such that f �"�= c for all " in !. This is a C5
property.
2. Nonnegative. A function f is nonnegative on ! if

f �"�� 0 for all " in !. This is a C3 property but not a C5
property because negative constants functions (e.g.,−1) do
not satisfy this condition.
3. Increasing. A function f is increasing on an ordered

space ! if f �"1� � f �"2� for all "1� "2 such that "1 � "2.
This is a C5 property.
4. Convex. A function f is convex on a convex set ! if

f �%"1+ �1−%�"2��%f�"1�+ �1−%�f�"2� for all "1� "2,
in ! and %, 0� %� 1. This is a C5 property.
5. Subadditive. A function f is subadditive on ! if

f �"1 + "2� � f �"1�+ f �"2� for all "1� "2 in !; here we
assume that "1+ "2 is in ! whenever "1 and "2 are. This
is a C3 property but not a C5 property because negative
constants functions (e.g., −1) do not satisfy this condition.
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6. Supermodular. A function f is supermodular on a lat-
tice ! if f �"1�+ f �"2� � f �"1 ∧ "2�+ f �"1 ∨ "2� for all
"1� "2 in !. Here ∧ and ∨ denote componentwise mini-
mization and maximization, respectively; ! is a lattice if
"1∧"2 and "1∨"2 are in ! whenever "1 and "2 are. This
is a C5 property.
If the functions 	fl�l∈L satisfy a C3 property (or a C5 prop-
erty), the functions 	−fl�l∈L satisfy a potentially different
C3 (or C5) property. For example, we can generate more C3
and C5 properties by considering the negatives of Exam-
ples 2–6: a function f is nonpositive, decreasing, concave,
superadditive, or submodular if −f is positive, increasing,
convex, subadditive, or supermodular, respectively. Inter-
sections of C3 properties are C3 properties and intersec-
tions of C5 properties are also C5 properties. Thus, for
example, increasing and convex is a C5 property because
increasing and convex are both C5 properties. Similarly,
linear, as the intersection of convex and concave, is a C5
property.
The characteristics of C3 properties arise naturally given

the recursive structure of dynamic programs. First, the ter-
minal value function v∗0�x0� ≡ 0 will automatically satisfy
any C3 property, because the set of functions satisfying P
forms a cone. Second, whenever the reward function (r)
and the expected continuation value �E
v∗k−1�� both sat-
isfy a C3 property P, the current value �r +E
v∗k−1�� will
also satisfy P because this set of functions is a convex
cone. Finally, if the set of functions is closed in the
topology of pointwise convergence, the limiting value func-
tions limitk→	v∗k (when they exist) will be contained in the
same set. As discussed in the beginning of §2, these are key
steps in proofs establishing properties of value functions.

3.2. Inequality Representation of C3 Properties

Reviewing the examples of C3 and C5 properties given
above, we see that many of them are written in the form
of a comparison between finite weighted sums of function
evaluations at specific values of ". Our first result shows
that all C3 and C5 properties can be represented in this way.
We believe that this is a new result. The proof is somewhat
involved, but given this result, the rest of our results are
quite easy to prove.

Proposition 1. A property P is a C3 property if and
only if there exists a collection, indexed by ' in �, of
finite sets of points 	"(�(∈B'� 	"���∈*' and positive weights
	+(�(∈B'� 	+���∈*' that define a test of satisfaction of the
form: f satisfies P if and only if

∑
(∈B'

+(f �"(��
∑
�∈*'

+�f �"�� for all ' in �� (2)

Furthermore, if P is a C5 property, for each ' in �, we
can normalize the weights to sum to one.

Thus, all C3 properties can be represented by a set of
simple inequalities. The set � (with generic element ')
indexes the inequalities and is potentially infinite. The sets

B' and *' (with generic elements ( and �) index the
values and weights used in the summations on each side of
each inequality; these sets are finite, and each inequality is
a comparison between weighted sums of function evalua-
tions. The examples below will help clarify the interpreta-
tion of the proposition.
1. Increasing. The index set � consists of the set of

pairs '= �"1� "2� satisfying "1 � "2. For each ', the index
sets B' and *' are both singletons with points "( = "1 and
"� = "2 and weights +( = +� = 1. The test of satisfaction
is thus: f is increasing if and only if f �"1�� f �"2� for all
"1, "2 such that "1 � "2.
2. Convex. The index set � consists of the infinite set

of triplets ' = �%�"1� "2� with "1� "2 in ! and scalar %
satisfying 0 � % � 1. B' is a singleton with point "( =
%"1+�1−%�"2 being the convex combination of "1 and "2
and weight +( = 1. *' contains two elements, �1 and �2,
with "�1 = "1� "�2 = "2 and +�1 = %, and +�2 = �1−%�.
The test of satisfaction is thus: f is convex if and only if
f �%"1+ �1−%�"2��%f�"1�+ �1−%�f�"2� for all "1� "2,
in ! and %�0� %� 1.
3. Constant. Pick some arbitrary "∗ ∈!. The test of sat-

isfaction can be written as: f is constant if and only if
f �"� � f �"∗� for all " in ! and f �"∗� � f �"� for all "
in !.
4. Linear. Linearity can be represented by requiring f to

be both convex and concave. The test of satisfaction can
thus be written as requiring f �%"1+�1−%�"2��%f�"1�+
�1−%�f�"2� for all "1� "2 in ! and 0�%� 1 and %f�"1�+
�1−%�f�"2� � f ��"1+ �1−%�"2� for all "1� "2 in ! and
0� %� 1.
As illustrated in Examples 3 and 4, intersecting two

properties—i.e., requiring a function to satisfy two C3 or
C5 properties—corresponds to taking the union of the cor-
responding sets of inequalities. If the set of inequalities �1

represents the first property and �2 represents the second,
then �1∪�2 represents the intersection of the two proper-
ties.
It is clear that any property that can be represented as

in Proposition 1 is a C3 property: If two functions f1 and
f2 satisfy inequality (2) for some ' in �, then for scalars
a�b� 0� af1+bf2 will also satisfy the inequality. The func-
tions satisfying these inequalities thus form a convex cone.
Moreover, if a series of functions 	f0� f1� f2� � � � � each sat-
isfying (2) converges pointwise to some function f , the lim-
iting function will also satisfy (2). It is harder to prove that
all C3 properties can be represented this way. The proof
proceeds in two steps. First, we represent the closed convex
cone of functions as the intersection of a set (indexed by
' in �) of closed half-spaces, each of which can be repre-
sented as an inequality for a continuous linear functional.
We then show that each of these linear functionals can be
represented as a comparison between finite positive sums of
function evaluations at specific points. The proof is given
in the appendix.
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3.3. Other Properties

Though many useful properties are C3 properties, there
are other properties that may be of interest in some appli-
cations that cannot be represented in this form. Exam-
ples include “bounded,” “continuous,” “differentiable”
(df�x�/dx exists), and “integrable” �

∫ 
f �x�
dx exists and
is finite). In these examples the functions satisfying these
properties form a convex cone, but the cone is not closed
in the topology of pointwise convergence. The proof of
Proposition 1 exploits properties of the topology of point-
wise convergence in two ways. First, rather technically,
the assumption allows us to establish the existence of the
separating hyperplanes without requiring an interior point.
Second, we use properties of this topology to represent the
hyperplanes in the form of the finite sums of inequality (2).
Other properties that may be of interest but do not form
a convex cone include the “single-crossing property” and
“quasisupermodularity.” These properties were introduced
in Milgrom and Shannon (1994) and are discussed in
Topkis (1998).

4. PROPERTIES OF CONDITIONAL
EXPECTATIONS

In this section, we study properties of conditional
expectations—what is required to ensure that E
u�x̃�"���
satisfies property P in " for functions u in some set U ?
This is an important step in showing that properties are
preserved through the dynamic programming recursion in
Equation (1). If we can show that E
v∗k−1�x̃k−1�ak� xk��� sat-
isfies a C3 property P and the reward function rk�ak� xk�
satisfies the same property, we can conclude that the
value associated with a particular action, rk�ak� xk� +
�E
v∗k−1�x̃k−1�ak� xk���, will also satisfy this property. The
main result of this section is a necessary and sufficient
condition for E
u�x̃�"��� to satisfy property P in " for all
functions u in set U .

4.1. Stochastic Dominance Relations

Let x̃�"� denote a randomly selected state chosen from
some set X according to a probability measure ��"� where
" conditions the probabilities associated with the random
selection. In the dynamic programming applications, the
parameter " will represent the current state and action,
and the random state x̃�"� will correspond to the uncertain
next state �x̃k−1�ak� xk��. Given a real-valued function u
defined on X, we define the expectations as E
u�x̃�"��� ≡∫
ud��"�.2

The following definition of dominance includes the stan-
dard stochastic dominance relations as special cases and
has been used by several authors, including Athey (1998)
and Müller (1997).

Definition 3. x̃�"1� dominates x̃�"2� on U if E
u�x̃�"1���
� E
u�x̃�"2��� for all u ∈ U .

Each set of functions U thus defines a dominance par-
tial ordering. We abbreviate “x̃�"1� dominates x̃�"2� on U ”
by writing x̃�"1� �U x̃�"2� and let �U denote the oppo-
site ordering where the scalar inequality � replaces the
� appearing in the definition of �U . Here we talk about
dominance holding between the random states. Given how
the random states are defined by the probability measures,
we can equivalently talk about dominance in terms of the
measures and say, for example, ��"1��U ��"2� instead of
x̃�"1��U x̃�"2�.
The following are some familiar examples of dominance

relations. In the univariate examples (1–3), we let F1 and
F2 denote the cumulative distribution functions for x̃�"1�
and x̃�"2�, respectively.
1. Increasing. X = �1�U = increasing functions. In this

case, �U corresponds to the usual first-order stochastic
dominance ordering and we can check for dominance using
the well-known result that x̃�"1� dominates x̃�"2� on U if
and only if F1�x�� F2�x� for all x.
2. Concave. X = �1�U = concave functions. In this

case, �U corresponds to second-order stochastic domi-
nance, as defined in Rothschild and Stiglitz (1970). We
can check for dominance using their result: x̃�"1� dom-
inates x̃�"2� on U if and only if E
x̃�"1�� = E
x̃�"2��
(i.e., the expected values are equal) and

∫ a
−	 F1�x�dx �∫ a

−	 F2�x�dx for all a.
3. Increasing and Concave. X = �1�U = increasing

concave functions. Here �U corresponds to second-order
monotonic stochastic dominance, which can be checked
using the well-known result that x̃�"1� dominates x̃�"2� on
U if and only if

∫ a
−	 F1�x�dx �

∫ a
−	 F2�x�dx for all a.

4. Supermodular. X = �2�U = supermodular functions.
x̃�"1� dominates x̃�"2� on U if and only if F1�x1� x2� �
F2�x1� x2� and F1�x1� -�=F2�x1� -� and F1�-� x2�=F2�-� x2�
for all �x1� x2� ∈ �2. Here Fi�x1� x2� denotes the bivariate
cumulative distribution and Fi�x1� -� and Fi�-� x2� denote
the univariate marginal distributions for x̃�"1� and x̃�"2�,
respectively (see Athey 1998).
Many other examples of dominance orderings can be

found in Shaked and Shantikumar (1994). Athey (1998)
provides a general characterization of dominance relations
and identifies conditions for one set of functions to serve
as a “test set” for establishing dominance on another, larger
set of functions. For example, dominance on the set of step
functions is sufficient to establish dominance on the set of
increasing functions.

4.2. Properties of Conditional Expectations

Using the inequality-based representation of C3 and C5
properties developed in Proposition 1, we can characterize
the necessary and sufficient conditions for the conditional
expectations E
u�x̃�"��� to satisfy P in " for u in some set
of functions U . Intuitively, the condition requires the family
of measures ��"� defining x̃�"� to satisfy the system of
inequalities defining property P, except the inequalities are
now interpreted in the sense of the dominance relation �U

defined for the set of functions U .
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Proposition 2. Let P be a C3 property represented as in
Proposition 1. Then E
u�x̃�"��� satisfies P on ! for all u
in U if and only if the measures ��"� satisfy

∑
(∈('

+(��"(��U

∑
�∈*'

+���"�� for all ' in �� (3)

Proof. Given that the system of inequalities (2) represents
P�E
u�x̃�"��� ≡ ∫

ud��"� satisfies P for all u in U if
and only if, for each ' in �, the corresponding mixed
measures �1

' ≡ ∑
(∈(' +(��"(� and �2

' ≡ ∑
�∈*' +���"��

satisfy
∫
ud�1

' �
∫
ud�2

' for all u in U or, equivalently,
�1
' �U �

2
'. �

If the condition of the proposition holds, we say the
random state x̃�"� satisfies P in the sense of some
stochastic dominance ordering �U � x̃�"� satisfies P on U ,
or more compactly x̃�"� satisfies P��U ��

3

Some examples will help clarify this result.
1. Increasing/Increasing. ! = X = �1�P = increasing;

U = increasing functions. Proposition 2 says E
u�x̃�"��� is
increasing in " for all increasing u if and only if ��"1��U

��"2� for all "1 � "2, or, in other words, if and only if x̃�"�
is stochastically increasing in " in the sense of first-order
stochastic dominance.
2. Concave/Increasing. ! = X = �1�P = concave; U =

increasing functions. Proposition 2 says E[u�x̃�"��] is con-
cave in " for all increasing u if and only if %��"1�+ �1−
%���"2� �U ��%"1+ �1−%�"2� for all "1� "2, and %�0 �
% � 1, or in other words, if and only if x̃�"� is stochas-
tically concave in " in the sense of first-order stochastic
dominance.
3. Concave/Concave. ! = X = �1�P = concave; U =

concave functions. Proposition 2 says E
u�x̃�"��� is con-
cave in " for all concave u if and only if %��"1�+ �1−
%���"2� �U ��%"1+ �1−%�"2� for all "1� "2, and %�0 �
% � 1, or in other words, if and only if x̃�"� is stochasti-
cally concave in " in the sense of second-order stochastic
dominance.
4. Increasing and Concave/Increasing and Concave.

! = X = �1�P = increasing and concave; U = increasing,
concave functions. Proposition 2 says E
u�x̃�"��� is
increasing and concave in " for all increasing and concave
u if and only if x̃�"� is stochastically increasing and con-
cave in " in the sense of second-order monotonic stochastic
dominance. Note that x̃�"� being stochastically concave in
" in the sense of first-order stochastic dominance is suffi-
cient for this result, but stronger than necessary.
5. Supermodular/Increasing. ! = �n�X = �1�P =

supermodular; U = increasing functions. Proposition 2 says
E
u�x̃�"��� is supermodular in " for all increasing u if and
only if ��"1�+��"2� �U ��"1 ∧ "2�+��"1 ∨ "2� for all
"1� "2 in !, or in other words, if and only if � is stochas-
tically supermodular in the sense of first-order stochastic
dominance.
Examples 1�2, and 5 can be found in Topkis (1998;
Theorem 3.9.1 and its corollary, p. 160–161). Example 4
is discussed in Shaked and Shantikumar (1994; Theorem

6.A.6, pp 172–173). Note that, as illustrated in Examples 2
and 5, we may choose the property P and set U indepen-
dently; the functions u appearing inside the integrals need
not satisfy the property P. Moreover, the set of functions
U need not form a closed convex cone (i.e., correspond
to a C3 property) though it does in each of our examples
and in most well-known stochastic dominance relationships
(Athey 1998).

4.3. Example Applications

Our example dynamic programming applications involve
variations and combinations of the abstract examples dis-
cussed above, as well as some other properties.

Copper Mine. In this example, we will show that the
price transitions are increasing and convex in the sense of
second-order, monotonic stochastic dominance: Formally,
we take ! = X = �1, with pk and pk−1 being the typ-
ical elements of ! and X, respectively; P = increasing and
concave; U = increasing, concave functions. We show that
p̃k−1�pk� satisfies P��U �. Recall that in this model the next
period’s log-price p̃k−1 is normally distributed with mean
pk+� and standard deviation � . An increase in pk thus
leads to a first-order stochastic dominance increase in the
distribution for p̃k−1: Thus, p̃k−1�pk� is increasing on U . To
prove that the transitions are also convex on U , we must
show that, for any increasing convex function u, prices
p1
k� p

2
k, and %�0� %� 1

E
u�p̃k−1�p
%
k ���� %E
u�p̃k−1�p

1
k���

+ �1−%�E
u�p̃k−1�p
2
k����

where p%k =%p1
k+�1−%�p2

k. Given how the change in cur-
rent price pk shifts the distribution for p̃k−1, this condition
is equivalent to

E
u�p%k + ỹ��� %E
u�p1
k+ ỹ��+ �1−%�E
u�p2

k+ ỹ���
where ỹ is normally distributed with mean � and standard
deviation � . This condition follows from the convexity of
u because, for any y,

u�p
%
k +y�� %u�p1

k+y�+ �1−%�u�p2
k+y��

Thus, the price transitions p̃k−1�pk� are convex in pk, as
well as increasing, on the set of increasing and convex func-
tions. We can also appeal to the results of Rothschild and
Stiglitz (1970) and note that, because increasing � corre-
sponds to an “increase in risk” or “mean-preserving spread”
in the sense of second-order stochastic dominance, for any
fixed price pk and increasing convex function u (in fact for
any convex function u), E
u�p̃k−1�pk��� is increasing in � .
Note that these properties of the transitions do not

depend on the specific assumption that prices follow a
Brownian motion process. One could, for example, assume
that prices follow a mean-reverting process with the next
period’s log-price (p̃k−1) being normally distributed with



Smith and McCardle / 803

mean 3pk+�1−3�p̄ and standard deviation � . Here 3 con-
trols the rate of mean reversion and p̄ is the long-run mean
to which prices revert. In this process, changes in the con-
ditioning variables shift the distributions in the same way
as before (though multiplied by 3) and the transitions sat-
isfy these same properties. We can use the same arguments
with nonnormal transitions, provided changes in the con-
ditioning variables shift the distributions in the same way.
The same argument with the inequalities reversed shows
that transitions having this “linear translation property” will
also be increasing and concave on the set of increasing and
concave functions.

Technology Adoption. In this example, we first show that
the transitions �m̃k−1�mk� sk�� sk−1�sk�� are increasing and
convex in the estimated value of the technology (mk) and
decreasing in the precision of this estimate (sk) for func-
tions u�mk−1� sk−1) that are increasing and convex in mk−1

and decreasing in sk−1. Here ! = X = �1 ×�+ with typ-
ical elements (mk� sk) for ! and (mk−1� sk−1) for X�P =
increasing and concave in mk and decreasing in sk�U =
functions that are increasing and concave in mk−1 and
decreasing in sk−1. Given the current set of state variables
mk and sk, the next-period estimate of the value m̃k−1 is nor-
mally distributed with mean mk and precision sk�sk+ t�/t
and the next-period precision sk−1 is sk+ t. Changes in the
current estimate of value mk thus shift the distributions for
the next-period estimate m̃k−1 in exactly the same way as
the previous example and we can use the same arguments
to show that the transitions are stochastically increasing and
convex in mk for functions that are increasing and convex
in mk−1. Likewise, just as increases in � in the previous
example led to an increase in expected values for increasing
convex functions, here an increase in the precision of the
prior estimate sk increases the precision of m̃k−1 (given
by sk�sk + t�/t� and increases the precision of the next-
period estimate (sk−1 = sk+ t). Because an increase in pre-
cision corresponds to a decrease in variance, both effects
lead to a decrease in E[u�m̃k−1�mk� sk�� sk−1�sk��] for func-
tions u�mk� sk� that are increasing and convex in mk and
decreasing in sk.
In the appendix we show that the transitions are

increasing in the precision of the observation in each period
(t� and satisfy the mixing property discussed in §1 for func-
tions that also satisfy the mixing property.

Stochastic Inventory Model. In this example, we show
that the transitions x̃k−1�ak� xk� are jointly convex in the
n-vector of current inventory levels xk and the n-vector of
order quantities ak for functions that are similarly jointly
convex. Here ! = �n+ ×�n with typical element (ak� xk�
and X = �n with typical element xk−1, and we show that
the transitions x̃k−1�ak� xk� satisfy P��U � where P is joint
convexity in ak and xk and U denotes the set of functions
that are convex in xk−1. We must show that for any convex
function u, n-vectors a1k, a

2
k, x

1
k, x

2
k , and scalar %, 0�%� 1,

E
u�x̃k−1�a
%
k � x

%
k ���� %E
u�x̃k−1�a

1
k� x

1
k���

+ �1−%�E
u�x̃k−1�a
2
k� x

2
k����

where a%k = %a1k + �1−%�a2k and x%k = %x1k + �1−%�x2k .
Because the next-period inventory x̃k−1 is given as ak +
xk− z̃k and the demand z̃k is independent of ak and xk, this
is equivalent to

E
u�a%k +x%k − z̃k��� %E
u�a1k+x1k− z̃k��
+ �1−%�E
u�a2k+x2k− z̃k���

The inequality then follows from the assumption that u is
convex because for any zk,

u�a
%
k +x%k −zk��%u�a1k+x1k−zk�+�1−%�u�a2k+x2k−zk��

Thus, the transitions are jointly stochastically convex in ak
and xk on the set of convex functions. We can reverse the
inequalities in this argument and show that transitions are
jointly stochastically concave in ak and xk on the set of
concave functions.

5. CHARACTERIZING VALUE FUNCTIONS
FOR MARKOV REWARD PROCESSES

Before considering the full stochastic dynamic program-
ming model, we first consider Markov reward processes of
the form

vk�xk�≡ rk�xk�+�kE
vk−1�x̃k−1�xk��� for k > 0�

v0�x0�≡ 0�

where vk is the value function with k periods remaining,
xk is the period-k state variable selected from some state
space X, rk is the period reward given that you start in state
xk, �k > 0 is a discount factor, and x̃k−1�xk� denotes the
random next-period state (also selected from X) with tran-
sition probabilities conditioned on starting in the current
state xk.

4

Suppose P is a C3 property. We can show that a value
function vk satisfies P using an induction argument of the
form discussed in §2. First, because the set of functions
satisfying any C3 property is a cone, v0�x0�≡ 0 satisfies P.
The fact that the set of functions satisfying P is a convex
cone implies that vk�xk� = rk�xk�+ �k E
vk−1�x̃k−1�xk���
satisfies P whenever both of the summands satisfy P. Thus,
if rk�xk� satisfies P for each k and we can somehow ensure
that E[vk−1�x̃k−1�xk��� satisfies P whenever vk−1�xk−1� sat-
isfies P, then by induction we can conclude that vk satis-
fies P for all k. Moreover, the fact that the set of func-
tions satisfying property P is closed under pointwise limits
implies that the limiting function, limitk→	 vk, if it exists,
also satisfies P. We can appeal to Proposition 2 to pro-
vide conditions to ensure that the conditional expectations
E
vk−1�x̃k−1�xk��� will satisfy P.

Proposition 3. Let U be a set of functions on X satisfying
a C3 property P. If for all k,
(a) the reward functions rk�xk� satisfy P and
(b) the transitions x̃k−1�xk� satisfy P��U �,

then each vk satisfies P and limitk→	 vk, if it exists, also
satisfies P.
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Proof. This follows from the inductive argument given
before the proposition and noting that by Proposition 2,
E
f �x̃k−1�xk��� satisfies P for all f satisfying P if and only
if the transitions x̃k−1�xk� satisfy P��U �. �

Some simple and abstract examples of this result follow.
1. Increasing. vk is increasing if the reward functions are

increasing and the transitions are stochastically increasing
in the sense of first-order stochastic dominance.
2. Increasing and Concave. vk is increasing and concave

if the reward functions are increasing and concave and the
transitions are stochastically increasing and concave in the
sense of second-order monotonic stochastic dominance.
3. Increasing and Convex. vk is increasing and convex

if the reward functions are increasing and convex and the
transitions are stochastically increasing and convex in the
sense of first-order stochastic dominance.
While in the previous section we could distinguish

between the set of functions U and the property P (for
instance, in Example 2 in §4.2, U consisted of increasing
functions and P was concave), here, because of the recur-
sive structure of the problem, we must equate these two
classes of functions.
Proposition 3 shows how C3 properties are preserved

through the recursive calculations of the Markov reward
process. We can’t quite say that only C3 properties are pre-
served through these recursive calculations. Given the addi-
tive structure of the Markov reward process, if a property
is to be preserved for arbitrary discount factors (�k � 0),
then the set of functions satisfying the property must form
a convex cone. The closure of this set under pointwise
limits is sufficient to ensure that the limiting functions, if
they exist, will also be in that set. One could, however,
use other arguments to prove that value functions satisfy
properties that are not C3 properties. For example, if one
assumes that the reward functions are bounded and contin-
uous and the transitions satisfy the “Feller property,” we
can guarantee that the value functions will also be bounded
and continuous.5 In this case, the set of functions satisfying
this property forms a convex cone but it is not closed in
the topology of pointwise convergence.

6. CHARACTERIZING VALUE FUNCTIONS
FOR MARKOV DECISION PROCESSES

Now we consider a Markov decision process of the form

v∗k�xk�≡ sup
ak∈Ak

	rk�ak� xk�

+�kE
v∗k−1�x̃k−1�ak� xk���� for k > 0�

v∗0�x0�≡ 0�

where the definitions are as in the previous section, except
here we choose the action ak from a set of feasible actions
Ak in period k to maximize the value functions v∗k . To sim-
plify the analysis, we will assume that the set of feasible
actions Ak does not vary by state. The analysis in this sec-
tion is complicated by the fact that the rewards and transi-
tions depend on the actions as well as the current state and

we must consider what is required for the properties to be
preserved through the maximization in the selection of the
action. We consider the maximization problem in isolation
before proceeding to the full stochastic dynamic program-
ming problem.

6.1. Properties Preserved by Maximization

What properties must a function f �a� "� need to satisfy
to ensure that g�"� ≡ supa∈A	f �a� "�� satisfies P in "?
One might speculate that a sufficient condition for g�"�
to satisfy a property P in " is for f �a� "� to satisfy
P in " for each a. The intuition is that, if the prop-
erty holds for every action a, we might expect it to hold
for the optimal action a∗. Unfortunately, this intuition is
faulty: The optimal action a∗ depends on " and it is pos-
sible for f �a� "� to satisfy P in " for each a and yet
have g�"� not satisfy P. For example, with A = ! = �1,
f �a� "� = − exp�−a2���a− "�2 + 1� is concave in " for
each a. The optimal action is to take a= " and this gives
g�"�=− exp�−"2�, which is not concave in ".
This intuition does, however, hold for a special class of

properties that we will call single-point properties. We con-
sider this special case because it is easy to check in applica-
tions and because it illustrates what is required for a prop-
erty to be preserved under maximization; we will consider
a more general class of properties in a moment. We say a
C3 property P is a single-point property if the inequalities
in the representation of P in Proposition 1 involve only a
single function evaluation on the left side; that is, g satis-
fies P if and only if

g�"'��
∑
�∈*'

+�g�"�� for all ' in ��

The C3 properties increasing, decreasing, convex, and
subadditive are all single-point properties. Intersections
of single-point properties are also single-point properties.
Concavity is an example of a C3 property that is not a
single-point property: It can be represented as an inequality
involving a single function evaluation on one side of the
inequality, but the single function evaluation is on the
wrong side of the inequality.
It is easy to show that if P is a single-point property

on ! and f �a� "� satisfies P for each a ∈ A, then g�"� ≡
supa∈A	f �a� "�� also satisfies P. If f �a� "� satisfies P for
each a ∈ A, then for any ' ∈ � and action a ∈ A,
f �a� "'��

∑
�∈*'

+�f �a� "���
∑
�∈*'

+� g�"���

The first inequality holds because f satisfies P for each
a ∈ A; the second because f �a� "� � g�"� for all a and ".
Taking the supremum over actions a ∈ A on the left side
of this inequality (i.e., choosing the action a to be optimal
for "'), we find g�"'��

∑
�∈*' +� g�"��. Because this holds

for each ' in �, g satisfies P.
To develop a more general condition that ensures that

g�"�≡ supa∈A	f �a� "�� satisfies a C3 property P, consider
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the inequality representation of this property: g satisfies P
if and only if

∑
(∈B'

+( g�"(��
∑
�∈*'

+� g�"�� for all ' in ��

Now fix ' in � and consider the following series of equal-
ities and inequalities:

∑
(∈B'

+( g�"(�=
∑
(∈B'

+( f �a
∗�"(�� "(�

�
∑
(∈B'

+� f �a�� "���
∑
�∈*'

+� g�"��� (4)

The outer elements correspond to g satisfying this equality
(') of property P. In the second term on the left, we let
a∗�"(� denote the maximizing action a for a given value
"(, assuming for expository purposes that this maximum is
obtained by some action. (This assumption is not required
and will be dropped later.) The equality on the left of (4)
then follows from this definition. The inequality on the
right follows the definition of g� since f �a� "� � g�"� for
all a and ". The key to proving that g satisfies P, then, is
showing that f satisfies the middle inequality for some set
of actions 	a��.

We can ensure that (4) holds by assuming that f satisfies
a joint extension of P defined as follows. Given a C3 prop-
erty P on ! represented as in Equation (3), we say that a
C3 property P∗ on A×! is a joint extension of P if for
any ' in � in Equation (3) and any set of actions 	a(�(∈B' ,
there exists a set of actions 	a���∈*' such that

∑
(∈B'

+( f �a(� "(��
∑
�∈*'

+� f �a�� "��� (5)

This condition ensures that the middle inequality in
Equation (4) is satisfied for some set of actions 	a���∈*'
and is sufficient to ensure that g�"�≡ supa∈A	f �a� "�� sat-
isfies P.

Proposition 4. Let P be a C3 property on ! and let P∗

be a joint extension of P on A×!. If f �a� "� satisfies P∗,
then g�"�≡ supa∈A	f �a� "�� satisfies P.

Proof. By definition of a joint extension, for any con-
straint ' in the inequality representation of P, given a set
of actions 	a(�(∈B' for the left side of Equation (5) and the
corresponding set of actions 	a���∈*' for the right, we have

∑
(∈B'

+( f �a(� "(��
∑
�∈*'

+� f �a�� "���
∑
�∈*'

+� g�"���

The first inequality follows from the assumption that f sat-
isfies an extended version of P and the second follows from
the definition of g. Taking the supremum inside the sum-
mation on the left side of the inequality (i.e., choosing the
a( to be optimal for the corresponding "(�, we have

∑
(∈B'

+( g�"(��
∑
�∈*'

+� g�"���

Thus, g satisfies this inequality and, more generally, satis-
fies property P. �

Some examples may help clarify the nature of this con-
dition. The first three are positive examples; the fourth is a
negative example in which the condition does not hold.
1. Single-Point Properties. When we considered single-

point properties, we assumed that the property was satisfied
for all choices of actions, i.e.,

f �a� "'��
∑
�∈*'

+� f �a� "�� for all a in A and ' in ��

In this case, f satisfies a joint extension of P on A×!
because the inequalities are satisfied whenever the actions
on the right side of the inequality match the action chosen
on the left.
2. Joint Concavity. Given convex parameter and action

spaces (! and A), joint concavity requires that for any
choice of "1 and "2 in ! and a1 and a2 in A and % such
that 0� %� 1,

%f�a1� "1�+ �1−%�f�a2� "2�� f �a%� "%�

for a% ≡%a1+�1−%�a2 and "% ≡%"1+�1−%�"2. In this
case, for any given "1, "2, and %, we are free to choose
actions a1 and a2 on the left side of the inequality, and
there exists an action on the right side of the inequality
(a%) such that this inequality is satisfied. Joint concavity on
A×! is thus a joint extension of concavity on !. (Note
that it is not enough for f to be concave in " for each a, as
illustrated by the example at the beginning of this section.)
3. Joint Supermodularity. Given parameter and action

spaces (! and A� that are lattices, joint supermodularity
requires that, for all "1 and "2 in ! and a1 and a2 in A�

f �a1� "1�+f �a2� "2�� f �a1∧a2� "1∧"2�
+f �a1∨a2� "1∨"2��

Like the previous example, for any given "1 and "2 for any
choice of actions a1 and a2 on the left side of the inequality,
there will be actions for the right side of the inequality
(a1 ∧ a2 and a1 ∨ a2� such that the inequality is satisfied.
Joint supermodularity on A×! is thus a joint extension of
supermodularity on !.
4. Joint Submodularity. Given parameter and action

spaces (! and A) that are lattices, joint submodularity
requires that, for all "1 and "2 in ! and a1 and a2 in A�

f �a1∧a2� "1∧"2�+f �a1∨a2� "1∨"2�
� f �a1� "1�+f �a2� "2��

This does not satisfy the joint extension condition because
we cannot independently select actions (a1∧a2� and (a1∨
a2� on the left side of this inequality and be sure that there
will be actions on the right such that this inequality holds,
because (a1∧a2�� �a1∨a2� for any a1 and a2.
The joint extension condition of Proposition 4 is suffi-

cient but not necessary for g to inherit the C3 property P.
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The middle inequality in Equation (4) need only hold for
the actions 	a(�(∈B' that are optimal for the corresponding
points 	"(�(∈B' . We could therefore relax this condition by
requiring Equation (5) to hold only for the actions that are
optimal for the left side.

6.2. Markov Decision Processes

To apply these results to Markov decision processes, we
take the function to be maximized to be f �ak� xk� =
rk�ak� xk�+ �k E
v∗k−1�x̃k−1�ak� xk��� and look for condi-
tions that ensure that this function satisfy a joint extension
of the property P. We can use essentially the same argu-
ment as in the last section to achieve this.

Proposition 5. Let U be a set of functions on X satisfying
a C3 property P and let P∗ be a joint extension of P on
A×!. If, for all k,
(a) the reward functions rk�ak� xk� satisfy P

∗ and
(b) the transitions x̃k−1�ak� xk� satisfy P

∗��U �,
then each v∗k satisfies P and limitk→	v∗k , if it exists, also
satisfies P.

Proof. We proceed by induction. First, because the set of
functions satisfying any C3 property is a cone, v∗0�x0�= 0
satisfies P. Now assume that v∗k−1�xk−1� satisfies P. The
fact that the set of functions satisfying P∗ is a convex cone
implies that rk�ak� xk�+ �k E
v∗k−1�x̃k−1�ak� xk��� satisfies
P∗ whenever both of the summands satisfy P∗; if this sat-
isfies P∗, then v∗k�xk� satisfies P by Proposition 4. The first
summand rk�ak� xk� satisfies P

∗ by the first assumption and
the second E[v∗k−1�x̃k−1�ak� xk��] satisfies P

∗ for v∗k−1 satis-
fying P by the second assumption and Proposition 2. Thus,
for each k� v∗k satisfies P. As before, the fact the set of func-
tions satisfying property P is closed under pointwise limits
implies that the limiting function, limitk→	v∗k , if it exists,
also satisfies P. �

Thus, to show that a value function satisfies some prop-
erty P, we need to identify a joint extension P∗ of P
and check that the rewards and transitions satisfy P∗. We
first consider a few simple and abstract examples of this
result and then consider the example applications intro-
duced in §2.
1. Increasing. Because increasing is a single-point prop-

erty, v∗k�xk� is increasing in xk if the reward functions
rk�ak� xk� are increasing in xk for each ak and the tran-
sitions are stochastically increasing in xk in the sense of
first-order stochastic dominance for each ak.
2. Increasing and Convex. Because increasing and

convex are both single-point properties, v∗k�xk� is increasing
and convex in xk if the reward functions rk�ak� xk� are
increasing and convex in xk for all ak and the transitions
are stochastically increasing and convex in xk in the sense
of first-order stochastic dominance for each ak.
3. Increasing and Concave. v∗k�xk� is increasing and

concave in xk if the reward functions rk�ak� xk� are
increasing in xk for all ak and jointly concave in ak and xk

(joint concavity on A×X being a joint extension of con-
cavity on X) and the transitions are increasing in xk and
concave in ak and xk in the sense of second-order mono-
tonic stochastic dominance.

6.3. Example Applications

The example applications involve variations of the previous
abstract examples and other properties. The examples and
the corresponding properties are summarized in Table 1.

Copper Mine. Here we show that the value functions
are increasing and convex functions of the log price pk
for each mine state sk (open, closed, or abandoned); call
this property P. The joint extension of this property (P∗)
requires functions to be increasing and convex in pk for
each mine state sk (open, closed, or abandoned) and each
action ak (making the mine open, closed, or abandoned);
because increasing and convex are both single-point prop-
erties, P∗ is indeed a joint extension of P. To check Con-
dition (a) of Proposition 5, we note that the reward func-
tions are increasing and convex in pk for each mine state sk
and action ak, and thus satisfy P∗. We saw in §4.3 that the
price transitions p̃k−1�pk� are stochastically increasing and
convex in pk on the set of functions that are increasing and
convex functions in pk. Because this holds for each mine
state sk and action ak, the full transitions x̃k−1�ak� sk� pk�
satisfy P∗ as well. By Proposition 5, we can conclude that
value functions v∗k�pk� sk� are increasing and convex in pk
as well.
We can also show that the value functions are increasing

in � . Again this is a single-point property. The reward
functions are constant (and therefore increasing) in the
volatility (�) of prices and for each ak� sk, and pk and,
as shown in §4, the price transitions p̃k−1�pk� are stochas-
tically increasing in � on the set of functions that are
increasing and convex in pk. The result follows from Propo-
sition 5. One can similarly also show that the value func-
tions are increasing and convex in the revenue margin (�)
as well as other properties.

Technology Adoption. Here we show that the value
functions v∗k�xk� sk� tk� are (i) increasing and convex func-
tions of the current estimate of the value of the technology
xk, (ii) decreasing in the precision sk associated with this
estimate, (iii) increasing in the precision tk associated the
observation in each period, and (iv) satisfy the mixing prop-
erty described in §2; this combination of properties is the
property P that we want to show the value function satis-
fies. Each of these properties is a single-point property and
therefore P is as well. The joint extension P∗ of P requires
P to hold for each action ak. The reward functions satisfy
P∗ for each choice of action (this is easy to check) and
thus satisfy P∗. We showed in §4 and the appendix that the
transitions also satisfy P for each action ak and thus sat-
isfy P∗. Proposition 5 then implies that the value functions
satisfy property P.
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Stochastic Inventory Model. We show that the cost func-
tions v∗k�xk� are convex in the n-vector of product inventory
levels xk; this is the desired property P. Because joint con-
cavity on ak and xk is a joint extension of concavity on xk
for a maximization by problem (as in the example in §6.1),
joint convexity of a function f �ak� xk� in ak and xk will
ensure that g�xk� = infa∈A f �ak� xk� is convex in xk; joint
convexity in ak and xk is thus the property P∗.
To verify the first condition of Proposition 5, we show

that the reward function for the model rk�ak� xk�= c�ak�+
E
l�x̃k−1�ak� xk��� is jointly convex in ak and xk for each
k. The costs of production c�ak� were assumed to be
convex in the amount ordered (ak). Because the penalty
function l�xk−1�, reflecting shortage and inventory costs,
is assumed to be convex and the transitions x̃k−1�ak� xk�
are stochastically convex in (ak� xk) for convex functions
(as shown in §4.3), by Proposition 2, the expected penalty
E[l�x̃k−1�ak� xk��] is jointly convex in ak and xk. The
reward function, as the sum of two convex functions, is
thus jointly convex in ak and xk. The second condition of
Proposition 5, that the transitions x̃k−1�ak� xk� be stochas-
tically convex for convex functions, was established in
§4.3. Proposition 5 then implies that the cost functions are
convex in the n-vector of inventory level xk, as sought.

7. SUMMARY

We have developed a set of metatheorems that describe
how properties of value functions are preserved and prop-
agated through Markov reward and decision processes.
The metatheorems provide specific conditions that can be
checked in applications to establish specific properties of
the value functions. Perhaps more importantly, the theo-
rems clarify the structure of these kinds of results. The
main results can be summarized intuitively as saying that
the value functions satisfy property P if the reward func-
tions satisfy property P and the transition probabilities sat-
isfy a stochastic version of this property. With Markov
reward processes, this result holds quite generally for
closed convex cone (C3) properties. With Markov deci-
sion processes, we need to consider C3 properties that are
closed under maximization (or minimization) in the choice
of actions; we provide general conditions that ensure this
is the case.

APPENDIX

Proof of Proposition 1. Let E denote the set of real-
valued functions defined on !, endowed with the topology
of pointwise convergence, also called the product topology
for �!. As the product of locally convex topologies, the
product topology �! is also locally convex. E is thus a
locally convex topological vector space. Let 6⊆ E denote
the closed convex cone of functions satisfying a C3 prop-
erty P. As a nonempty closed convex set in E, 6 can be
represented as the intersection of all the closed half-spaces
that contain 6 (see, e.g., Berberian 1974, Theorem 34.3).
Each of these closed half-spaces can be represented as an

inequality involving a continuous linear functional F and
scalar a such that F�f � � a for all f ∈6. Thus, if we let
� be an index set describing the collection of closed half-
spaces containing 6, the set 6 can be represented as the
set of solutions to a set of linear inequalities of the form
F'�f �� a' for all ' ∈ �.
We now show that because 6 is a cone, we can restrict

ourselves to inequalities of the form F'�f � � a' = 0 for
each ' ∈ �. Consider any '. If a' > 0, then for any
f ∈ 6 we have F'�f � � a'. Yet by linearity of F', for
a sufficiently small positive ( we would have F'�(f� =
(F'�f � < a'. This is a contradiction: Because 6 is a cone,
(f ∈6 and thus F'�(f�� a' whenever (� 0 and f ∈6.
Thus, a' � 0. Similarly, if a' < 0 and there exists an f ∈6
such that 0 > F'�f � � a', then for a sufficiently large
( > 0, we would have F'�(f�= (F'�f � < a'. Again, this
is a contradiction because (f ∈6 whenever f ∈6. Finally,
if a' < 0 and there is no f ∈6 such that 0> F'�f �� a',
then we can replace a' with 0 and still have F'�f � � 0
for all f ∈ 6. Thus the set 6 can be represented as the
set of solutions to a set of linear inequalities of the form
F'�f �� 0 for all ' in �.
We now show that each linear functional F'�f � depends

on the value of f at a finite set of points " ∈ !. Pick an
8 > 0 and consider the inverse image of the set (−8�8)
under the functional F'�F

−1
' 
�−8�8��; this is the set of

functions whose evaluations under F' are within 8 of 0.
Because F' is continuous, F−1

' 
�−8�8�� is an open set.
Moreover, F−1

' 
�−8�8�� is not empty because for the zero
function fo�"� ≡ 0 for all " in !, we have F�fo� = 0.
Considering the base for the product topology �! (see,
e.g., Royden 1968, pg. 152), there exists a nonempty, open
“basic set” B such that fo ∈ B ⊆ F−1

' 
�−8�8�� and B is
of the form 	f : f �"1� ∈ O1� f �"2� ∈ O2� � � � � f �"n� ∈ On�
where 	"1� "2� � � � � "n� is some finite subset of ! and the
sets 	O1�O2� � � � �On� are open sets in � containing 0.
Thus, membership in B depends only on the value of the
function at the finite set of points 	"1� "2� � � � � "n�. This
then implies that the functional F'�f � depends only on the
values of the function f at these points. To prove this,
suppose that F'�f � depends on the values of f outside of
these points. Then there must be two functions f1 and f2
such that f1�"i� and f2�"i� for i = 1� � � � � n but such that
F'�f1� �= F'�f2�. By linearity, this implies that F'�f<� �= 0
for f< ≡ f1−f2. Because F'�f<� �= 0, for sufficiently large
(�F'�(f<�= (F'�f<� will be outside of (−8�8). Because
f<�"i�= 0 for i = 1� � � � � n, f< ∈ B and, moreover, for any
(� (f< ∈ B. Because (f< ∈ B and B ⊆ F−1

' 
�−8�8��, this
implies F'�(f<�∈ �−8�8�, contradicting our earlier finding
that F'�(f<� � �−8�8�.
Given that the linear functional F'�f � depends on values

of f at only these points, it can be represented as a
weighted sum F'�f � =

∑n
i=1='if �"'i� for some set of

weights 	='1�='2� � � � �='n�. By separating the sets of
points and weights into groups according to whether the
weights are positive or negative, we arrive at the represen-
tation of the proposition. (We can drop any zero weights;
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the index sets B' and *' correspond to the negative and
positive weights, respectively.)
If the property P is a C5 property as well as a C3 prop-

erty, because 1 and −1 both satisfy P, then for each ', the
sum of the weights on both sides of the inequality in the
proposition must be equal, and hence can be normalized to
sum to one. �

Proof of Properties for the Technology Adoption
Model. Here we show that the transitions satisfy a
stochastic version of the mixing property and are increasing
in t for functions u that satisfy the mixing property. To
show that the transitions satisfy this mixing property, we
must show that E[u�m̃k−1�mk� sk�� sk−1�sk��] satisfies:

0�5E
u�m̃k−1�mk+�� sk+ �� sk−1�sk+ ���
+0�5E
u�m̃k−1�m−�� sk+ �� sk−1�sk+ ���

� E
u�m̃k−1�mk� sk�� sk−1�sk���

for any  � sk � 0 and �2 = /�s�s+ ��, for any function u
satisfying the mixing property. Using the definition of the
transitions, this condition is equivalent to

0�5E
u�mk+ ỹ+��sk+t+ ��
+0�5E
u�mk+ ỹ−��sk+t+ ���E
u�mk+ ỹ�sk+t���

where ỹ is normally distributed with mean 0 and precision
sk�sk+ t�/t. If the function u satisfies the mixing property,
for any y we have

0�5u�mk+y+�� sk+ t+ �+0�5u�mk+y−�� sk+ t+ �
� u�mk+y� sk+ t��

Because this holds for all y, this implies that the previous
inequality holds and the transitions satisfy the mixing prop-
erty for functions u satisfying the mixing property.
To show that the transitions are increasing in t for func-

tions satisfying the mixing property, we first show that the
mixing property can be extended from binary to normal
mixtures. That is, for any m, and s,  � 0, and with z̃ a
normally distributed random variable with mean 0 and vari-
ance equal to  /�s�s+ ��, we have E[u�m+ z̃� s+ ���
u�m� s�, for any u that satisfies the mixing property. The
interpretation is the same as before: The expected value
added by resolving the uncertainty z̃ increases the expected
value more than the value lost due to increasing the preci-
sion of the revised estimate by  . To prove this, we will
construct a series of binary random variables whose sums
approximate the normally distributed random variable z̃
(similar to a “binomial tree” approximation used to value
options on stocks; see Cox et al. 1979) where we can use
the binary mixing property at each stage in the summation.
The binary random variables 	z̃j�� j = 1 to n, are assumed
to independent random variables and equally likely to
take on values ± �j where �2j = 1/�s +  �j − 1�/n�−

1/�s+ j/n�. Let w̃i denote the partial sum
∑i

j=1 z̃j . The
variance of w̃i is then

∑i
j=1 �

2
j = �i/n� /�s�s+ �i/n� ��.

The variance of w̃n is thus  /�s�s +  ��, the variance
of z̃. In the limit as n→ 	� w̃n converges in distribution
to z̃; convergence follows from the Lindeberg Theorem
(Billingsley 1986, p. 369), a variation of the Central Limit
Theorem. The binary mixing property then implies that, for
i = 1� � � � � n�E
u�m+ w̃i� s+ i/n�� � E
u�m+ w̃i−1� s+
 �i− 1�/n��. Here each stage i corresponds to the addi-
tion of the binary random variable z̃i with a corresponding
increase in precision of  /n. Chaining these inequalities
together we have E
u�m+ w̃n� s+ �� � u�m� s� for each
n. In the limit as n→	�wn converges in distribution to z̃,
so E[u�m+ w̃n� s+ �] approaches E[u�m+ z̃� s+ �] and
therefore E
u�m+ z̃� s+ ��� u�y� s�.
We now show that the transitions are increasing in t for

functions that satisfy the mixing property. Consider the pro-
cess starting in state (mk� sk). If the observation is made
with precision t� m̃k−1 will be normally distributed with
mean mk and variance t/sk�sk+ t�; let ỹ be a random vari-
able with this distribution. If the observation is made with
precision t+ , then m̃k−1 will be normally distributed with
mean mk and variance (t+ �/�sk�sk + t+ �). Let z̃ be
a random variable that is normally distributed with mean
0 and variance (t+ �/�sk�sk+ t+ ��− t/�sk�sk+ t�) and
independent of ỹ. The sum ỹ+ z̃ will have the same distri-
bution as m̃k−1 if the observations are made with precision
t+ . The transitions will be increasing in t for functions
u satisfying the mixing property if

E
u�ỹ+ z̃� sk+ t+ ��� E
u�ỹ� sk+ t�� (A1)

holds for these functions. For any value y, the mixing prop-
erty for normal distributions implies that E
u�y+ z̃� sk+ t+
 ��� u�y� sk+ t�. The fact that this holds for any y implies
that it holds when taking expectations over ỹ as in (A1).
Thus the transitions are increasing in t for functions satis-
fying the mixing property. �

ENDNOTES

1. In Table 1, we write the reward functions and transi-
tions as function of the state variables (xk) using notation
specific to the examples. Where we want to study sensi-
tivity to a parameter that is not a state variable, we include
these exogenous parameters as arguments to the relevant
functions following the state variables and separated by a
semicolon. For example, in the copper mine model, we are
interested in the sensitivity of the value functions to the
volatility of prices (�), which is not a state variable in the
model.
2. Formally, let �X��� be a measurable space and let ��"�
be a family of measures defined on this space; the functions
u are assumed to be measurable with respect to �X���.
The use of the random state notation simplifies some of
our later discussions because we can consider properties
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of the random function x̃�"� in the same way we consider
properties of nonrandom functions.
3. If P is a C5 property, the weights in (3) sum to one and
consequently, if each of the measures ��"� is a probability
measure, the weighted measures involved in the dominance
comparison in (3)—referred to as �1

' and �
2
' in the proof—

are also probability measures. If P is a C3 property but
not a C5 property, �1

' and �2
' are not necessarily proba-

bility measures. The same definition of dominance applies
however—�1

' �U �
2
' if and only if

∫
ud�1

' �
∫
ud�2

' for
all u in U—and the result of Proposition 2 holds.
4. We assume that the state variables are all random vari-
ables defined on some measurable space (X��) and that
the reward functions are all measurable with respect to this
space.
5. A transition function x̃k−1�xk� satisfies the “Feller prop-
erty” if E
u�x̃k−1�xk��� is a bounded and continuous func-
tion of xk for functions u that are bounded and continuous
in xk−1; see Stokey and Lucas (1989). Stokey and Lucas
also provide equivalent probabilistic conditions (p. 376).
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