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In this paper we study the impact of uncertainty about future innovations in quality and costs on consumers’ technology
adoption decisions. We model the uncertainty in the technology’s quality and costs as a Markov process and consider three
models of the adoption decision. The first model assumes that consumers do a simple net present value (NPV) analysis that
compares the NPV of adopting to that of not adopting, without considering the possibility of waiting. The second model is
a stochastic dynamic program that considers the possibility of waiting and views the adoption decision as a one-time event,
i.e., the consumer will only make a single purchase, the only question is when. The third model allows repeat purchases
so the consumer may “upgrade” by purchasing new versions of the technology whenever it suits her.

We study structural properties of these models, e.g., the following: What changes in qualities and costs will make the
consumer better off? What changes will encourage adoption? We will see that the simple NPV and single-purchase model
have many intuitive properties: with the right notion of improvements and reasonable assumptions about the technology
changes, we find that improvements in the technology make the consumer better off and encourage adoption. Here improve-
ments are defined using a partial order on quality and cost pairs. The results are more complicated in the repeat-purchase
model. Under the same conditions on technology changes, technology improvements will make the consumer better off.
However, except for special cases of transitions, these improvements may make the consumer better off and discourage
adoption.
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1. Introduction
Technology adoption decisions are notoriously difficult,
and history is full of examples where firms and consumers
have been “slow” to adopt a new technology. For example,
Schumpeter (1934, p. 15) wrote: “we see all around us
in real life faulty ropes instead of steel hawsers, defective
draught animals instead of show breeds, the most primitive
hand labor instead of perfect machines, a clumsy money
economy instead of a cheque circulation, and so forth.”
Modern consumers and firms are similarly vexed by tech-
nology adoption decisions: Should I buy a new computer
(hybrid car, video camera, cell phone, television, MP3
player, version of software1 0 0 0) now or wait for future
improvements and/or cost reductions? Should an electric
utility meet increasing demand by building a new power
plant now or wait for capital costs to decrease, efficiencies
to improve, or for regulatory uncertainty to be resolved?

There is a growing theoretical literature on technology
adoption decisions that formally studies the impact of
uncertainty about future technological improvements on
adoption decisions. In this literature, we can distinguish
three prototypical models of adoption decisions. The first
model assumes that the consumer simply compares the net

present value (NPV) of the lifetime costs and benefits asso-
ciated with adopting the technology to the NPV associated
with not adopting, without considering the possibility of
waiting or the possibility of upgrading in the future. This
simple NPV model is commonly used in practice and serves
as a benchmark for comparison: adoption might be consid-
ered “slow” if consumers fail to adopt technologies when
the lifetime NPV associated with adoption exceeds the life-
time NPV associated with not adopting.

The second prototypical model is a stochastic dynamic
program that considers uncertainty about how the tech-
nology will evolve over time and explicitly considers the
option of waiting to adopt. In this single-purchase model,
the consumer can exercise the option to adopt the tech-
nology whenever she wants. As is often noted in the real
options literature (see, e.g., Dixit and Pindyck 1994), in this
framework it may be optimal to be “slow” and wait for the
possibility of future improvements, even though a simple
NPV analysis suggests adopting. For example, Farzin et al.
(1998) view technology adoption as a real option and con-
sider a continuous-time model with uncertainty about the
timing and magnitude of technological improvements. They
show that this new technology will be adopted as soon as
its value exceeds a certain threshold that is higher than the
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NPV threshold. Doraszelski (2001, 2004) clarifies and gen-
eralizes Farzin et al. (1998) and studies the behavior of
adoption policies in numerical experiments.

The third prototypical model is a more sophisticated
stochastic dynamic program that considers uncertainty
about how the technology will evolve but, more realisti-
cally, considers the possibility of repeat purchases. In this
repeat-purchase model, the consumer may adopt the cur-
rent version of the technology now and upgrade by buy-
ing again at some point in the future. In a classic paper
in this vein, Balcer and Lippman (1984) consider a model
where the timing and magnitude of future improvements is
uncertain and the consumer may repeatedly purchase the
technology. In their model, they find that it is optimal to
adopt the new technology whenever the lag between the
technology available and the technology owned exceeds a
threshold. Kornish (1999) clarifies some results in Balcer
and Lippman (1984), and Cho and McCardle (2009) gen-
eralize Balcer and Lippman’s model to consider adop-
tion decisions for two technologies where it may be
cheaper (or more expensive) to adopt multiple technologies
simultaneously.

In this paper, we consider richer models of technology
change and study the impact of uncertainty about future
improvements in these three prototypical technology adop-
tion models. The model of technology change is richer than
those in the literature because (i) we consider uncertainty
in future adoption costs as well as uncertainty about the
quality of future technologies and (ii) we consider more
general models of quality improvements. Whereas the pre-
vious literature assumes that quality improvements come in
the form of random increments that are independent of the
current quality level, we allow the cost-quality transitions
to follow a more general Markov process.

These generalizations enhance the realism of the model
and lead to more-nuanced results. We show that we can
obtain results about the structure of the value function and
the optimal policies by defining partial orders on technology
quality and cost pairs and using generalized stochastic dom-
inance arguments. The value functions and optimal policies
for the simple NPV and single-purchase model have a nice
monotonic structure. In the simple NPV model, any change
in cost and/or quality that increases the lifetime NPV asso-
ciated with adoption (obviously) makes the consumer better
off and encourages adoption. In the single-purchase model,
not all increases in the lifetime NPV make the consumer
better off, but we can characterize a set of cost and quality
improvements—which we call “clear improvements”—that
make the consumer better off and encourage adoption, given
certain reasonable conditions on the technology transitions.
These clear improvements are a subset of those changes
that increase the lifetime NPV associated with adoption:
with the possibility of delayed adoption, it is not clear when
(or if) the technology will be adopted and, consequently,
some improvements in lifetime NPV may not be appreci-
ated by a consumer who is waiting.

The results for the repeat-purchase model are more del-
icate. Under the same reasonable conditions as the single-
purchase model, we can show that clear improvements make
the consumer better off. However, we cannot establish anal-
ogous monotonicity results for the policies. Although we
might expect clear improvements to encourage adoption, in
fact, some clear improvements in the technology may make
the consumer better off by encouraging the consumer to
switch from adopting to not adopting in the current period.
As we will illustrate, improvements in the technology may
make it unnecessary to upgrade in the future and this, in
turn, can lead to waiting in the current period. However, if
we assume that the cost-quality improvements have additive
increments that are independent of the current cost-quality
level and assume that quality is nondecreasing over time,
we can show that clear improvements in cost and quality
will encourage adoption, as one might expect.

Although we focus on the impact of uncertainty about the
quality and cost of future versions of the technologies, there
is another stream of literature on technology adoption that
instead focuses on the impact of uncertainty about the qual-
ity or profitability of the current technology. These models
consider the technology adoption decision to be a one-time
event, and the technology typically does not change over
time; see, e.g., Jensen (1982), McCardle (1985), Lippman
and McCardle (1987), Ulu and Smith (2009). Uncertainty
about the current quality provides another reason consumers
may be “slow” to adopt a technology: even though the con-
sumer may estimate a positive expected NPV associated
with adopting, it may still be best to wait and gather addi-
tional information to be more sure that the technology is
truly profitable.

We begin in §2 by defining and comparing the adop-
tion models we study. In §3, we study monotonicity prop-
erties of the value functions and optimal policies. In §4,
we briefly study convexity properties. We offer concluding
remarks in §5. A few proofs are provided in the paper; the
remainder are provided in an electronic companion, along
with some technical discussions. An electronic companion
to this paper is available as part of the online version that
can be found at http://or.journal.informs.org/.

2. The Models
We begin by describing the technology transition models
and then describe the simple NPV, single-purchase, and
repeat-purchase models. Next, we present an illustrative
numerical example and some formal results comparing the
different models.

2.1. Technology Transitions

Time is discrete and finite; we let k = 0111 0 0 0 denote
the number of periods remaining. There is a technology
available in the marketplace whose cost and quality change
stochastically over time. In period k, the cost to adopt
the technology is ck. The period-k quality pk is defined
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as the per-period benefit the technology provides to the
consumer when she owns the technology. We assume that
the cost ck is a one-time cost to acquire the technology
and that, once adopted, the per-period benefit of the tech-
nology does not change over its lifetime. The available
technology evolves stochastically according to a Markov
process with the probability distribution for the next-period
quality and cost 4p̃k−11 c̃k−15 depending on the current
quality and cost 4pk1 ck5; the changes in p̃k−1 and c̃k−1

may be correlated. The consumer is initially endowed
with a technology (or substitute for the technology) with
quality qk.

This model of technological change is general enough to
handle a variety of different kinds of innovation processes.
For example, the next-period technologies 4p̃k−11 c̃k−15
could represent incremental improvements where p̃k−1 and
c̃k−1 are drawn from values slightly above pk and/or
below ck. Alternatively, the transitions could represent occa-
sional breakthrough innovations or “jumps” where most of
the mass for 4p̃k−11 c̃k−15 is concentrated at the current value
4pk1 ck5, but there is some chance of drawing a signifi-
cantly higher value for p̃k−1 and/or lower value for c̃k−1;
in this case, the arrival time for changes in technologies
would be stochastic. In general, we allow costs and quality
to increase or decrease over time. The framework is also
general enough to capture the possibility of a technology
maturing, for example, by assuming that the uncertainty in
quality and costs is decreasing over time or, alternatively,
as the technology improves.

We will at times consider a special case with additive
transitions where

p̃k−1 = pk + ũ
p
k−1

c̃k−1 = ck + ũc
k−10

(1)

Here the additive increments, ũp
k−1 and ũc

k−1, are assumed to
be independent of 4pk1 ck5, but may be correlated with each
other. In this model, anticipated improvements in quality
or reductions in costs can be accommodated by assuming
positive or negative expected values for the increments.

The models of Balcer and Lippman (1984) and Farzin
et al. (1998) (and others discussed in the introduction)
assume that quality follows this form of additive process
and that costs are constant (i.e., ũc

k−1 = 0). Moreover, they
decompose the uncertainty about changes in quality into
two components: first, there is uncertainty about whether
there is an innovation (innovation occurs with some prob-
ability �) and second, if there is an innovation, there is
uncertainty about the magnitude Z of the innovation. This
can be viewed as a special case of the additive model with
ũ
p
k−1 placing mass 1 −� at 0 and selecting a value Z with

probability �. Balcer and Lippman (1984) and Farzin et al.
(1998) also assume that Z is nonnegative.1

2.2. Three Adoption Models

In the simple NPV model of the technology adoption deci-
sion, we assume that the consumer compares the NPV

of adopting to the NPV of not adopting and chooses
whichever leads to highest value. For k > 0, the value given
by such a model is

vnk4pk1 ck1 qk5

= max















1 − �k

1 − �
pk − ck (if she adopts)1

1 − �k

1 − �
qk (if she does not adopt)1

(2)

where � (0 ¶ � < 1) is a discount factor. (If � = 1, we
can replace 41 − �k5/41 − �5 with k, here and throughout
the paper.) For consistency with the other models, we take
vn04pk1 ck1 qk5 = 0. The superscript n here is a mnemonic
for NPV or, alternatively, “naive.” This model takes into
account the full lifetime benefits of the technology and
weighs this against the costs, but neglects the possibility of
waiting and purchasing the technology at some point in the
future.

In the single-purchase model, the consumer can adopt
or defer the adoption decision and continue with the tech-
nology that she currently owns. More specifically, if the
consumer adopts the technology in period k, she pays ck
and obtains a total benefit equal to the NPV of the benefit
stream less the adoption cost: 441 − �k5/41 − �55pk − ck.
If the consumer does not adopt, she obtains a benefit of qk
and begins the next period endowed with the same tech-
nology. Assuming that the consumer makes decisions to
maximize the discounted expected net benefit, we can write
the value function recursively: we take the terminal value
function to be vs04pk1 ck1 qk5 = 0 and, for earlier periods,
we take

vsk4pk1 ck1 qk5

= max























1 − �k

1 − �
pk − ck1 (if she adopts)1

qk + �Ɛ6vsk−14p̃k−11 c̃k−11 qk5 � pk1 ck7

(if she does not adopt)0

(3)

Here, the superscript s is a mnemonic for “single” pur-
chase. Thus, in this model, the consumer views the adop-
tion decision as being like an American call option that can
be exercised at any time. Adopting the technology today,
however, implies that she cannot benefit from any future
improvements in the technology.

In the repeat-purchase model, the consumer can buy a
new version of the technology whenever it suits her. More
specifically, if the consumer adopts the technology, she
pays ck and obtains a benefit pk in that period and then
begins the next period endowed with this new technol-
ogy. If she does not adopt the technology, she receives the
benefit qk of the technology that she currently owns and
begins the next period endowed with this same technol-
ogy. The value function for the repeat-purchase model is
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then given recursively by taking the terminal value to be
vr04pk1 ck1 qk5= 0 and, for earlier periods,

vrk4pk1 ck1 qk5

= max



























pk − ck + �Ɛ6vrk−14p̃k−11 c̃k−11 pk5 � pk1 ck7

(if she adopts)1

qk + �Ɛ6vrk−14p̃k−11 c̃k−11 qk5 � pk1 ck7

(if she does not adopt).

(4)

The superscript r here is a mnemonic for “repeat.”
Although we have formulated these models with finite

horizons, one could consider their infinite-horizon limits.
The properties of the value functions that we study—
namely, forms of “increasing” or “convex” are examples
of what Smith and McCardle (2002) call “closed, convex
cone properties.” As discussed there, if these properties
hold for all finite horizons k, the same properties will hold
in the infinite-horizon limit, provided the limiting value
functions (vn

�
, vs

�
, and vr

�
) exist. To ensure that these limits

exist, we need to assume that the discount rate is positive
(i.e., �< 1), and place some restrictions on the rewards
(e.g., assume the rewards are bounded) and transitions;
see, e.g., Bertsekas (1995), Lippman (1975), or Stokey and
Lucas (1989) for discussion of conditions ensuring the exis-
tence of these infinite-horizon limits.

We view the three models (2)–(4) to be of increasing
realism and appropriateness: a consumer should contem-
plate waiting in technology adoption decisions and should

Figure 1. Value functions for the numerical example of §2.3 (with k = 10 periods to go).
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recognize the possibility of replacing the technology in the
future. Unfortunately, as we will see, the three models are
also increasingly difficult to analyze.

2.3. A Numerical Example

Figure 1 shows the three different value functions for a pro-
totypical numerical example where the transitions approxi-
mate the additive model (1) on a finite grid. In this example,
there are k = 10 periods remaining, and quality and costs
are modeled as independent uncertainties on a grid with 84
evenly spaced values; the quality (pk) ranges from 0 to 2.5
and the costs (ck) range from 0 to 5. The transitions are
approximately normally distributed with p̃k−1 having mean
pk +0010 and standard deviation 0.30 and c̃k−1 having with
mean ck −0015 and standard deviation 0.30. The transitions
are approximated by rounding the quality and cost values
to the nearest values of pk and ck on the grid. The initial
quality level qk is 0.45, and the discount factor � is 0.99.

The value functions in Figure 1 are shown as a function
of quality pk and cost ck. The upper surface represents the
value function for the repeat-purchase model (vrk); the lower
surfaces are the value functions for the single-purchase and
simple NPV models (vsk and vnk); contour lines are shown
on each surface. The colors describe the optimal policies,
with the red/orange regions being the rejection regions. The
vertical plane in the figure marks the points where 441−�k5/

41−�55pk −ck = 441−�k5/41−�55qk. Technologies to the
right of this plane are not cost-effective improvements over
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Figure 2. Adoption regions for the example of
Figure 1.
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(a) Simple NPV model
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(b) Single purchase model

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

0.5

1.0

1.5

2.0

Cost ck

Not an improvement

Not cost effective

(c) Repeat purchase model

the currently owned technology and would be rejected in
the simple NPV model. Technologies to the left of the plane
would be accepted in the simple NPV model. The adoption
regions for this example are shown more explicitly as the
dark regions in Figure 2.

2.4. Comparing Models

Some of the properties exhibited in the numerical example
shown in Figures 1 and 2 are general properties, whereas
others are specific to the example. First, it is easy to see

that the value functions will always be stacked in the order
shown in Figure 1. In both the single- and repeat-purchase
models, the consumer could adopt the technology now and
hold it for all remaining periods, if that is optimal. Sim-
ilarly, in the repeat-purchase model, the consumer could
adopt once (as in the single-purchase model) but could also
adopt new versions of the technology later if this leads to
a larger expected value.

In Figure 2, we see that technologies that are not
improvements over the technology owned (i.e., pk ¶ qk) are
rejected in all three models; this will always be true if adop-
tion is costly (ck ¾ 0). More generally, those technologies
that are not cost effective (i.e., 441−�k5/41−�55pk − ck <
441 − �k5/41 − �55qk) will be rejected in the simple NPV
and single-purchase models; the same is true in the repeat-
purchase model if adoption is costly. In these cases, the
improvement in going from qk to pk does not cover the cost
of adoption ck, even if the new technology would be held
for all remaining periods. In the simple NPV model, the
consumer will adopt all technologies that are cost effective,
but in the single- and repeat-purchase models the consumer
may choose to be “slow” and not adopt some of these tech-
nologies with the hope that the quality will improve or
costs will decrease in the future. Similarly, it is easy to see
that in the repeat-purchase model the consumer should buy
any technology that pays for itself immediately (i.e., sat-
isfies pk − ck ¾ qk) if adoption is costly; in this case, the
consumer increases her immediate benefit and enters the
next period holding a superior technology.2 However, in
the single-purchase model, the consumer may not want to
adopt such a technology now because adopting now elimi-
nates the possibility of obtaining an even better technology
in the future.

In the example of Figures 1 and 2, the adoption region
for the repeat-purchase model includes the adoption region
for the single-purchase model. This result seems intuitive—
if the consumer can only adopt once, she might wait for
a better technology to be available—but does not hold in
general. For instance, consider the following simple deter-
ministic example.

Example. Consider a model with k = 3 periods remain-
ing and discount factor �= 1. Suppose the consumer owns
a technology with quality q3 = 1 and the new technology
evolves deterministically with 4pk1 ck5= 4208135, (210), and
(310) for k = 31211, respectively. In this case, we find that
it is optimal to adopt immediately in the single-purchase
model. In the repeat-purchase model, it is optimal to wait in
the first period and adopt in the next two periods.

If, however, the quality of the technology is cer-
tainly improving over time (i.e., p̃k−1 ¾ pk almost surely),
then the adoption region for the repeat-purchase model
will certainly include the adoption region for the single-
purchase model.

We summarize these comparisons in the following
proposition.
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Proposition 2.1 (Comparing Values and Policies).
1. For all k1pk1 ck, and qk1 v

n
k4pk1 ck1 qk5¶vsk4pk1 ck1 qk5

¶ vrk4pk1 ck1 qk5.
2. In the simple NPV and single-purchase models, it

is never optimal to adopt a technology 4pk1 ck5 such that
441−�k5/41−�55pk −ck < 441−�k5/41−�55qk. The same
result is true in the repeat-purchase model if adoption is
costly (ck ¾ 0).

3. In the repeat-purchase model, if adoption is costly,
the consumer should adopt any technology that pays for
itself immediately (i.e., such that pk − ck > qk).

4. Suppose the quality of the technology pk is nonde-
creasing over time, i.e., p̃k−1 ¾ pk almost surely for all k.
Then, if it is optimal for the consumer to adopt a tech-
nology in the single-purchase model, it is also optimal to
adopt this technology in the repeat-purchase model.

The conclusion that the single- and repeat-purchase mod-
els may be “slow” to adopt compared to the simple NPV
model and will never be “faster” than the simple NPV
model is consistent with the common theme in the real
options literature (see, e.g., Dixit and Pindyck 1994): in
the face of uncertain future profits, it may be optimal to
“wait” to invest even though a simple NPV analysis sug-
gests investing. This is a very general result that does not
require any assumptions about the form of the technology
transitions. If we view the repeat-purchase model as the
most appropriate model of the technology adoption deci-
sions (as discussed in §2.2), the last part of the proposition
above says that—given nondecreasing quality—the single-
purchase model will generally be too “slow” to adopt com-
pared to the standard of the repeat-purchase model.

Changing the quality of the technology that the consumer
owns (qk) has similar effects in all three models. We sum-
marize these results in the following proposition.

Proposition 2.2 (Impact of Changing the Quality of
the Technology Owned). Let v∗

k denote the value func-
tion for any of the three models. In all three models:

1. The value function is increasing in the value of tech-
nology the consumer owns (qk). That is, for all k, pk, ck,
and q1

k ¶ q2
k , v∗

k4pk1 ck1 q
1
k5¶ v∗

k4pk1 ck1 q
2
k5.

2. If it is optimal to adopt technology 4pk1 ck5 when
holding a technology with quality q2

k , then it is also optimal
to adopt 4pk1 ck5 when holding a technology with quality
q1
k , when q1

k ¶ q2
k .

3. The change in value due to changing qk is bounded
by the change in value if the consumer held qk forever. That
is, for all k, pk, ck, v

∗
k4pk1 ck1 qk5− 441 −�k5/41 −�55qk is

decreasing in qk.

The first two results imply that the value functions for
all three models are increasing with changes in the quality
of the technology-owned qk and that the optimal policies
are “decreasing” in qk in that, if it is optimal to adopt
with one qk, it is also optimal to adopt for all lower values
of qk. The second result implies that if a consumer holding
technology q1

k who is “behind” another consumer holding

technology q2
k (with q1

k ¶ q2
k ), the lagging consumer will

be more likely to adopt the current technology and, as the
technology changes over time, the lagging consumer will
catch up with or pass the leading consumer or at least fall
no further behind. In Figure 1, increasing qk would raise
the flat part of the simple NPV value function at the bottom
of the stack of value functions and lift the other two value
functions to preserve the order of the stack. In Figure 2,
increasing qk would lift the “cost effective” and “immedi-
ate adoption” thresholds, and the adoption regions would
shrink accordingly. The bound provided in the final result
of the proposition will be useful in establishing monotonic-
ity properties in the next section.

3. Monotonicity of the Value Functions
and Policies

In Figures 1 and 2, we see that in each model the value
functions are increasing in the quality of the technology
pk and decreasing in the cost ck and that the acceptance
regions are monotonic in pk and ck; if it is optimal to adopt
at one pk (or ck), it is also optimal to adopt at higher pk

(or lower ck). This is always true in the simple NPV model.
Moreover, the simple NPV model prescribes an unambigu-
ous trade-off between quality and costs: changes in quality
and cost will lead to increases in value and make adoption
more attractive whenever these changes lead to an increase
in the NPV associated with adoption.

The situation is more complicated in the single- and
repeat-purchase models. Because the technology’s quality
and costs evolve stochastically, it is not clear when the tech-
nology will be adopted (if ever) or how long it will be held.
For example, a change in the technology that improves its
NPV 4441 − �k5/41 − �55pk − ck5 will make the consumer
better off if she is adopting and holding the technology for-
ever. However, if it is not optimal to adopt the technology
immediately, such a change in the current technology, even
if it translates directly into a change in future technolo-
gies (as it would with additive transitions of Equation (1))
may not make the consumer better off, because when she
adopts, she will hold the technology for fewer than the
k periods assumed in this NPV calculation. Similarly, in the
repeat-purchase model, if costs are low enough, the con-
sumer may purchase the current version of the technology
now, and then purchase a new version later; again, the con-
sumer will not enjoy the benefits of the current technology
for all remaining periods. Thus, both delayed adoption and
repeat adoption can lead the consumer to be “cost sensi-
tive” and weigh adoption costs more heavily than suggested
by a simple NPV calculation that assumes that the new
technology would be purchased now and held forever.

3.1. Clear Improvements and Increasing
Value Functions

Given that it is not clear how long the technology will be
held in the single- and repeat-purchase models, to estab-
lish general monotonicity properties we need to consider a
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notion of a “better” technology that captures the trade-off
between costs and quality and is, in some sense, flexible
about how long a technology will be held. In our analysis,
we will focus on a partial order on technologies that says
one technology is “clearly better” than another if the net
present value of the technology increases, regardless of how
long the technology is held.

Definition 3.1 (Clear Improvements). We say a tech-
nology (p2

k1 c
2
k) is a clear improvement over (or is clearly

better than) 4p1
k1 c

1
k5, or 4p2

k1 c
2
k5¾CI 4p

1
k1 c

1
k5 whenever one

of the following conditions holds:
(i) p2

k ¾ p1
k and c2

k ¶ c1
k . In this case, the 4p2

k1 c
2
k5 tech-

nology has higher quality and is cheaper than 4p1
k1 c

1
k5.

(ii) p2
k ¾ p1

k, c2
k ¾ c1

k and p2
k − c2

k ¾ p1
k − c1

k . In this case,
the 4p2

k1 c
2
k5 technology is more expensive than the 4p1

k1 c
1
k5

technology, but the increase in quality is large enough that
it pays for the increase in cost in a single period.

(iii) p2
k ¶ p1

k, c2
k ¶ c1

k , and 41/41 − �55p2
k − c2

k ¾ 41/41 −

�55p1
k − c1

k . In this case, the 4p2
k1 c

2
k5 technology has lower

quality than the 4p1
k1 c

1
k5 technology, but the cost reduction

dominates the decrease in quality even if the technology is
purchased and held forever.

Equivalently, we can say that 4p2
k1 c

2
k5 ¾CI 4p

1
k1 c

1
k5 if

�p2
k − c2

k ¾ �p1
k − c1

k for all � such that 1 ¶ � ¶ 1/41 − �5.
Here, � can be interpreted as the present value multi-
plier for the per-period benefits pk of the technology;
� = 1 corresponds to holding the technology for a single
period and � = 1/41 − �5 corresponds to holding the tech-
nology forever.3 Figure 3 shows technologies (pk1 ck) that
are clearly better than or clearly worse than technology
4p1

k1 c
1
k5: the regions labeled I, II, and III in the figure cor-

respond to the condition in the definition satisfied by these
technologies. We define clearly worse technologies sym-
metrically, e.g., 4p2

k1 c
2
k5 is clearly worse than 4p1

k1 c
1
k5 if

4p1
k1 c

1
k5¾CI 4p

2
k1 c

2
k5.

Note that, as shown in Figure 3, there are regions of
changes that are neither clearly better nor clearly worse
than (p1

k1 c
1
k). For example, the wedge beneath region II in

the figure represents changes in the technology that lead to
an increase in the NPV of the technology if the technol-
ogy were held forever (i.e., 41/41 − �55p2

k − c2
k ¾ 41/41 −

�55p1
k − c1

k), but may not make the consumer better off if
the technology is held for a shorter period. Conversely, the
wedge below region III represents technologies that lead to
improvements if the technology is held for a single period
(i.e., p2

k − c2
k ¾ p1

k − c1
k), but may not lead to an improve-

ment if the technology is held for a longer time period.
Although a clearly better technology leads to greater

rewards associated with adoption, to be sure that the con-
sumer will prefer a clearly better technology, we need
to ensure that the improvement also benefits consumers
who are waiting (in either the single- or repeat-purchase
model) or who may adopt again in the future (in the repeat-
purchase model); i.e., we need to show that the continua-
tion values in the stochastic dynamic programming models

Figure 3. 4pk1 ck5 that are clearly better or clearly
worse than 4p1

k1 c
1
k5.

ck

p k

Clearly better

Clearly worse

I II

III (pk
1, ck

1)

p k
– c k

= p k
1  – c k

1

1
1–�

pk
1 – ck

1

1
1–�

pk – ck =

(3) and (4) increase as well as the immediate reward.
To ensure that this is the case, we will assume that improve-
ments in the current technology “persist” and translate into
future improvements in future technologies. If the only
uncertainty in the model were quality, we could define
persistence using standard first-order stochastic dominance
techniques: if we assume that the transitions are increasing
in that p̃k−1 � p2

k stochastically dominates p̃k−1 � p1
k when-

ever p2
k ¾ p1

k, we would be able to show that the rewards
and continuation values are both increasing in quality pk.
We can establish similar properties in this more general
setting using generalized stochastic dominance techniques
based on the CI partial order.

Definition 3.2 (CI-Dominance and CI-Increasing
Transitions).

1. A function uk4pk1 ck5 is CI-increasing if uk4p
2
k1 c

2
k5¾

uk4p
1
k1 c

1
k5 whenever 4p2

k1 c
2
k5¾CI 4p

1
k1 c

1
k5.

2. 4p̃2
k1 c̃

2
k5 CI-dominates 4p̃1

k1 c̃
1
k5 (or 4p̃2

k1 c̃
2
k5 �CI

4p̃1
k1 c̃

1
k5), if Ɛ6uk4p̃

2
k1 c̃

2
k57 ¾ Ɛ6uk4p̃

1
k1 c̃

1
k57 for all CI-

increasing functions uk.
3. A CI-increasing set U is a set U such that if

4p2
k1 c

2
k5¾CI 4p

1
k1 c

1
k5 and 4p1

k1 c
1
k5 ∈U , then 4p2

k1 c
2
k5 ∈U .

4. The technology transitions are CI-increasing, if
4p̃k−11 c̃k−15 � 4p2

k1 c
2
k5 �CI 4p̃k−11 c̃k−15 � 4p1

k1 c
1
k5 whenever

4p2
k1 c

2
k5¾CI 4p

1
k1 c

1
k5.

As with first-order stochastic dominance, there are sev-
eral equivalent ways to define stochastic dominance for par-
tial orders like the CI-order (see, e.g., Kamae et al. 1977;
Müller and Stoyan 2002, pp. 81–83).

Proposition 3.3 (Equivalent Conditions for CI-
Dominance). The following conditions are equivalent:

1. 4p̃2
k1 c̃

2
k5�CI 4p̃

1
k1 c̃

1
k5.

2. Ɛ6uk4p̃
2
k1 c̃

2
k57 ¾ Ɛ6uk4p̃

1
k1 c̃

1
k57 for all CI-increasing

functions uk.
3. P64p̃2

k1 c̃
2
k5 ∈ U7 ¾ P64p̃1

k1 c̃
1
k5 ∈ U7 for any CI-

increasing set U .
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4. 4p̃2
k1 c̃

2
k5 is equal in distribution to 4p̃1

k1 c̃
1
k5+4ã̃

p
k1 ã̃

c
k5,

where 4ã̃
p
k1 ã̃

c
k5 is almost surely (i.e., with probability

one) a CI-improvement on 40105.

The first pair of equivalent conditions simply repeats the
definition of CI-dominance. The third condition is analo-
gous to checking for first-order stochastic dominance in the
univariate case by comparing cumulative probability distri-
butions. In the final condition, we see that a CI-dominance
improvement can be viewed as equivalent to adding a CI-
improvement to each possible outcome.

Note that the final condition of Proposition 3.3 makes it
is easy to see that the additive transitions of Equation (1)
are CI-increasing. In this case, we can take the incre-
ments 4ã̃

p
k1 ã̃

c
k5 in part 4 of the proposition to be

4ã̃
p
k1 ã̃

c
k5 = 4p2

k1 c
2
k5 − 4p1

k1 c
1
k50 Thus, in this additive

model, 4p̃k−11 c̃k−15 � 4p2
k1 c

2
k5 will CI-dominate 4p̃k−11 c̃k−15 �

4p1
k1 c

1
k5 whenever 4p2

k1 c
2
k5¾CI 4p

1
k1 c

1
k5.

Similarly, consider a model like that of Balcer and
Lippman (1984) (see §2.1) that distinguishes between the
uncertainty associated with the occurrence of an innova-
tion and uncertainty about the magnitude of the innovation
given that it occurs: if we assume the innovations are all
CI-improvements, then increasing (decreasing) the proba-
bility of an innovation occurring results in a CI-dominance
improvement (worsening) in the transition function. This is
also easy to see from Proposition 3.3(4).

If we assume the transitions are increasing in the sense
of Definition 3.2(4), then clear improvements in the tech-
nology will “persist” and make the consumer better off in
all three models.

Proposition 3.4 (CI-Increasing Value Functions).
If the technology transitions are CI-increasing, then the
value functions v∗

k4pk1 ck1 qk5 for all three models are CI-
increasing for each k and qk.

Proof. We give the proof for the repeat-purchase model
here; the proofs for the other models are similar and
simpler. The proof is by induction. The property holds
trivially for k = 0. Now assume vrk−14pk−11 ck−11 qk−15 is
CI-increasing. Suppose 4p2

k1 c
2
k5 is a clear improvement

over 4p1
k1 c

1
k5. We will consider two cases: (i) p2

k ¾ p1
k and

(ii) p2
k ¶ p1

k. First consider the case where p2
k ¾ p1

k. Then,

vrk4p
2
k1 c

2
k1 qk5

= max







p2
k − c2

k + �Ɛ
[

vrk−14p̃k−11 c̃k−11 p
2
k5 � p2

k1 c
2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

¾ max







p2
k − c2

k + �Ɛ
[

vrk−14p̃k−11 c̃k−11 p
1
k5 � p2

k1 c
2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

¾ max







p1
k − c1

k + �Ɛ
[

vrk−14p̃k−11 c̃k−11 p
1
k5 � p1

k1 c
1
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p1
k1 c

1
k

]

= vrk4p
1
k1 c

1
k1 qk50

The first inequality follows because the value function is
increasing in the quality of the technology owned (see
Proposition 2.2(1)), the second inequality follows because
the rewards are CI-increasing (pk − ck if adopt, qk if wait),
and the continuation values are CI-increasing (this follows
from the induction hypothesis and the assumption that the
transitions are CI-increasing).

Now, suppose that p2
k ¶ p1

k. Then,

vrk4p
2
k1 c

2
k1 qk5

= max

{

p2
k − c2

k + �Ɛ
[

vrk−14p̃k−11 c̃k−11 p
2
k5 � p2

k1 c
2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

= max



























1 − �k

1 − �
p2
k − c2

k + �Ɛ

[

vrk−1

(

p̃k−11 c̃k−11 p
2
k

)

−
1 − �k−1

1 − �
p2
k

∣

∣

∣

∣

p2
k1 c

2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

¾ max



























1 − �k

1 − �
p2
k − c2

k + �Ɛ

[

vrk−1

(

p̃k−11 c̃k−11 p
1
k

)

−
1 − �k−1

1 − �
p1
k

∣

∣

∣

∣

p2
k1 c

2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

¾ max



























1 − �k

1 − �
p1
k − c1

k + �Ɛ

[

vrk−1

(

p̃k−11 c̃k−11 p
1
k

)

−
1 − �k−1

1 − �
p1
k

∣

∣

∣

∣

p2
k1 c

2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

= max







p1
k − c1

k + �Ɛ
[

vrk−14p̃k−11 c̃k−11 p
1
k5 � p2

k1 c
2
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p2
k1 c

2
k

]

¾ max







p1
k − c1

k + �Ɛ
[

vrk−1

(

p̃k−11 c̃k−11 p
1
k

)

� p1
k1 c

1
k

]

1

qk + �Ɛ
[

vrk−14p̃k−11 c̃k−11 qk5 � p1
k1 c

1
k

]

= vrk4p
1
k1 c

1
k1 qk50

The first inequality follows because p2
k ¶ p1

k and the value
function satisfies Proposition 2.2(3). The second inequality
follows because the NPV calculation in the reward term is
CI-increasing. The last inequality follows because of the
induction hypothesis and the assumption that the transitions
are CI-increasing. �

Thus, with increasing transitions, we can be sure that
technologies 4pk1 ck5 in regions I, II, or III of Figure 3 will
be preferred to technology 4p1

k1 c
1
k5. Similarly, we can be

sure that technologies that are clearly worse than 4p1
k1 c

1
k5

will have lower values. Technologies that are neither clearly
better nor clearly worse may or may not be preferred to
4p1

k1 c
1
k5, depending on the number of periods remaining

(k), and/or the quality of the technology the consumer cur-
rently owns (qk).
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3.2. Monotonicity of Policies in the
Single-Purchase Model

Intuitively, one might expect the optimal policies to be
“increasing” in that the optimal decisions will move from
waiting towards adopting if one clearly improves the tech-
nology. Although having CI-increasing transitions ensures
that the value functions are increasing for clear improve-
ments, this condition does not imply that the optimal poli-
cies will necessarily be increasing in either the single- or
repeat-purchase models. The challenge is that as the current
technology improves, the benefits associated with adopt-
ing and waiting both increase. Without further restrictions,
the value of waiting could increase more than the value
of adopting, and consequently, the consumer who would
adopt with one technology may prefer to wait with a clearly
better technology.

To ensure that policies are increasing in the single-
purchase model, we will assume that the transitions exhibit
diminishing improvements in the following sense.

Definition 3.5 (CI-Diminishing Improvements). We say
the technology transitions exhibit CI-diminishing improve-
ments if

�Ɛ

[

1 − �k−1

1 − �
p̃k−1 − c̃k−1 � pk1 ck

]

−

(

1 − �k

1 − �
pk − ck

)

is CI-decreasing in 4pk1 ck5.

Intuitively, this condition says that, as the current tech-
nology improves (in the CI sense), the NPV of immediate
adoption 4441 − �k5/41 − �55pk − ck5 increases more than
the expected NPV associated with delaying adoption one
period 4�Ɛ6441 − �k−15/41 − �55p̃k−1 − c̃k−175. It is not dif-
ficult to see that the additive transition model (1) satisfies
this condition; see Appendix A.4 for a proof.

This diminishing improvements condition, along with
increasing transitions, is sufficient to ensure that as we
improve a technology, the value of adopting will improve at
least as much as the value of waiting in the single-purchase
model. This implies that policies are “CI-increasing” in
this model.

Proposition 3.6 (Increasing Policies for the Single-
Purchase Model). Suppose technology transitions are CI-
increasing and exhibit CI-diminishing improvements. Then,
in the single-purchase model, if it is optimal to adopt tech-
nology 4p1

k1 c
1
k5, then it is also optimal to adopt any tech-

nology 4p2
k1 c

2
k5 such that 4p2

k1 c
2
k5¾CI 4p

1
k1 c

1
k5.

Proof. We first show that hs
k4pk1 ck1 qk5= vsk4pk1 ck1 qk5−

4441−�k5/41−�55pk −ck5 is a CI-decreasing function, for
all qk and k¾ 1; note that hk is the difference between the
value with the optimal action and the value with imme-
diate adoption. The proof is by induction. h14p11 c11 q15 =

max8q11 p1 − c19− 4p1 − c15 is clearly CI-decreasing. Now

assume that hs
k−14pk−11 ck−11 qk−15 is CI-decreasing. Then,

hs
k4pk1 ck1 qk5

= max
{

01 qk + Ɛ

[

�

(

1 − �k−1

1 − �
p̃k−1 − c̃k−1

)

−

(

1 − �k

1 − �
pk − ck

)

∣

∣

∣

∣

pk1 ck

]

+ �Ɛ

[

vsk−14p̃k−11 c̃k−11 qk5

−

(

1 − �k−1

1 − �
p̃k−1 − c̃k−1

)

∣

∣

∣

∣

pk1 ck

]}

0

The first expectation in the second argument inside the
maximization is CI-decreasing because the transitions sat-
isfy diminishing improvements. The second expectation is
also CI-decreasing; this follows from the induction hypoth-
esis and CI-increasing transitions. Thus, hs

k4pk1 ck1 qk5 is
CI-decreasing.

Now, if it is optimal to adopt with (p1
k1 c

1
k), then

hs
k4p

1
k1 c

1
k1 qk5= 0. Because hs

k4pk1 ck1 qk5 is CI-decreasing,
if 4p2

k1 c
2
k5 ¾CI 4p

1
k1 c

1
k5, we have hs

k4p
2
k1 c

2
k1 qk5 ¶ 0, which

implies that it is also optimal to adopt with 4p2
k1 c

2
k5. �

Thus, improving the current technology favors adopting
in the single-purchase model. On the other hand, if we have
increasing transitions and improve the future prospects for
the technology without changing the current technology,
this will favor waiting in the single-purchase model. That
is, if we consider transitions 4p̃2

k−11 c̃
2
k−15 � 4pk1 ck5 in place

of 4p̃1
k−11 c̃

1
k−15 � 4pk1 ck5 where 4p̃2

k−11 c̃
2
k−15 � 4pk1 ck5 �CI

4p̃1
k−11 c̃

1
k−15 � 4pk1 ck5, then the value associated with adopt-

ing is unaffected and the value associated with waiting
increases. For instance, with the additive transitions of
Equation (1), a CI-dominance improvement in the incre-
ments 4ũp

k−11 ũ
c
k−15 would increase the value associated with

waiting and make waiting more attractive. Perhaps recog-
nizing this issue, many firms (e.g., Apple) are reluctant to
tout future improvements in their products out of fear of
harming sales of their current products.

3.3. Monotonicity of Policies in the
Repeat-Purchase Model

Although we might expect the policies to also be mono-
tonic in the repeat-purchase model, the optimal policies
are more complicated, and we cannot state an analogous
monotonicity result. For example, the following determin-
istic example illustrates how improving the quality of the
technology may lead the consumer to switch from adopting
to waiting.

Example. Suppose there are k = 8 periods to go, and take
the quality of the consumer’s technology to be q8 = 101, the
discount factor to be �= 0099, and the costs to be ck = 905
for all periods. Suppose the quality evolves according to
pk−1 = 007pk + 3. These transitions are CI-increasing and
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exhibit CI-diminishing improvements;4 the quality level pk

will converge towards 10 over time. Here, we find that with
initial quality p8 = 600, it is optimal to adopt in the first
period. However, with a higher quality level p8 = 605, it is
optimal to wait. Although this reversal may seem coun-
terintuitive, if we look more carefully at the policies, this
behavior seems reasonable. With initial quality p8 = 600,
the optimal policy calls for buying the technology in the
first period and buying again in the fourth period, then
holding that technology through the horizon. With initial
quality p8 = 605, the optimal policy calls for waiting in the
first period, buying in the second period, and then holding
that technology through the horizon.

A key feature in this example is that the magnitude of
future improvements in quality is decreasing as we increase
the current quality. This means that improving the current
quality leads to less improvement in the future and, con-
sequently, upgrading in the future becomes less attractive.
In this example, this leads to a change in the current deci-
sion as well as the future upgrade decisions.

We can say more about the structure of the optimal poli-
cies in the special case where the transitions follow the
additive model of Equation (1). Unlike the previous exam-
ple, with the additive model, improvements in the current
quality or cost level does not affect future improvements in
cost or quality. In this case, the value function can be sim-
plified: rather than considering the decisions to be a func-
tion of the current technology pk, the technology-owned
qk, and cost ck, following Balcer and Lippman (1984), we
can combine pk and qk and consider the value as a func-
tion of the “lag” ãk, defined as the difference between
the technology currently available and the one the con-
sumer currently owns: ãk = pk − qk. Using this, we can
write the value functions as the sum of the NPV from
the current technology (which depends only on qk) and
the value from future adoptions (which depends only on
ãk and ck):

vrk4pk1 ck1 qk5=
1 − �k

1 − �
qk +hr

k4pk − qk1 ck51 (5)

where hr
k is defined recursively with terminal value

hr
04ã01 c05= 0 and for earlier periods,

hr
k4ãk1 ck5

= max































1 − �k

1 − �
ãk − ck + �Ɛ6hr

k−14ũ
p
k−11 ck + ũc

k−1571

(if she adopts)

�Ɛ6hr
k−14ãk + ũ

p
k−11 ck + ũc

k−157

(if she does not adopt).

(6)

We can show that Equation (5) holds using induction; see
Appendix A.5 for a proof.

In the case of independent additive transitions, we then
have the following results.

Proposition 3.7 (Repeat-Purchase Model with Addi-
tive Transisions). Suppose the technology has additive
transitions, as in Equation (1). Then, in the repeat-
purchase model:

1. The value function hr
k4ãk1 ck5 of Equation (6) is CI-

increasing in 4ãk1 ck5.
2. For any fixed ck, the optimal policy is increasing in

ãk: if it is optimal to adopt with lag ã1
k, it is also optimal

to adopt with any ã2
k ¾ã1

k.
3. If the quality of the technology pk is nondecreasing

over time (i.e., p̃k−1 ¾ pk almost surely for all k), then the
optimal policies are CI-increasing: if it is optimal to adopt
with 4ã1

k1 c
1
k5, it is also optimal to adopt with any 4ã2

k1 c
2
k5

such that 4ã2
k1 c

2
k5¾CI 4ã

1
k1 c

1
k5.

The first result follows from Proposition 3.4 after recall-
ing that the additive transitions are CI-increasing. The sec-
ond result shows that the policies are monotonic in the
lag ãk with a fixed cost ck or, equivalently, monotonic in
quality pk, with fixed technology owned qk and cost ck.
This generalizes the threshold policy result of Balcer and
Lippman (1984) to the case with uncertainty about costs
and the possibility of decreases in quality, but says nothing
about simultaneous changes in quality and costs.

The last part of Proposition 3.7 considers simultaneous
changes in quality and costs, but imposes the additional
requirement that quality be nondecreasing. The following
example shows that if quality can decrease, the optimal
policies for the repeat-purchase model may not be mono-
tonic in costs.

Example. Let us reconsider the example of §2.4 with k = 3
periods remaining, discount factor � = 1, where the con-
sumer owns a technology with quality q3 = 1 and the new
technology evolves deterministically with qualities pk =

2081200, and 3.0 for k = 3, 2, 1, respectively. We assume
that the costs decrease by 3 after the first period (c2 =

c3 − 300) and then remain constant (c1 = c2). These transi-
tions are additive, as in Equation (1), but with time-varying
increments. With c3 = 300, we have the example of §2.4 and
find that it is optimal to not adopt in the first period in the
repeat-purchase model. However, with higher initial costs
c3 = 400, the optimal policy calls for buying in the first
period. Although this reversal may seem counterintuitive,
if we look at the whole sequence of decisions, this result
makes sense: with initial costs c3 = 300, the optimal policy
calls for waiting in the first period and buying in the next
two periods. With the higher initial costs of c3 = 400, the
optimal policy calls for buying in the first period and not
buying in the next two periods. Thus, as one might expect,
increasing costs leads to fewer total purchases even though
the change from waiting to buying in the first period deci-
sion is perhaps counterintuitive when viewed in isolation.

The last of part of Proposition 3.7 relies on the following
lemma.
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Lemma 3.8. Suppose that the transitions satisfy the addi-
tive model (1) and the quality of the technology is nonde-
creasing over time (i.e., p̃k−1 ¾ pk almost surely for all k).
Let q2

k ¾ q1
k . Then

(1) vrk4pk1 ck1 q
2
k5 − vrk4pk1 ck1 q

1
k5 is increasing in ck;

and
(2) vrk4pk1 ck1 q

2
k5 − vrk4pk1 ck1 q

1
k5 − ck is decreasing

in ck.

The proof of this lemma is rather involved, but the
intuition is as follows. The difference vrk4pk1 ck1 q

2
k5 −

vrk4pk1 ck1 q
1
k5 is the difference in values for consumers

holding technology q2
k and q1

k , respectively; the consumer
holding q1

k is lagging the other in that q1
k ¶ q2

k . As discussed
following Proposition 2.2, as the technology changes over
time, the lagging consumer will be next to adopt or else
both will adopt at the same time. Now, if the technology
does not get worse over time, once the lagging consumer
adopts, she will either “leapfrog” the other consumer and
become the new leader or else the two consumers will be
tied. When the former laggard becomes the leader, the for-
mer leader will be the next to adopt, thereby continuing
this game of leapfrog (or “keeping up with the Joneses”).
As this process continues, the original lagging consumer
will have adopted either the same number of times as the
original leader or once more than the original leader. For
this reason, the difference vrk4pk1 ck1 q

2
k5− vrk4pk1 ck1 q

1
k5 is

increasing in cost (increasing the cost hurts the lagging
consumer most) and vrk4pk1 ck1 q

2
k5 − vrk4pk1 ck1 q

1
k5 − ck is

decreasing in cost (the negative impact on the laggard due
to increasing the adoption costs is less than the cost of
adopting one extra time).

These comparisons between leaders and laggards arise
when studying policies and comparing continuation values
associated with buying and waiting. In the example above
that shows optimal policies may not be monotonic in costs,
if the consumer buys in the first period, she holds that tech-
nology for all remaining periods. If she waits in the first
period, she will adopt multiple times in the future. Thus,
in this setting, increasing the cost of adoption has a bigger
impact on the consumer who waits. However, having non-
decreasing quality ensures that the waiting and adopting
consumers will play leapfrog with alternating adoptions,
and increasing costs will not make adopting more attractive
than waiting.5

4. Convexity and Increases
in Uncertainty

In this section, we investigate the convexity properties of
the value functions and optimal adoption and rejection
regions and the impact of increasing uncertainty on policies
and values. In the simple NPV model, the value function
is jointly convex in quality and costs, 4pk1 ck5. The adop-
tion and rejection regions are separated by a line (441 −

�k5/41 − �55pk − ck = 441 − �k5/41 − �55qk), and therefore
both regions are convex in 4pk1 ck5.

The situation is more complex in the single- and repeat-
purchase models. As in our study of monotonicity proper-
ties, our analysis of convexity properties relies on stochastic
dominance arguments.

Definition 4.1 (Convex Dominance and Convex Tran-
sitions).

1. 4p̃2
k1 c̃

2
k5 convex-dominates 4p̃1

k1 c̃
1
k5 (or 4p̃2

k1 c̃
2
k5 �CX

4p̃1
k1 c̃

1
k5), if Ɛ6uk4p̃

2
k1 c̃

2
k57 ¾ Ɛ6uk4p̃

1
k1 c̃

1
k57 for all convex

functions uk.
2. The technology transitions are convex if

Ɛ
[

uk−14p̃k−11 c̃k−15 � 4pk1 ck5
]

is a convex function of 4pk1 ck5 for all convex functions
uk−14pk−11 ck−15.

This definition of convex dominance is fairly stan-
dard and is applied here in a multivariate context; see,
e.g., Müller and Stoyan (2002) or Shaked and Shanthiku-
mar (2007). In the univariate context, a random variable
(or distribution) that convex dominates another random
variable (or distribution) is viewed as “more uncertain”
or “more spread out.” A similar interpretation holds in
this context as well: 4p̃2

k1 c̃
2
k5 �CX 4p̃1

k1 c̃
1
k5 is equivalent to

saying that 4p̃2
k1 c̃

2
k5 is equal in distribution to 4p̃1

k1 c̃
1
k5 +

4ã̃
p
k1 ã̃

c
k5 where Ɛ64ã̃p

k1 ã̃
c
k5 � 4p̃1

k1 c̃
1
k57 = 40105 (see, e.g.,

Müller and Stoyan 2002). In this representation, 4ã̃p
k1 ã̃

c
k5 is

analogous to a mean-preserving spread in the univariate set-
ting. The convexity condition on transitions is analogous to
the CI-increasing condition on transitions in Definition 3.2
and will be used to ensure that the convexity properties
persist through the recursive structure of the single- and
repeat-purchase models.

For example, with the additive model of (1), if the incre-
ments are independent, an increase in the uncertainty in
the increments ũ

p
k−1 and ũc

k−1 in the usual univariate sense
would lead to a convex dominance increase in (p̃k−11 c̃k−1).
It is not difficult to see that the additive transitions of
Equation (1) are convex. With additive transitions, for any
convex function uk−14pk−11 ck−15 we have

�Ɛ
[

uk−14p̃k−11 c̃k−15 � 4p1
k1 c

1
k5
]

+ 41 −�5Ɛ
[

uk−14p̃k−11 c̃k−15 � 4p2
k1 c

2
k5
]

= Ɛ
[

�uk−14p
1
k + ũ

p
k−11 c

1
k + ũc

k−15

+ 41 −�5uk−14p
2
k + ũ

p
k−11 c

2
k + ũc

k−15
]

¶ Ɛ
[

uk−14p
�
k + ũ

p
k−11 c

�
k + ũc

k−15
]

= Ɛ
[

uk−14p̃k−11 c̃k−15 � 4p�
k 1 c

�
k 5
]

1

where 4p�
k 1 c

�
k 5 = �4p1

k1 c
1
k5 + 41 − �54p2

k1 c
2
k5 for some �

such that 0 ¶ �¶ 1. The inequality above follows from the
fact that uk−14pk−11 ck−15 is assumed to be convex.

If the technology transitions are convex, then the value
function for the single-purchase model is convex in 4pk1 ck5
and the adoption regions are convex.
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Proposition 4.2. If the technology transitions are convex,
then in the single-purchase model, for each k and qk:

1. The value function vsk4pk1 ck1 qk5 is convex in
4pk1 ck5; and

2. The adoption regions are convex: If it is optimal to
adopt technologies 4p1

k1 c
1
k5 and 4p2

k1 c
2
k5, then it is also opti-

mal to adopt technology 4p�
k 1 c

�
k 5 = �4p1

k1 c
1
k5 + 41 − �5·

4p2
k1 c

2
k5 for any � such that 0 ¶ �¶ 1.

In the real options literature, this convexity of the value
function is often interpreted as meaning “uncertainty is
good.” Here a similar interpretation holds in that a con-
sumer would rather take a gamble on the technology
than take a sure technology with the expected quality and
costs for sure: if the gamble has probability � of yield-
ing technology 4p1

k1 c
1
k5 and probability 1 − � of tech-

nology 4p2
k1 c

2
k5, the gamble yields an expected value,

�vsk4p
1
k1 c

1
k1 qk5+ 41 − �5vsk4p

2
k1 c

2
k1 qk51 that is higher than

the value vsk4p
�
k 1 c

�
k 1 qk5 with the corresponding “expected

technology” 4p�
k 1 c

�
k 5 = �4p1

k1 c
1
k5 + 41 − �54p2

k1 c
2
k5. The

intuition behind this is the standard argument in the real
options literature: if the gamble turns out well, you can
exercise the option to adopt the technology; if it doesn’t
turn out well, you can decide not to adopt.

Moreover, if we have convex transitions and increase
uncertainty about future prospects without changing the
current technology, this will make the consumer better
off and will favor waiting in the single-purchase model.
In other words, if we consider transitions 4p̃2

k−11 c̃
2
k−15 �

4pk1 ck5 instead of 4p̃1
k−11 c̃

1
k−15 � 4pk1 ck5 where 4p̃2

k−11
c̃2
k−15 � 4pk1 ck5 �CX 4p̃1

k−11 c̃
1
k−15 � 4pk1 ck5, then the value

associated with adoption is not affected and the value asso-
ciated with waiting increases. Thus, although consumers
should appreciate increases in uncertainty about future tech-
nologies, producers should not deliberately induce uncer-
tainty about future technologies’ quality and costs because
this uncertainty encourages the consumer to wait to adopt.
Thus, in the single-purchase model, CI-improvements in the
forecasts for future technologies (as discussed in §3.2) and
increases in uncertainty in these forecasts both make con-
sumers better off, but encourage waiting.

We cannot state a similar convexity result for the
repeat-purchase model for general technology transitions.
However, if the transitions follow the additive model
of Equation (1), we can show that the single- and
repeat-purchase value functions are both jointly convex
in 4pk1 ck1 qk5 (earlier we showed that the single-purchase
value function is convex in 4pk1 ck5 for a given qk).

Proposition 4.3. If technology transitions follow the addi-
tive model of Equation (1), then vsk4pk1 ck1 qk5 and
vrk4pk1 ck1 qk5 are both jointly convex in 4pk1 ck1 qk5.

Thus, in the case with additive transitions, we can say
that “uncertainty is good” in the repeat-purchase model as
well as the single-purchase model.

Although the repeat-purchase value function is convex
with additive transitions, this does not imply that the corre-
sponding adoption regions will be convex. Even in the addi-
tive model of Equation (1) with positive quality increments,
it is not difficult to find examples where both the adop-
tion and rejection regions are nonconvex. Our earlier mono-
tonicity results for the additive case (Proposition 3.7(c))
imply that whenever 4p1

k1 c
1
k5 and 4p2

k1 c
2
k5 are CI-ordered

and it is optimal to adopt (or reject) at both 4p1
k1 c

1
k5 and

4p2
k1 c

2
k5, it will also be optimal to adopt (or reject) for all

convex combinations of these two technologies. However,
when 4p1

k1 c
1
k5 and 4p2

k1 c
2
k5 are not CI-ordered, the optimal

policies may be nonmonotonic as we combine 4p1
k1 c

1
k5 and

4p2
k1 c

2
k5 (i.e., as we vary � in �4p1

k1 c
1
k5+ 41 −�54p2

k1 c
2
k5),

and nonconvexities may arise.
The careful reader may note that in Figure 2b, the adop-

tion regions for the single-purchase model do not appear
to be convex, even though the transitions for the example
approximate the additive model (1), which is stochasti-
cally convex. The transitions for the example are, how-
ever, truncated to fit on a grid and, in particular, the costs
are constrained to be nonnegative. As a result of this, the
transitions are not stochastically convex, and the adoption
region for the single-purchase model is not convex, as they
would be if the transitions were truly additive. Similarly,
the value function for the repeat-purchase model shown in
Figure 1 is visibly nonconvex for low costs, for the same
reason.

5. Conclusion
One main conclusion from our analysis is that, given an
appropriate notion of a “better” technology—for example,
the notion of a clear improvement—most of the natural
properties of the single-purchase model hold in the case
where both costs and quality are uncertain, with fairly mild
assumptions on transitions: the value functions and policies
both have natural monotonic and convexity properties in
this setting.

The analogous results are, however, much more delicate
in the repeat-purchase setting. Although the value functions
satisfy natural monotonicity assumptions, we can establish
monotonicity results for policies only in the case where
transitions are additive and when there is no possibility
of decreasing quality. These monotonicity results general-
ize results for models with deterministic costs (e.g., from
Balcer and Lippman 1984) to the case with stochastic costs.
However, the assumptions required to ensure monotonic
policies highlight the fragility of these results in the repeat-
purchase setting. As illustrated in our examples, in the
repeat-purchase setting it is quite possible for a decrease
in quality or an increase in cost to lead the consumer to
purchase a technology she would have otherwise declined.
Although this behavior may seem counterintuitive at first,
when we inspect the optimal policies more carefully, this
behavior seems entirely reasonable.
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As discussed in §2.2, we view the repeat-purchase model
to be the most realistic and appropriate of the three models.
Unfortunately, it is also the most difficult to analyze. The
differences in policies across these models (e.g., compare
Figures 2a and 2b with Figure 2c) suggest that the sim-
ple NPV and single-purchase models may not be suitable
proxies for the repeat-purchase model. Although the repeat-
purchase model is the most difficult of the three models to
solve, there do not appear to be any easy “short cuts” for
solving these problems. We need to think carefully about
the timing of adoption and the possibility of upgrades when
considering technology adoption problems; these decisions
may interact in complicated ways.

There are two natural directions to extend the analy-
sis of the paper. The first natural extension would be to
consider multiple technologies. Given multiple technolo-
gies, we could take the single technology in our analysis
to be the “best” of the available technologies. However
the notion of the “best” technology could depend on the
dynamics of all of the available technologies. For example,
as discussed in §2.4, the presence of a low-cost, rapidly
improving technology may make the consumer reluctant to
invest in a higher-cost, high-quality technology. Christensen
(1997) calls such cheap, low-quality but improving tech-
nologies “disruptive technologies” (or “disruptive innova-
tions”) and provides a number of examples of disruptive
technologies that have radically changed the marketplace.
It would be interesting to formally study the dynamics of
the cost-quality trade-off in a setting with competing prod-
ucts that have different rates and kinds of technological
improvements.

A second natural extension would be to introduce uncer-
tainty about the value of the technology itself. As dis-
cussed in the introduction, there is a stream of literature
that focuses on the role of uncertainty about the qual-
ity or profitability of the current technology, rather than
assuming (as we do here) that the quality of the technol-
ogy is fully observed. It would be interesting to extend
this uncertainty analysis to consider uncertainty in costs as
well as quality while incorporating the possibility of repeat
purchases.

Electronic Companion
An electronic companion to this paper is available as part of the
online version that can be found at http://or.journal.informs.org/.

Endnotes
1. Balcer and Lippman (1984) allow the probability of an innova-
tion occurring to depend on the time since the last innovation as
well as a “discovery potential” variable that changes stochastically
whenever an innovation occurs.
2. If adoption has negative costs (ck < 0), then a technology that
pays for itself immediately (i.e., satisfies pk − ck ¾ qk) may be
worse than the technology owned (i.e., pk < qk), and adoption
may be rejected in the repeat-purchase model.
3. It is possible to have a weaker order by letting � be such that
1 ¶ � ¶ 441 − �k5/41 − �55. In this time-dependent order, instead

of holding the technology forever, the consumer is required to
hold the technology for all the remaining k periods. The results
for this time-dependent order are similar, but the analysis is more
cumbersome.
4. We discuss this form of transition in more detail in
Appendix A.8. To be clear about the transitions for costs, we can
take ck−1 = 007ck + 2085. If we start with a cost of 9.5, the costs
will remain at 9.5.
5. Although we have focused on improvements defined in terms
of the CI-order, we can establish similar monotonicity results
using other partial orders instead. These alternative orders may
allow us to study transitions that are not CI-increasing or do
not exhibit CI-diminishing returns. See Appendix A.8 for more
details.
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