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An influence diagram is a graphical representation of a decision problem that is at once a formal description of a decision
problem that can be treated by computers and a representation that is easily understood by decision makers who may
be unskilled in the art of complex probabilistic modeling. The power of an influence diagram, both as an analysis tool
and a communication tool, lies in its ability to concisely summarize the structure of a decision problem. However, when
confronted with highly asymmetric problems in which particular acts or events lead to very different possibilities, many
analysts prefer decision trees to influence diagrams. In this paper, we extend the definition of an influence diagram by
introducing a new representation for its conditional probability distributions. This extended influence diagram represen-
tation, combining elements of the decision tree and influence diagram representations, allows one to clearly and efficiently
represent asymmetric decision problems and provides an attractive alternative to both the decision tree and conventional

influence diagram representations.

Inﬂuence diagrams were originally developed in the
mid-1970s as a description of a decision problem
that is “at once both a formal description of the
problem that can be treated by computers and a
representation easily understood by people in all walks
of life and degrees of technical proficiency” (Howard
and Matheson 1981; see also Miller et al. 1976). Since
their introduction, influence diagrams have become
an important tool for professional decision analysts.
The power of an influence diagram, both as an analysis
tool and a communication tool, lies in its ability to
concisely and precisely describe the structure of a
decision problem. Decision makers who may be
unskilled in the art of complex probabilistic modeling
find that influence diagrams provide them with a
language to clearly describe their conception of a
decision problem (see Owen 1978 and Howard 1988).

The original definition of influence diagrams distin-
guished three levels of specification for a decision
problem: relation, function, and number (Howard and
Matheson). In the deterministic case, the level of rela-
tion indicates that one variable depends in a general

way on the others; for example, profit is a function of
revenue and cost. The level of function specifies the
precise function describing this dependence; namely,
that profit equals revenue minus cost. Finally, at the
level of number, we specify numerical values of reve-
nue and cost and hence determine the numerical value
of profit.

In the probabilistic case, the level of relation indi-
cates that, given the information available, one vari-
able is probabilistically dependent on certain variables
and probabilistically independent of others. For exam-
ple, we might assert that for a given person, income
depends on age and education, and that education
depends on age. At the level of function, we describe
the form of these dependencies. For instance, if we
divide age into 10-year increments, we might assign
different distributions on education for each age group
under 40 and the same distribution for all age groups
over 40. When assessing income given age and a
particular educational level, we may wish to assign
different distributions for each age group. At the level
of number, we specify numerical probabilities for each
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conditional and unconditional event. Taken together,
the three levels implicitly determine a joint probability
distribution over all variables.

The success of the influence diagram representation
is primarily a result of its ability to describe graphically
the structure of a decision problem at the level of
relation. The influence diagram representation is com-
pact and, unlike the decision tree representation,
clearly indicates the dependence and independence
assumptions in the model. The influence diagram
representation has also proven valuable for computa-
tion. While early efforts showed how an influence
diagram could be turned into a decision tree and then
evaluated (Howard and Matheson), more recent
efforts have focused on evaluating influence diagrams
directly (Olmsted 1983, Shachter 1986, 1988). These
influence diagram computational methods have
achieved substantial efficiencies over “brute force”
decision tree methods.

The influence diagram representation has weak-
nesses as well. In particular, it is commonly believed
that influence diagrams are not useful for representing
highly asymmetric problems in which particular acts
or events lead to very different possibilities (see, for
example, Watson and Buede 1987, Phillips 1990, Call
and Miller 1990). Phillips (p. 22) writes:

Certainly there are disadvantages [to using influence dia-
grams], the most serious being the difficulty influence
diagrams have with asymmetrical decision trees. When sub-
sequent events and acts depend on the initial decision,
influence diagrams run into difficulties. Often these situa-
tions occur when the decision maker wishes to portray cause-
and-effect sequences as possible scenarios. These are not
times when I would choose to use an influence diagram, and
they occur frequently. Look at any textbook on decision
analysis and try to find a single symmetrical decision tree.

To represent an asymmetric decision problem as an
influence diagram, the problem must be “symme-
trized” by adding artificial states and assuming degen-
erate probability distributions and/or value functions.
Unfortunately, these adaptations obscure the structure
of the problem and increase the time and space
required for solution. In problems like these, many
analysts prefer decision trees to influence diagrams.
In this paper, we extend the definition of an influ-
ence diagram to describe the structure of a decision
problem at the level of function. This extension allows
one to represent asymmetric decision problems in
influence diagrams without obscuring the structure of
the problem or increasing the time and space required
for solution. Our primary contribution is a new rep-
resentation for describing the conditional probability

distributions associated with an influence diagram.
This representation is easy to express graphically in
ways that should be comfortable and familiar to those
who have used decision trees.

Our work adds to the existing work in influence
diagrams in several ways. The most closely related
work is Olmsted’s unpublished Ph.D. dissertation
(Olmsted 1983) and there is some overlap between
our work and his. Although it has not become part of
the conventional influence diagram representation (as
defined by Shachter 1986, 1988, or Rege and Agogino
1988 and implemented in several software packages),
Olmsted (pp. 85-96) discusses the representation of
“coalescence within influence diagrams” where “some
of the conditional probabilities (in the conditional
probability distribution) are known to be identical”
and demonstrates how efficiencies in storage and com-
putation can be obtained by recognizing this coales-
cence. This is one of several types of asymmetries that
can be captured in our representation. In addition,
unlike the conventional influence diagram represen-
tation or Olmsted’s representation, we allow the sets
of possible outcomes or alternatives to vary in differ-
ent scenarios; we can represent variables of mixed
types (for example, variables whose values are uncer-
tain in some scenarios and deterministic in others);
and we can capture and exploit asymmetries due to
irrelevant distributions or impossible scenarios. Fol-
lowing Olmsted (and Shachter 1986), we describe
influence diagram solution procedures that recognize
these asymmetries and provide substantial efficiencies
in storage and computation.

Recognizing the problems influence diagrams have
with asymmetric decision problems, several research-
ers have recently (and independently) proposed alter-
native representations that attempt to combine the
strengths of the influence diagram and decision tree
representations. We would like to briefly describe two
of these representations: Call and Miller (1990) and
Fung and Shachter (1990). Call and Miller describe a
representation, which they call DPL (for decision pro-
gramming language), where a decision problem is
described using separate decision tree-like and influ-
ence diagram-like representations. The influence
diagram-like representation is used to describe the
probabilistic relationships among variables in the
problem and is essentially a conventional influence
diagram, except that it does not describe the sequence
in which decisions are made and uncertainties
resolved. Instead, this decision sequence is captured
in the decision tree-like representation. The advantage
of this approach, they argue, is that it “allows DPL to
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take advantage of some of the virtues of each
approach, e.g., influence diagrams are best at precisely
describing probabilistic relationships, and trees are
best at clearly describing the decision sequence”
(p. 139). While this approach provides some impres-
sive computational results, we believe that its major
weakness is that one must examine both the decision
tree-like and influence diagram-like parts to obtain a
complete description of the problem. In contrast, both
the conventional influence diagram representation
(and our extension to it) and the decision tree repre-
sentation provide a complete description of the deci-
sion problem in a single, consistent framework.

Fung and Shachter take a different approach, closer
to ours, in defining what they call contingent influence
diagrams. Their key innovation is associating each
variable with a set of contingencies that describe the
scenarios in which the variable is defined and list the
variables conditioning the distribution (conditioning
parents) in these scenarios. Our representation and
the contingent influence diagram representation share
some common features, notably the ability to exploit
certain forms of coalescence (what we call collapsed
distributions) and distributions that are irrelevant
because of this coalescence (what we call unspecified
distributions). Beyond these common features, we
believe that our representation is more natural and
general. For example, we allow the sets of possible
outcomes or alternatives for a variable to vary in
different scenarios. To do this in a contingent influ-
ence diagram, one would have to define many differ-
ent variables (perhaps with the same name) with
different sets of outcomes and mutually exclusive
contingencies. It is similarly awkward to represent
variables of mixed types in a contingent influence
diagram.

The rest of this paper is organized as follows. In the
first section, we illustrate some of the difficulties in
representing asymmetric decision problems using the
conventional influence diagram and decision tree rep-
resentations by considering the well-known used car
buyer problem as an example (Howard 1962). In the
second section, we introduce our representation for
the conditional probability distributions associated
with an influence diagram and illustrate it with distri-
butions from the used car buyer problem. In the third
section, we consider the computational implications
of our representation. Here, we see the benefits of
explicitly describing the structure of a decision prob-
lem at the level of function: Structural properties of
the conditional distributions are propagated through
the solution process and computational efficiencies
are obtained by noting the occurrence of special struc-

tures in the distributions. In the fourth section, we
demonstrate these efficiencies by comparing our rep-
resentation of the used car buyer problem with the
conventional influence diagram and decision tree
representations. We conclude by summarizing the
strengths and weaknesses of our representation as
compared to the conventional influence diagram and
decision tree representations as well as the represen-
tations proposed by Call and Miller (1990) and Fung
and Shachter (1990).

1. AN ILLUSTRATIVE EXAMPLE: THE USED
CAR BUYER

To illustrate some of the problems encountered with
asymmetric decision problems in influence diagrams
and decision trees, we consider the well-known and
highly asymmetric used car buyer problem as an
example (Howard 1962). We chose this example (out
of many possible examples) because it illustrates many
of the difficulties that the conventional influence dia-
gram representation has with asymmetric problems
and it is large enough to demonstrate the computa-
tional advantages of our representation. In describing
the example, we adopt the terminology of Howard
and Matheson and refer the reader seeking an intro-
duction to influence diagrams to that paper. Shachter
(1986) gives a more formal introduction to influence
diagrams, but uses slightly different terminology.

1.1. The Level of Relation

The influence diagram in Figure 1 describes the used
car buyer problem at the level of relation. A fellow
named Joe is considering buying a used car. Like most
used car buyers, he is unsure of the car’s condition.
For the particular model he is considering, Joe is able
to narrow the possible conditions of the car down to
either a “peach” or a “lemon,” with the uncertainty
depending on where the car was manufactured. This
uncertainty about the car’s condition is represented in

Car’s
Condition

First First Second econd
Test >( Test Test  f—>{ Test Purchase
Decision Results Decision Results Decision

—

Figure 1. Influence diagram for the used car buyer.
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the influence diagram by the chance node labeled
Car’s Condition.

The used car salesman gives Joe an hour to have
the car examined by a mechanic. The mechanic offers
to perform three different diagnostic tests on the car
that will help Joe determine its condition. Joe’s choice
of which test to perform, if any, is represented by the
decision node labeled First Test Decision. The results
of the test are represented by a chance node labeled
First Test Results. The arrows into this First Test
Results node indicate that the distribution for First
Test Results is conditioned on the outcome of First
Test Decision and Car’s Condition. One of these tests
is short and allows time to perform a second related
test after reviewing the results of the first. This second
testing decision is represented by the Second Test
Decision node and its results are represented by the
Second Test Results node. The arrows into the Second
Test Decision node indicate that, at the time the
second test decision is made, Joe knows the results of
the first test and remembers which test he chose for
First Test Decision. After reviewing all the test results,
Joe decides whether to purchase the car; this decision
is represented by the Purchase Decision node. The
arrows into the Purchase Decision node indicate that
at the time of that decision, Joe knows the results of
both tests and does not forget which tests he chose to
perform. Note that Car’s Condition is not known at
the time any decision is made.

The value node is a chance node that represents the
decision maker’s objective function. In this case,
the value node, labeled Net Value, represents the
value of the car to Joe less what he spends on tests.
The dependence of Net Value on the tests per-

formed is indicated by the arrows from the testing
decisions to the value node. The arrow from Car’s
Condition to Net Value indicates that the value of the
car depends on the car’s condition reflecting the
greater repair costs associated with a lemon. The omis-
sion of arrows from the test result nodes to the Net
Value node indicates that, given the outcomes of its
direct predecessors, Net Value does not depend on the
test results. The value node is drawn with a double
border to indicate that, given the outcomes of its direct
predecessors, Net Value is known with certainty (i.e.,
Net Value is a deterministic function of its direct
predecessors).

1.2. The Level of Function

To describe the used car buyer problem in more detail,
we need to examine the probability distributions asso-
ciated with the chance nodes in the diagram and the
alternatives associated with decision nodes. These are
typically displayed using tables, as shown in Table 1.
(We propose an alternative representation in this
paper.) For example, the principal uncertainty in the
problem, Car’s Condition, has no conditioning pre-
decessors and the table, shown in part a, specifies the
probability assignments for the two possible outcomes,
peach and lemon. The alternatives for First Test Deci-
sion and Second Test Decision are shown in parts b
and c.

The distribution for First Test Results, shown in
part d, is conditioned on Car’s Condition and First
Test Decision. If Joe decides not to perform any tests,
he will observe No Result regardless of the car’s con-
dition; this is indicated by the degenerate probability
distributions given in the first two columns of Table

Table I
Some of the Distributions for the Used Car Buyer Influence Diagram

a. Car’s Condition

b. First Test Decision

c. Second Test Decision

Outcome Probability Alternatives Alternatives
Peach 0.8 No Test No Test
Lemon 0.2 Steering Differential
Transmission
Fuel & Electrical
d. First Test Results
First Test Fuel & Fuel &
Decision No Test No Test Steering Steering  Transmission Transmission Electrical  Electrical
Car’s Condition Peach Lemon Peach Lemon Peach Lemon Peach Lemon
Outcome Probability Probability Probability Probability  Probability Probability  Probability Probability
No Result 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0 Defects 0.00 0.00 0.90 0.40 0.90 0.40 0.80 0.13
1 Defect 0.00 0.00 0.10 0.60 0.10 0.60 0.20 0.53
2 Defects 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33
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I, part d. To consider the distribution for the test
results given that a test is performed, we need to
explore Joe’s understanding of the car’s condition in
more detail. The lemons were built at a new plant
before certain production problems were fixed and are
known to have defects in 6 of the car’s 10 systems.
The peaches were manufactured at an established
plant and are known to have defects in 1 of the 10
systems. In both cases, each system is equally likely to
be defective. Thus, if Joe tests the steering system and
the car is a lemon, the probability of 1 Defect is 0.6.
If the car is a peach, the probability of 1 Defect is 0.1.
In both cases there is no chance of finding 2 Defects
or No Result. These probability assignments are given
in the third and fourth columns of part d of Table I.
Given Joe’s belief that the defects are equally likely to
be in any of the 10 systems, the distribution Joe assigns
for the test of the transmission is the same as the
distribution assigned for the test of the steering system.
Thus, the fifth and sixth columns of part d are the
same as the third and fourth. Similar reasoning for
tests of both the fuel and electrical systems leads to
the probability assignments given in the last two col-
umns of the table.

The distribution for First Test Results illustrates
some of the problems the conventional influence dia-
gram has with asymmetric probability distributions.
The tabular representation requires that asymmetric
distributions be “symmetrized” so that the user must
define a common set of outcomes for all conditioning
scenarios and assign zero probabilities to the many
impossible outcomes. While this tabular representa-
tion is a complete description of the underlying prob-
ability distributions (it contains all of the necessary
information), it is inefficient and obscures much of
the structure of the distribution. To discover what
outcomes are possible in which scenarios, we need to
look for the nonzero probabilities in the table. To
recognize that the steering and transmission tests lead
to identical distributions for First Test Results, we
must notice that the fifth and sixth columns of the
table are the same as the third and fourth.

We can illustrate another problem with the conven-
tional influence diagram representation by consider-
ing the second testing decision. Because of time
constraints, Joe has the option to test the differential
system only if he chooses to perform the transmission
test. This contingent structure poses serious difficulties
for the conventional influence diagram representa-
tion. In this representation, a single set of alternatives
is associated with a decision node, and it is assumed
that these alternatives are available in each possible
conditioning scenario (see, for example, Shachter

1986). To capture the contingent structure of the
second testing decision, we have to design the value
function to penalize the unavailable alternatives so
that they will not be found to be optimal by the
solution algorithm. For example, Joe will not have
time to test the differential if he first tests the steering
system. To rule out this possible choice, the value
function must assign large negative values to all sce-
narios in which a test of the steering system is followed
by a test of the differential system. This limitation of
the influence diagram representation has two effects.
First, the representation obscures the contingent
nature of the decision: To discover that an alternative
is impossible, we have to examine the value function
and recognize the penalty values. Second, the repre-
sentation needlessly increases the time and space
required to solve the decision problem: The solution
algorithm must carry around the penalty values cor-
responding to the impossible alternatives and then
conclude that it is optimal not to choose them.

The second testing decision points to another limi-
tation of the conventional symmetric influence dia-
gram representation. If we examine the distribution
for First Test Results, we see that many combinations
of test decisions and test results are impossible. For
example, if Joe first tests the steering system, it is
impossible to observe No Result or 2 Defects. Simi-
larly, if Joe performs no tests, it is impossible to
observe 0, 1 or 2 Defects. In the conventional influ-
ence diagram representation, the solution algorithm
would be asked to compute an optimal policy for
Second Test Decision for every combination of sce-
narios, including the many that are impossible. This
is very expensive computationally and, if these impos-
sible scenarios are shown when reporting the optimal
strategy for Second Test Decision, the structure of the
problem is again obscured.

1.3. A Decision Tree for the Used Car Buyer

Unlike influence diagrams, decision trees have no
trouble representing asymmetric decision problems.
Figure 2 shows a partial decision tree for this problem;
a complete decision tree is given in Howard (1962).
Unlike the influence diagram, the decision tree dis-
plays only the possible test results, clearly indicates
the contingent nature of the second test decision, and
does not require computations for impossible scenar-
ios. However, the decision tree representation has its
own set of limitations—most of which apply in both
symmetric and asymmetric problems.

A fundamental limitation of the tree representation
is that it obscures the dependence and independence
relationships among variables in the decision problem.
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First Test First Test Second Test
Decisi Result Decisi
No Test No Result No Test

0 Defects No Test

0.2 1 Defect No Test

No Test

Differential
No Test

I Differential

0 Defects No Test
667

Fuel &

Electrical
9671 Defect No Test

067 2 Defect No Test

Figure 2. Partial decision tree for the used car buyer.

For example, the influence diagram for the used car
buyer problem (Figure 1) clearly indicates that Net
Value depends on First Test Decision, Second Test
Decision, Purchase Decision and Car’s Condition and
that, given these, Net Value is independent of First
Test Results and Second Test Results. To discover
this in the decision tree we would have to notice that
all paths through the tree that correspond to a partic-
ular combination of values for First Test Decision,
Second Test Decision, Purchase Decision, and Car’s
Condition have the same Net Value regardless of the
test results. While this “coalescence” is obvious in the
influence diagram, it is very difficult to notice in a
decision tree and, consequently, most tree-based solu-
tion algorithms have not been able to recognize and
exploit it.

Another limitation of the decision tree representa-
tion is that the probabilities required in the decision
tree may not be the same as those assessed from the
decision maker. For example, in the used car buyer
problem, it is convenient to assess the probabilities for
First Test Results conditioned on Car’s Condition (as
indicated in the influence diagram of Figure 1). In the
decision tree, the order of variables in the tree corre-
sponds to the order in which variables become known
to the decision maker. In the used car buyer problem,
the outcome of First Test Results is known at the time
the Second Test Decision is made, and, similarly, the
outcome of Second Test Results is known at the time
the Purchase Decision is made. However, the outcome
of Car’s Condition is not revealed until after the
Purchase Decision. To capture this sequence in the

decision tree, we must first give marginal probabilities
for First Test Results (shown in Figure 2), followed by
conditional distributions for Second Test Results
given First Test Results, followed by conditional dis-
tributions for Car’s Condition given both test results.
The usual approach for handling these kinds of prob-
lems with decision trees is to maintain a separate
tree—sometimes called nature’s tree—which gives the
probabilities in an order convenient for assessment.
The probabilities required for the decision tree are
then calculated by “flipping” nature’s tree using Bayes’
rule. Besides the inconvenience of the calculations
required to create a decision tree from the assessed
distributions, the presence of these two trees some-
times causes confusion between the analyst and
decision maker.

2. STRUCTURING CONDITIONAL
DISTRIBUTIONS IN INFLUENCE DIAGRAMS

Our goal in this paper is to propose a representation
that combines the strengths of the decision tree and
influence diagram representations. In particular, we
seek a representation that, like an influence diagram,
explicitly describes the independence assumptions in
the model, and, like a decision tree, can capture and
exploit asymmetries in the problem. Our strategy for
achieving this goal is to extend the influence diagram
representation to include a decision tree-like represen-
tation for describing the conditional distributions
associated with the influence diagram. This represen-
tation for the distributions makes explicit the set of
conditionally possible and impossible outcomes or
alternatives and makes explicit the relationship
between conditioning information and the conditional
distributions assigned to each state of information.

2.1. Conditioning Functions and
Atomic Distributions

In the conventional influence diagram representation,
a conditional probability distribution Px 4 s(x, a, b) is
considered to be a function of both the variable whose
probability distribution is being described X, and its
conditioning variables 4 and B. To better describe the
relationship between states of information and the
conditional probability distributions assigned to each
particular state of information, we decompose the
conditional probability distribution Px, 4 5(x, a, b) into
a conditioning function Cx4p(a, b) that maps from
the set of all possible conditioning scenarios (i.e.,
outcomes of 4 and B) to a set of atomic distributions,
which, in turn, describe the probability distribution
assigned in each conditioning scenario. Perhaps the
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x1

x2
x1

x2
x1

x3
x1

x2
x2

x3
x2

x4

N e’ ——
Conditioning Atomic
Tree Distributions

Figure 3. A distribution tree for Py 5(a, b).

best way to illustrate this decomposition is to view the
probability distribution as a tree, as in Figure 3. We
call these distribution trees. The atomic distributions
are represented by the rightmost nodes and their
branches in the distribution tree. The conditioning
function is represented by the rest of the tree, which
we call the conditioning tree. Each path through the
conditioning tree represents a conditioning scenario
and leads to an atomic distribution that describes the
probabilities assigned in that scenario. In our func-
tional notation, the atomic distribution represented
by the topmost node in Figure 3 is written Cx45(al,
b1), and the probability on the upper branch of that
node may be written [Cx45(al, b1)](x1) = 0.4.

As a very simple example of a distribution tree from
the used car buyer problem, Figure 4a shows the
distribution tree for the Car’s Condition node. Since
the Car’s Condition node has no conditioning prede-
cessors, its distribution is represented by a single
atomic distribution giving Joe’s probability assign-
ments for the two possible outcomes, peach and

Purchase Car’s
Decisi .,
Car's
Conditi
Peach Purchase
0.8 Car
0.2 n

a) Car’s Condition

b) Net Value

lemon. Some additional examples of distribution trees
are shown in Figure 4 (and in Figures 5-7) and will
be discussed shortly.

Unlike a decision tree, a distribution tree makes no
assertions about the type of the conditioning variables,
dependencies among the conditioning variables, or
the probabilities of the events represented in the con-
ditioning tree. The order of variables in the condition-
ing tree is arbitrary. For example, the conditional
distribution represented by the distribution tree of
Figure 3 could be drawn with B followed by 4. While
certain orderings of conditioning variables in the tree
may be more natural and may make the structure of
the distribution more transparent, the different trees
are simply different views of the same conditional
probability distribution.

Also, atomic distributions for different conditioning
scenarios may have different sets of possible outcomes.
For example, in Figure 3, given 4 = al and B = b1,
the two possible outcomes of X are x1 and x2, while,
given A = g2 and B = b1, the two possible outcomes
of X are x1 and x3. However, for each atomic distri-
bution to make sense as a probability distribution, its
set of possible outcomes must be a mutually exclusive
partition of the set of possible outcomes of X given
that particular conditioning scenario. Similarly, for
the collection of atomic distributions to make sense
as a conditional probability distribution, the union of
these sets of possible outcomes over all conditioning
scenarios must be a mutually exclusive partition of
the set of possible outcomes of X. This implies that
each set of conditionally possible outcomes defined by
a particular atomic distribution must be a subset of
the set of all outcomes of X.

Deterministic Atomic Distributions. In particular
conditioning scenarios, the outcome of a variable may
be known with certainty. The assertion of certainty is
a very strong assertion that allows efficient computa-
tion as well as concise representation. Accordingly, we
distinguish between deterministic atomic distribu-
tions, those atomic distributions with a single possible

Net First Test
Value Decision
No Test
$60 Steering
Transmission
-$100 Fuel & Electrical

c) First Test Decision

Figure 4. Distributions for Car’s Condition, Net Value and First Test Decision.
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outcome, and stochastic atomic distributions, those
atomic distributions with more than one possible out-
come. Graphically, deterministic atomic distributions
are drawn as double-bordered circles while stochastic
atomic distributions are drawn as single-bordered cir-
cles. A conditional distribution may contain any
mixture of deterministic and stochastic atomic
distributions.

While a distribution may contain both deterministic
and stochastic atomic distributions, nodes whose con-
ditional distributions contain only deterministic
atomic distributions are special and are called deter-
ministic nodes. In an influence diagram, deterministic
nodes are drawn with a double border, and are distin-
guished from stochastic nodes whose distribution con-
tains at least one stochastic atomic distribution. For
example, in the used car buyer problem, the Net Value
node is deterministic as Net Value is uniquely deter-
mined by the outcomes of its direct predecessors. A
partial distribution tree for the Net Value node is
shown in Figure 4b.

Atomic Alternative Sets. In an influence diagram,
decision nodes represent those variables whose values
are chosen by the decision maker. Having introduced
the distinctions of conditioning functions and atomic
distributions, we can refine the definition of decision
nodes to include variables whose values are chosen by
the decision maker in some, but not necessarily all,
conditioning scenarios. We can also have different
alternatives available in different conditioning scenar-
i0s. We describe the set of alternatives available to a
decision maker in a particular conditioning scenario
with an atomic alternative set. A node is considered a
decision node if its distribution contains at least one
atomic alternative set. One might want to mix atomic
distributions and atomic alternative sets in the same
conditional distribution if the outcome of some con-
ditioning variable determines whether the deciston
maker can choose the value of the specified variable.
Graphically, atomic alternative sets are drawn like
stochastic atomic distributions with squares instead of
circles. For example, the First Test Decision node in
the used car buyer problem, like the Car’s Condition
node, has no predecessors and its distribution con-
sists of a single atomic alternative set, as shown in
Figure 4c.

2.2. Coalescence

Having introduced the distinction between condition-
ing functions and atomic distributions, we can explic-
itly represent the relationship between conditioning
scenarios and probability distributions assigned given
those scenarios. For example, one may assign the same

probability distribution to two different scenarios. To
capture this assertion, the two conditioning scenarios
are said to share the same atomic distribution. Stated
formally, two conditioning scenarios (4 = al, B= bl)
and (4 = a2, B = b2) share an atomic distribution if|
Cxiap(al, bl) = Cxja(a2, b2). A conditional distri-
bution is said to be coalesced if any of its atomic
distributions are shared. (This is essentially a formal-
ization of Olmsted’s notion of “coalescence within an
influence diagram.”) In our view, the sharing of an
atomic distribution should be asserted explicitly by
the person assigning the probability distribution. We
do not consider two atomic distributions with the
same outcomes and probabilities to be shared if they
are not explicitly identified as shared; the similarity in
this case could perhaps be due to limited numerical
precision in the specification of probabilities rather
than an identity intended by the person assigning the
distributions.

Coalescence sometimes occurs in particularly useful
patterns. These patterns simplify the description of
the probability distribution and allow computational
efficiencies. One such pattern occurs in a distribution
with two or more conditioning variables when some
subset of conditioning scenarios shares a set of atomic
distributions so that they may be seen as sharing a
distribution tree. Given a distribution for X condi-
tioned on 4 and B, we say that two conditioning
variable outcomes al and a2 share a subtree if
Cxias(al, b) = Cx 45(a2, b) for all outcomes b of the
variable B. As an example, consider the distribution
for the First Test Results node in the used car buyer
problem shown in Figure 5. If Joe decides to test one
system, he will observe either 0 or 1 Defects. Given

First Test Car’s First Test
Decisi Conditi
No Test
- o @ No Result
Steering Peach E 0 Defects
A
\ 1 1 Defect

Transmission 0 Defects
1 Defect
0 Defects
Fuel &
Electrical 1 Defect
0 Defects
1 Defect
2 Defects

Figure 5. Distribution for First Test Results.
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Joe’s belief that the defects are equally likely to be in
any of the 10 systems, the distribution Joe assigns for
the test of the transmission is the same as the distri-
bution assigned for the test of the steering system.
This can be captured in the distribution tree by having
the two different tests share a subtree, as illustrated in
Figure 5.

Another simplifying pattern of sharing occurs when,
for some subset of conditioning scenarios, the corre-
sponding conditional probability distributions are
assigned independently of the outcome of the rest of
the conditioning variables. We say that a distribution
for some variable X conditioned on variables A and B
is collapsed across the variable B given A = q if
Cxias(a, b1) = Cxja5(a, b2) for all outcomes b1 and
b2 of B. (More generally, a collapsed distribution may
share a subtree rather than a single atomic distribu-
tion.) An example of a collapsed distribution is given
in Figure 5. If Joe decides not to perform any tests, he
will observe no test results regardless of the car’s
condition; thus the distribution for First Test Results
can be collapsed across Car’s Condition given No Test.
This collapsed distribution is drawn as an asymmetric
tree with no label or branches for Car’s Condition.
This notation indicates that, given that no tests are
performed and regardless of whether the car is a peach
or a lemon, the outcome No Result certainly occurs.

It is interesting to compare the distribution tree
describing the conditional probability distribution for
First Test Results (shown in Figure 5) to part d of
Table I. The tree representation is more compact than
the table and the structure of the distribution—which
distributions are assigned in which scenarios and
which outcomes are possible in which scenarios—is
much clearer in the tree than in the table.

2.3. Clipping

When assessing a conditional probability distribution,
one must usually specify an atomic distribution for
each conditioning scenario. However, in certain situ-
ations, a complete assessment may not be necessary.
For example, some of these conditioning scenarios
may be impossible (i.e., have zero probability), making
any assigned distribution irrelevant. If the condition-
ing scenario (4 = a, B = b) is impossible, there are no
possible outcomes of the variable X, and we say that
the atomic distribution Cyx 48(a, b) is clipped. When
assessing a conditional probability distribution, one
may “clip” an atomic distribution to assert that a
particular conditioning scenario is impossible. It is
important to note that clipping is not an asser-
tion about the distribution of X, but rather an assertion
about the distributions of its direct predecessors, A

and B. If the distributions for the predecessors of X
are specified, a computer program could detect impos-
sible conditioning scenarios and automatically clip the
appropriate atomic distributions before the distribu-
tion for X is specified.

To illustrate clipping, consider the distribution for
the Second Test Decision node of the used car buyer
example shown in Figure 6. Here, Joe has the option
to test the differential system only if he chooses to test
the transmission. There is a great deal of clipping in
this distribution, reflecting the many impossible com-
binations of testing alternatives and results. For exam-
ple, if No Test is chosen in First Test Decision, the
only possible outcome of the test is No Result. The
impossibility of observing zero, one, or two defects in
the first test given No Test is indicated by the omission
of branches corresponding to these outcomes in the
conditioning tree. Similarly, the impossibility of
observing No Result given that a test was performed
is indicated by omitting branches corresponding to
that outcome.

Note that both clipped and collapsed distributions
are represented as asymmetric distribution trees. A
clipped distribution tree is distinguished from a coa-
lesced distribution tree by the labels on the remaining
conditioning variable outcomes. The absence of a
label in a coalesced distribution tree indicates that the
same probability distribution is assigned regardless of
the conditioning variable outcome. The labels in a
clipped distribution tree indicate that the atomic dis-
tributions corresponding to the missing conditioning
variable outcomes are clipped. The other distributions
for the used car buyer problem (not shown here)
provide additional examples of both clipping and
coalescence.

First Test First Test

Second Test
Decision Results i

Decision

No Test . NoResult

No Test

Transmission

Figure 6. Distributions for Second Test Decision.
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2.4. Unspecified Atomic Distributions

It is also unnecessary to specify certain atomic distri-
butions when they are not needed to answer particular
questions. For example, consider the example of a
hypothetical research and development problem,
shown in Figure 7. Here, technical success is defined
as overcoming two technical hurdles: crystallization
and superconductivity. The arrow from the crystalli-
zation node to the superconductivity node indicates
that the probabilities assigned to achieving supercon-
ductivity depend on whether crystallization is
achieved. However, if we are only interested in the
probability of technical success, we need not assign
probabilities to the success of superconductivity if
crystallization is not achieved: The distribution for
technical success is collapsed across superconductivity
given that crystallization fails. However, if we were
interested in computing the unconditional probability
of achieving superconductivity, we would need to
specify the atomic distribution for superconductivity
given that crystallization is not achieved. Thus,
whether a distribution is unnecessary depends not
only on the structure of the successor distribution, but
also on what questions we want to answer with the
influence diagram.

To assert that a particular atomic distribution is
unnecessary, we leave it unspecified. Graphically,
unspecified atomic distributions are drawn with ques-

Crystall-
ization |

Super-
onductivi

Super-
Crystallizati Crystallizati Juctivi
3 Success Success
4 4 Failure
. Failure
Failure »
Crystall- Super- Technical
N Juctivi S

Success

Success
Success e

Failure
~

JO— Failure
rd

Failure

Figure 7. An example of an unspecified atomic
distribution.

tion marks replacing the atomic distribution, as in
Figure 7. It is also possible to partially specify an
atomic distribution by defining the set of conditionally
possible outcomes given A = g, B = b without speci-
fying their probabilities. This is useful when the suc-
cessor distribution is not collapsed across all possible
outcomes of X, but a common atomic distribution is
shared by those outcomes of X that are conditionally
possible given 4 = a, B = b. Note that although both
clipped atomic distributions (indicating impossible
scenarios) and unspecified atomic distributions (indi-
cating irrelevant distributions) imply that no distri-
bution needs to be specified, because of the different
meanings, the two cases are treated differently when
solving an influence diagram. (See the discussion of
reversing an arrow in the next section.)

3. INFLUENCE DIAGRAM TRANSFORMATIONS

As discussed in the Introduction, influence diagrams
have proven valuable for solving decision problems
(Olmsted 1983, Shachter 1986, 1988). The basic idea
underlying influence diagram solution algorithms is
to recognize that an influence diagram represents one
possible expansion of a joint probability distribution
and that we can transform one influence diagram into
a different one which represents a different expansion
of the same probability distribution. Given an influ-
ence diagram in one form, we can repeatedly apply
these transformations to convert the original influence
diagram into a new one that answers a particular
question. For example, we can transform the original
used car buyer influence diagram (Figure 1) into
another influence diagram that shows how Net Value
depends on Purchase Decision and what is known at
the time the purchase decision is made. This influence
diagram is shown in Figure 8. Algorithms for accom-
plishing these transformations are described by
Shachter (1986, 1988) (see also Rege and Agogino).

Our goal in this section is to show how the structural
properties of the conditional distributions can be prop-
agated during the solution process. For example,
the clipping and coalescence in the distributions of
the original influence diagram of Figure 1 implies
clipping and coalescence in the distributions of the
derived influence diagram of Figure 8. By recognizing
special structures in these conditional distributions,
we can achieve computational efficiencies over the
conventional symmetric influence diagram proce-
dures. In the next section, we will demonstrate these
efficiencies by considering the solution of the used car
buyer problem.



290 / SwmiutH, HOLTZMAN AND MATHESON

First First Second
Test Test Test >
Decision Results Decision

\¥__—

Purchase
Decision

|

Figure 8. A transformed influence diagram for the
used car buyer.

3.1. Basic Influence Diagram Transformations

To describe the effects of the influence diagram trans-
formations on the conditional distributions, we con-
sider four basic transformations: adding an arrow,
removing an arrow, reversing an arrow, and determin-
ing a decision node. Note that these basic transfor-
mations differ slightly from those described by
Shachter (1986, 1988) (see also Olmsted). For exam-
ple, Shachter’s arrow reversal operation includes the
addition of any necessary arrows while our arrow
reversal operation assumes that the necessary
arrows have already been added. Similarly, his
“removing a chance node X into a chance node Y”
can be described in terms of our operations as:
1) adding arrows so that X and Y have the same set of
direct predecessors, 2) reversing the arrow from X to
Y, and 3) simply deleting X. The other basic operations
described by Shachter (“removing a decision node”
and “deterministic node propagation”) can also be
defined in terms of the four basic operations discussed
here. Thus, his algorithms for solving decision and
probabilistic inference problems in influence diagrams
can be implemented in terms of the basic transfor-
mations described here.

The primary advantage of the basic transformations
used here is that they simplify the description of the
effects of these operations. Given a particular algo-
rithm for evaluating an influence diagram, it may be
more efficient to implement composite transforma-
tions that combine several basic transformations. For
example, if one is using Shachter’s algorithms
for evaluating an influence diagram, it would be more
efficient to combine the procedures for adding and
reversing arrows into a single procedure that imple-
ments his form of arrow reversal.

3.1.1. Adding an Arrow

The omission of a conditioning arrow in an influence
diagram represents an assertion of conditional inde-
pendence. Provided a cycle is not created, a new arrow
can always be added into a chance node without

affecting the diagram’s underlying joint distribution.
Although adding an unnecessary arrow obscures an
assertion of independence in the influence diagram,
that assertion is preserved in the structure of the
resulting conditional distribution: The existing atomic
distributions of the variable at the head of the newly
added arrow are shared by all outcomes of the vari-
able’s new direct predecessor. The assertion of condi-
tional independence is thus lost at the level of relation,
but preserved at the level of function.

For example, suppose that we want to add an arrow
from node X to node Y, where node A4 is a direct
predecessor of Y; X’s distribution is unaffected by
adding an arrow from it to Y. If we let Cy,, denote
conditioning function before the transformation and
Cyix.4 denote conditioning function after the transfor-
mation, then Cyx4(x, a) = Cy4(a) for all a and x.
Figure 9 shows the conditional distribution resulting
from adding an arrow from First Test Decision to
Car’s Condition in the used car buyer influence dia-
gram. Note that any clipping or sharing in the original
distribution is preserved in the resulting distribution
and no new atomic distributions are computed.

3.1.2. Removing an Arrow

Consider a chance variable Y conditioned on a deter-
ministic variable X and on all of X’s direct predeces-
sors, as shown on the left side of Figure 10. Given the
value of X’s direct predecessors, the outcome of X is
known with certainty. Therefore, knowing the out-
come of X in addition to knowing the outcomes of its
direct predecessors gives no additional information
about Y’s distribution. Thus, the arrow from X to Y
can be removed without affecting the underlying joint
distribution, as shown on the right side of Figure 10.
A new conditioning function for Y, Cy, s, is com-
puted with its values depending on the original con-
ditioning function for Y, Cy,x 45, and the distribution

First Test Car's
Decision Condition

No Test

Electrical

Figure 9. Distribution for Car’s Condition after
adding an arrow from First Test Decision
to Car’s Condition.
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Figure 10. Removing an arrow.
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for X. Considering a particular conditioning scenario
A = a, if the deterministic value of X is specified (i.e.,
not clipped and not unspecified), then Y’s new distri-
bution is obtained by selecting the atomic distribution
corresponding to X’s deterministic outcome. For-
mally, if x is the deterministic outcome of X given
A = a, then Cy.5(a, b) = Cyx.45(x, a, b) for all b.
Figure 11 gives an example of this case. Note that
clipping or coalescence present in the original distri-
bution, Cy,x, s, is propagated to the new distribution,
Cy,4.5- The cases in which the atomic distribution Cy 4
is clipped or unspecified are analogous to the cases of
arrow reversal described below. These other cases, like
the case described here, do not require computing any
new atomic distributions.

3.1.3. Reversing an Arrow

An arrow from a chance node X to a chance node Y
means that the distribution for Y is conditioned on
the outcome of X. Given a distribution for X (some-
times referred to as the prior distribution) and a dis-
tribution for Y conditioned on X (the likelihood
distribution), we can use Bayes’ rule to reverse this
arrow. In the new influence diagram, we have a dis-
tribution for X conditioned on the outcome of Y (the

al

C XI
a2 2

Figure 11. The effect of removing an arrow on the
conditional distribution of Y.

posterior distribution) and an unconditional distribu-
tion for Y (the preposterior distribution). This arrow
reversal operation, first described in Howard and
Matheson, plays a key role in solving decision and
inference problems using influence diagrams (Shach-
ter 1986, 1988). Here, we extend the arrow reversal
operation to handle clipped, coalesced, and unspeci-
fied distributions. Although these different cases make
the arrow reversal operation somewhat more difficult
to describe, we will see that substantial computational
efficiencies are gained by recognizing these special
cases.

Consider the influence diagram in Figure 12 as the
prototypical instance of an arrow reversal. The distri-
butions for X and Y must be conditioned on the same
states of information; this means that X and Y may
not have any direct predecessors that are not also
direct predecessors of both nodes, except X, which is
a direct predecessor of Y but not of itself. Both X and
Y may have any number of successors provided that
none of the successors of X are predecessors of Y. If
the latter condition does not hold, reversing the arrow
would introduce a cycle, and the influence diagram
would no longer correspond to an expansion of a joint
probability distribution.

Arrow reversal is carried out by considering each
conditioning scenario (i.e., each outcome of A) sepa-
rately. The effects of arrow reversal depend on the
structure of the prior and likelihood distributions for
the particular outcome of 4. Table II describes the
different special structures and indicates which of eight
possible cases corresponds to that structure. The col-
umns of Table II distinguish the four different types
of atomic distributions occurring in the prior (i.e., X’s)
distribution: deterministic, clipped, unspecified, and
stochastic. The rows of the table distinguish among
different special structures in the likelihood (i.e., Y’s)
distribution. In each case, we can write formulas for
the conditioning functions of the posterior and pre-
posterior distributions, Cy,y,+ and Cyy4, from the prior
and likelihood distributions, Cx,4 and Cy x4

In Case 1, the prior atomic distribution Cy4(a) is
deterministic. Because given 4 = a, X’s outcome is
known with certainty, conditioning on Y provides no
additional information about the outcome of X. Thus,
in the posterior distribution, Cy,y .4, X’s deterministic

Cr—( C
- R

Figure 12. Prototypical arrow reversal.
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Table 11
Cases for Arrow Reversal

Type of Prior Atomic Distribution: Cx, 4(a)

Structure of Likelihood
Distribution Deterministic Clipped Unspecified Stochastic
Collapsed Distribution Case 1 Case 2 Case 3 Case 5
Some Relevant Clipping Case 1 Case 2 Case 4 Case 6
Some Relevant Distribution Case 1 Case 2 Case 4 Case 7
Unspecified
Full Distribution Case 1 Case 2 Case 4 Case 8

outcome is shared across all conditionally possible
outcomes of Y. As in the basic transformation of
removing the arrow from X to Y, we compute Cy4(a)
by selecting the atomic distribution corresponding to
Cx4(a)’s deterministic outcome in Cyx 4.

In Case 2, the prior distribution Cy,4(a) is clipped,
indicating that the conditioning scenario 4 = ¢ is
impossible. The arrow reversal operation propagates
that assertion by clipping both the preposterior
Cvy4(a) and the posterior Cx,y.4(y, a) for all y.

In Cases 3 and 4, the prior distribution Cyx4(a) is
unspecified. If the likelihood distribution Cy,x 4 shares
one atomic distribution for all possible outcomes of X
given A = a (Case 3), as in the hypothetical research
and development problem discussed in the previous
section, then the preposterior distribution Cy4(a)
must be that shared atomic distribution. If we do not
have this sharing, we cannot compute the preposterior,
and it becomes unspecified (Case 4). In either case,
the posterior distribution Cyx,y,4(a) remains unspeci-
fied because we cannot compute it without specifying
a prior distribution.

The logic behind Cases 5, 6, and 7 is similar to the
previous three cases. Here, the prior distribution
Cx4(a) is a stochastic atomic distribution. If, given
A = a, the likelihood distribution Cyx.4(x, @) shares
one atomic distribution for all conditionally possible
outcomes of X (Case 5), then the preposterior distribu-
tion Cy,4(a) must be that shared atomic distribution.
Since, in this case, the likelihood distribution is col-
lapsed, indicating that information about X tells us
nothing about Y (given 4 = a, the posterior distribu-
tion Cy,y,4(y, a) must be equal to the prior Cx4(a)
for all conditionally possible outcomes of Y. In Cases
6 and 7, some relevant distribution is either clipped
or unspecified, and the resulting posterior and prepos-
terior distributions, Cxy,4(y, a) and Cy,4(a), must
also be clipped or unspecified.

Case 8 of arrow reversal corresponds to the general
case described in Howard and Matheson, where Bayes’
rule is used to compute the posterior and preposterior
atomic distributions. Note that of the eight cases

described, this is the only one that requires computing
new atomic distributions. In the seven other cases, the
structural properties of the prior and likelihood distri-
butions allow us to avoid computing new atomic
distributions.

As an example of arrow reversal, Figure 13 shows
the distributions for Car’s Condition and First Test
Results after reversing the arrow between them.
Note that before the arrow can be reversed, we must
add an arrow from First Test Decision to Car’s
Condition: the resulting prior distribution for
Car’s Condition was shown in Figure 9. The likeli-
hood distribution for First Test Results is shown in
Figure 5. The conditioning scenario corresponding to
No Test for the First Test Decision is an example of
Case 5: The likelihood distribution is collapsed across
Car’s Condition and, consequently, the posterior dis-
tribution for Car’s Condition is equal to the prior
distribution. The other distributions are examples of
the general case (Case 8) in which Bayes’ rule is used
to compute the revised atomic distributions. Note the
deterministic atomic distribution in the posterior dis-
tribution for Car’s Condition: Since a peach has
exactly one defect, if we observe two defects the car is
certainly a lemon.

The computations of arrow reversal can be simpli-
fied further by recognizing sharing in the joint distri-
bution for X and Y. Suppose that two conditioning
scenarios, 4 = al and 4 = a2, share the same joint
probability distribution for X and Y: Cx4(al) =
CXM(aZ) and CY|X,A(X, al) = Cy|x,,4(x, 02) for all
possible outcomes of Cy,4(al).

Since arrow reversal converts from one expansion
of the joint distribution to the other, two conditioning
scenarios that share the same joint distribution before
arrow reversal should also share the same joint distri-
bution after arrow reversal. Thus, if we compute the
posterior and preposterior distributions for one con-
ditioning scenario, say al, the computed distributions
can be shared with the other conditioning scenario
a2. Recognizing this joint coalescence avoids redun-
dant computing of new atomic distributions and
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Figure 13. Distributions after reversing the arrow from Car’s Condition to First Test Results.

preserves the joint coalescence captured in the original
distributions. An example of joint coalescence is
shown in Figure 13. In the distributions for Car’s
Condition and First Test Results before the arrow
reversal (shown in Figures 9 and 5), the scenarios
corresponding to steering and transmission share the
same joint distribution. These two conditioning sce-
narios also share the same joint distribution after
arrow reversal (Figure 13).

3.1.4. Determining a Decision Node

Given an influence diagram with decision nodes (and
a unique value node), we can replace a decision node
with a chance node that represents its optimal policy
without affecting the optimal joint probability distri-
bution in any way. The basic transformation of deter-
mining a decision node performs this replacement for
a decision that is explicitly represented as a choice
among alternative value lotteries. In calling this oper-
ation determining a decision node, we intend to
invoke two meanings of the term to determine: “to
come to a decision” and “to fix the position of.” In
the first sense of determine, the basic transformation
decides upon the optimal policy. In the second sense
of determine, the basic transformation commits the
decision maker to the optimal policy in the context of
the given influence diagram.

To determine decision node D, D must be a direct
predecessor of a unique value node ¥V, and every other

direct predecessor of ¥ must also be a direct predeces- -

sor of D. If this is the case, the choice represented by

the decision node amounts to a choice among value
lotteries in each possible conditioning scenario. Figure
14 shows the prototypical example of determining
a decision node in an influence diagram. Note
that the decision node D may have direct predecessors
that are not also direct predecessors of the value node
V;, node A in Figure 14 is an example. This allows the
possibility that the decision maker may know the
outcome of 4 and the set of alternatives at decision D
may be affected by the outcome of 4, even though,
given knowledge of B, knowledge of A gives no addi-
tional information about V.

Determining a decision node converts the decision
node D into a chance node. If the distribution for the
decision node originally contains only atomic alter-
native sets and, possibly, deterministic atomic distri-
butions, D becomes a deterministic node. If original
distribution contains any stochastic atomic distribu-
tions, D becomes a stochastic chance node as a result
of this operation. The value node V is unaffected by
determining D.

In general, to determine a decision node, we

0 @0
N T S

Figure 14. Determining a decision node.
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examine each conditioning scenario that corresponds
to an atomic alternative set and select an alternative
corresponding to the best lottery in that case. (Here,
best means the lottery with maximum expected value
or expected utility.) As with arrow reversal, special
structures in the conditional distributions are treated
as special cases.

4. COMPUTATIONAL EFFICIENCY: SOLVING
THE USED CAR BUYER PROBLEM

To illustrate the use of these basic influence diagram
transformations and the efficiencies provided by the
asymmetric influence diagram representation, we
solve the used car buyer problem using Shachter’s
(1986) algorithm. By solving the influence diagram,
we mean computing optimal policies for all decision
nodes and computing the unconditional probability
distribution for Net Value given by following the
optimal policy (the value lottery).

4.1. Measures of Efficiency

We will compare the conventional “symmetric” influ-
ence diagram representation with our “asymmetric”
representation using two measures of efficiency: solu-
tion time and storage space. To measure solution time,
we will examine the time required to perform partic-
ular steps in the solution algorithm. To measure stor-
age space, we will examine the sizes of the distributions
in the influence diagram at different points in the
solution procedure. We will consider three different
measures of the size of a distribution. Because each
basic transformation requires iterating over the con-
ditioning scenarios and the different possible out-
comes, these measures provide a good explanation of
the time involved in the solution process and the
advantages of the asymmetric representation.

The Number of Conditioning Scenarios. In the sym-
metric representation, the number of conditioning
scenarios for a node’s distribution is equal to the
product of the number of outcomes of each direct
predecessor of that node. For example, in the distri-
bution of Car’s Condition given First Test Decision
and First Test Results shown in Figure 13b, the sym-
metric representation would be counted as having a
total of 16 conditioning scenarios given by the product
of the four alternatives in First Test Decision and the
four outcomes of First Test Results. If a node has no
predecessors, we say that its distribution has a single
conditioning scenario.

In the asymmetric representation, the number of
conditioning scenarios corresponds to the number

given in the symmetric representation less those that
are clipped. For example, the distribution for Car’s
Condition given First Test Results and First Test
Decision would have 8 conditioning scenarios (16 in
the symmetric representation minus 8 impossible
combinations of tests and test results). The difference
between the number of conditioning scenarios in the
symmetric representation and asymmetric represen-
tations highlights the value of recognizing clipping.

The Number of Atomic Distributions. In the sym-
metric representation, the number of atomic distri-
butions is equal to the number of conditioning
scenarios, as each conditioning scenario must have an
assigned distribution. Thus, the symmetric distribu-
tion for Car’s Condition given First Test Decision and
First Test Results would have 16 atomic distributions.

In the asymmetric representation, the total num-
ber of atomic distributions may be less than the
number of conditioning scenarios as some atomic
distributions may be shared by several conditioning
scenarios. The asymmetric distribution for Car’s Con-
dition given First Test Decision and First Test Results
has six atomic distributions, as shown in Figure 13b.
The difference between the number of atomic distri-
butions in the symmetric and asymmetric represen-
tations (16 and 6 in the example) shows the
cumulative benefit of recognizing both clipping and
coalescence. The difference between the number of
conditioning secnarios and the number of atomic
distributions in the asymmetric representation (eight
and six in the example) highlights the incremental
benefit of recognizing coalescence.

The Number of Outcome-Probability Pairs. In the
symmetric representation, the total number of out-
come-probability pairs is equal to the product of the
number of atomic distributions times the number of
possible outcomes. The symmetric distribution for
Car’s Condition given First Test Decision and First
Test Results has 32 outcome-probability pairs (16
atomic distributions times 2 outcomes). The total
number of outcome-probability pairs for a determin-
istic node is equal to the number of atomic distribu-
tions, because one need only store a single outcome
for each scenario.

In the asymmetric representation, different atomic
distributions may have different sets of possible out-
comes and the number of outcome-probability pairs
is computed by direct counting. Each deterministic
atomic distribution is counted as one outcome-
probability pair. The asymmetric distribution for
Car’s Condition given First Test Decision and First
Test Results has 11 outcome-probability pairs. The
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difference in the total number of outcome-probability
pairs in the two representations (32 and 11 in the
example) reflects the cumulative benefit of recognizing
clipping and coalescence, and of allowing different
atomic distributions to have different sets of possible
outcomes. The incremental benefit of allowing differ-
ent sets of possible outcomes can be measured by
comparing the ratio of the number of outcome-prob-
ability pairs over the number of atomic distributions
in the symmetric and asymmetric cases (32/16 and
11/6 in the example).

4.2. Results

Table III compares the efficiencies of the symmetric
and asymmetric representations of the used car buyer
influence diagram. The rows of the table correspond
to different points of the solution algorithm. Each row
lists the total number of conditioning scenarios,
atomic distributions, and outcome-probability pairs
for the symmetric and asymmetric representations of
the used car buyer influence diagram. The first row of
Table III shows the sizes of distributions in the initial
influence diagram for the used car buyer (shown in
Figure 1). Comparing the total number of condition-
ing scenarios for the symmetric and asymmetric rep-
resentations (234 versus 79), we see that there is a fair

amount of clipping in the problem. Comparing the
number of atomic distributions with the number of
conditioning scenarios in the asymmetric representa-
tion (40 versus 79), we see that there is also a fair
amount of coalescence in the problem. Comparing
the total number of outcome-probability pairs for the
two representations (598 versus 55), we see that the
asymmetric representation is considerably more com-
pact than the conventional symmetric representation.
Examining the ratios of the number of outcome-
probability pairs over the number of atomic distribu-
tions for the two representations (598/234 = 2.56
versus 55/40 = 1.38), we see that there is some incre-
mental benefit in allowing different sets of possible
outcomes for different atomic distributions.

The differences between the symmetric and asym-
metric influence diagram representations become
even more pronounced in the intermediate stages of
the solution procedure. In particular, the symmetric
influence diagram becomes very large after removing
the Car’s Condition node into the Net Value node.
The influence diagram at this point is shown in Figure
8. Here, the value node has 25 different possible values
and 6 direct predecessors, resulting in a total of 288
conditioning scenarios in the symmetric representa-
tion and a total of 7,200 outcome-probability pairs.

Table III
Efficiency Results for Solving the Used Car Buyer Problem

Size of Influence Diagram After Operation

Number of Number of Time to Perform
Conditioning Number of Atomic Outcome-Probability Operation
Scenarios Distributions Pairs (Seconds)
Operation Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

0. Initial Sizes 234 79 234 40 598 55 — —_

1. Reverse Arrow from 245 82 245 43 612 60 1.0 0.6
Car’s Condition to
First Test Results

2. Reverse Arrow from 261 77 261 44 612 63 7.2 1.6
Car’s Condition to
Second Test Results

3. Remove Car’s Condition 437 71 437 39 7,636 70 131.4 5.8
into Net Value

4. Remove Purchase 245 47 245 24 2,644 43 28.9 3.7
Decision
into Net Value

5. Remove Second Test 149 35 149 19 948 37 20.7 1.2
Results into Net Value

6. Remove Second Test 133 33 133 17 532 32 39 0.8
Decision into Net Value

7. Remove First Test Result 117 25 117 10 216 25 3.1 0.7
into Net Value

8. Remove First Test 114 22 114

Decision into Net Value

7 138 10 0.4 0.3

Total Elapsed Time 196.7 14.8
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However, many of these conditioning scenarios are
impossible (all but 36) and no more than 2 of the 25
possible values are conditionally possible in any par-
ticular conditioning scenario. As a result, the asym-
metric influence diagram is much more compact at
this point: The symmetric representation has a total
of 7,636 outcome-probability pairs versus a total
of 70 outcome-probability pairs in the asymmetric
representation.

As the algorithm continues and more nodes are
removed, the differences between the two representa-
tions become less pronounced. In the final influence
diagram, the only distributions remaining are those
required to store the optimal policies for the decision
nodes and the value lottery. Even here, we see some
advantages to the asymmetric representation as both
the optimal policies and the value lottery are repre-
sented more compactly (138 outcome-probability
pairs versus 10).

In terms of solution time, the asymmetric represen-
tation is also substantially more efficient than its
symmetric counterpart. Table III shows the time
required to perform each step in solving the used car
buyer problem. (All computations were performed
using the same Macintosh II computer.) The asym-
metric version of the used car buyer was solved in
14.8 seconds; an equivalent symmetric representation
of the same problem was solved in 196.7 seconds. As
expected, the amount of time required to perform a
particular step of the solution algorithm is closely
related to the sizes of the distributions involved. The
exact solution times are, of course, highly dependent
on the particular software and hardware implemen-
tation of the solution algorithm as well as the choice
of solution algorithm.

4.3. Comparison With Decision Trees

It is interesting to compare both influence diagram
representations to the original decision tree for the
used car buyer given in Howard (1962). Not counting
“nature’s tree,” the tree contains a total of 97 outcome-
probability pairs. Here, we have counted each branch
in the tree and each endpoint value, analogous to a
deterministic atomic distribution, as one outcome-
probability pair. This number is somewhat higher than
the total number of outcome-probability pairs in our
asymmetric influence diagram (55), reflecting some
duplication of probabilities and values in the decision
tree that is avoided in the asymmetric influence dia-
gram. The decision tree is much more compact than
the symmetric influence diagram which has a total of
598 outcome-probability pairs.

Note that Howard’s tree for the used car buyer is a
relatively sophisticated decision tree. It exploits coa-
lescence in the problem by omitting branches of the
tree that are duplicated elsewhere and is abbreviated
in that, unlike the partial tree shown in Figure 2, it
omits deterministic outcomes like No Test Results. A
less sophisticated decision tree that recognizes the
asymmetries in the problem but is not coalesced or
abbreviated would have a total of 182 outcome-
probability pairs. A fully symmetric decision tree for
the used car buyer problem would have a total of
1,588 outcome-probability pairs. The reason the deci-
sion trees (even the sophisticated version) are less
compact than the asymmetric influence diagram can
be traced back to their inability to capture the fact
that Net Value is conditionally independent of the test
results given the other variables in the problem. As a
result, identical probabilities and values are duplicated
in several places.

5. CONCLUDING REMARKS

In this paper, we have extended the definition of an
influence diagram to describe the structure of a deci-
sion problem at the level of function. This extension
allows one to represent asymmetric decision problems
in influence diagrams without obscuring the structure
of the problem or increasing the time and space
required for solution. Comparing our asymmetric
influence diagram representation with the conven-
tional symmetric influence diagram representation,
we find that the savings in the time and space required
for solution are substantial: The time to solve the used
car buyer problem is reduced by a factor of more than
10, and the space required for solution (as measured
by the maximum total number of outcome-
probability pairs) is reduced by a factor of more than
100. While these exact results are specific to the used
car buyer problem, we believe that the asymmetric
influence diagram representation effectively domi-
nates the conventional symmetric influence diagram
representation. The two representations are essentially
equivalent for perfectly symmetric problems, and the
asymmetric influence diagram representation is both
clearer and more efficient for asymmetric problems.
Comparing asymmetric influence diagrams with
decision trees is more complex. In general, the effi-
ciency of the influence diagram representation, as
compared with the decision tree representation,
depends on the amount of independence among the
variables in the problem. In problems with no inde-
pendence (even symmetric problems), the influence
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diagram representation has no real computational
advantages over the decision tree. Thus, given an
asymmetric decision problem with little or no inde-
pendence, the decision tree representation may be the
most natural and efficient representation. In problems
with both independence and asymmetries, the asym-
metric influence diagram representation—capturing
asymmetries like a decision tree and independence
like an influence diagram—provides an attractive
alternative to both the decision tree and conventional
symmetric influence diagram representations.

Although we have not yet done a detailed perfor-
mance analysis, we would like to offer a few observa-
tions about the strengths and weaknesses of our
representation as compared to those described by Call
and Miller (1990) and Fung and Shachter (1990). Our
representation and Fung and Shachter’s are similar in
that both extend the influence diagram representation
by incorporating features of decision trees. One impli-
cation of this influence diagram-based strategy is that
both representations capture asymmetries “locally” in
the distributions (or contingencies) for particular
variables. In contrast, Call and Miller use separate
influence diagram-like and decision tree-like represen-
tations in DPL to describe each decision problem. An
advantage of the DPL approach is that “global” asym-
metries can be captured easily in the decision tree-like
representation. For example, one can label some part
of the tree and, at some other point in the tree, use a
“goto” statement (they call it “perform”) to indicate
that the remainder of the tree is exactly the same as
the labeled part. In our and Shachter and Fung’s
influence diagram representations, such a “global”
statement would be captured in the distributions (or
contingencies) for the particular variables involved; if
there are many variables involved this “local” repre-
sentation may become awkward and inefficient. The
disadvantage of the DPL approach is that one must
examine both the decision tree-like and influence
diagram-like representations to obtain a complete
description of the problem. In contrast, the influence
diagram representations both provide a complete
description of the problem in a single, consistent
framework.
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