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Computing the positive predictive value (PPV) of a well-
known test for a relatively common disease is a straight-
forward exercise. However, in the case of a new test for a
rare disorder, the extreme numbers involved—the very
low prevalence of the disorder and the lack of previous
false-positive results—make it difficult to compute the
PPV. As new genetic tests become available in the next
decade, more and more clinicians will have to answer
questions about PPVs in cases with extreme prevalence,
sensitivity, and specificity. This paper presents some tools
for thinking about these calculations. First, a standard PPV
calculation with rough estimates of the prevalence, sensi-
tivity, and specificity is reviewed. The “zero numerator”
problem posed by not having seen any false-positive re-
sults is then discussed, and a Bayesian approach to this
problem is described. The Bayesian approach requires
specification of a prior distribution that describes the ini-
tial uncertainty about the false-positive rate. This prior
distribution is updated as new evidence is obtained, and
the updated expected false-positive rate is used to calcu-
late PPVs. The Bayesian approach provides appropriate
and defensible PPVs and can be used to estimate failure
rates for other rare events as well.
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Agenetic disorder—serious, perhaps fatal without
treatment. Very rare, an incidence of maybe 1 in

250 000. A new test, thought to be highly sensitive and
specific. To date, 13 000 newborns have been screened,
with no positive results. Until now. “What is the chance
Casey has it, doctor?”

In situations like this, the lack of previous false-
positive results and the rarity of the suspected dis-
order make the positive predictive value (PPV) of
the test result difficult to estimate. As the father of
baby Casey, one of the authors asked the above
question and found that the calculated PPVs varied
widely—from 1.7% to 100%—as we varied the
false-positive rate over reasonable ranges. What,
then, is the probability that Casey has the condi-
tion? How should we calculate PPVs in such situa-
tions? As new genetic tests become available in the
next decade, more and more clinicians will have to
deal with such questions, which also arise with eval-
uation of the effectiveness of new tests and choosing
which tests to administer. Similar questions arise in
other situations in which we must consider proba-
bilities of failures before they have occurred. For
example, what is the probability that a new drug has
a side effect that was not seen in clinical trials?
What is the chance of a particular complication
during a new surgical procedure?

In this paper, we describe the approach that we
used in Casey’s situation and indicate how it could
be used in other, analogous situations. We begin
by reviewing the calculation of PPVs, highlighting
the difficulties encountered with new tests. Next,
we consider approaches for dealing with the “zero-
numerator problem”—estimating proportions when
there are zero observations in the numerator. We
consider a standard approach to the “zero-numera-
tor problem” and then describe a simple Bayesian
approach. We conclude by considering some of the
benefits of the Bayesian approach and barriers to its
use. In this paper, we focus on the generic aspects
of Casey’s situation; for more specific information,
see reference 1.
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Computing Positive Predictive Value

Three estimates are required to compute the pos-
itive predictive value (PPV) of a particular test and
disorder (2–4): the prevalence of the disorder (the
pretest probability that the patient being tested has
the disorder), the sensitivity of the test (the proba-
bility that the test result is positive for someone who
has the disorder), and the specificity of the test (the
probability that the test result is negative for some-
one who does not have the disorder).

To calculate the PPV, we first need to consider
the probability of receiving a positive test result,
either true or false. The probability of a true-posi-
tive result is given by the probability that the patient
has the disorder times the probability that the test
result is positive for someone who has the disorder:
prevalence 3 sensitivity. The probability of a false-
positive result is given by the probability of not hav-
ing the disorder times the probability of a positive
test result for a patient without the disorder: (1 2
prevalence) 3 (1 2 specificity). The PPV is then:

PPV 5
prevalence 3 sensitivity

prevalence 3 sensitivity 1 ~1 2 prevalence! 3 ~1 2 specificity!

In other words, the PPV equals the fraction of pa-
tients who truly have the disease among all of those
who receive positive test results.

In Casey’s situation, suppose we assume that the
disorder occurs in 1 in 250 000 newborns (that is,
the prevalence is 1/250 000) and assume that that
the sensitivity of the test is 100%. What about the
specificity of the test? Should we assume that it too
is 100%? After all, the test has been negative in the
past 13 000 births, and we have never seen a false-
positive result. If we assume that the sensitivity and
specificity are both 100% (that is, the test is perfect),
we find a PPV of (1/250 000)/(0 1 1/250 000) 5 100%.

But the test may not be perfect, and even a small
false-positive rate will change the computed proba-
bility dramatically. For example, if the false-positive
rate, f 5 1 2 specificity, is 1/13 000 5 0.0077% in-
stead of 0/13 000, the PPV decreases dramatically,
from 100% to 4.9%. Because the prevalence is so
low (1 in 250 000), the PPV is extremely sensitive to
small changes in the false-positive rate. The results
are less responsive to changes in the sensitivity: If
we assume a sensitivity of 90% instead of 100% and
maintain the assumption of perfect specificity, the
PPV remains 100%. If we assume a sensitivity of 90%
instead of 100% and assume a false-positive rate of
1/13 000, the PPV decreases from 4.9% to 4.5%.

The Problem of Zero Numerators

How should we estimate the false-positive rate, f,
when we have never seen a false-positive result? In

many contexts, this rate is estimated by calculating
the ratio of the number of times the event has
occurred (r) and the number of trials (n): f 5 r/n. In
classic statistics, this is called the maximum likeli-
hood estimate because the value of f maximizes the
probability of observing the given data (r occur-
rences in n trials). With no false-positive results in
13 000 trials, this leads to an estimated false-positive
rate of f 5 0/13 000—that is, perfect specificity—
which results in a PPV of 100%.

To be more conservative in our estimate of the
false-positive rate, we might consider a range of
estimates. For example, the “rule of three” states
that “if none of n patients shows the event about
which we are concerned, we can be 95% confident
that the chance of this event is at most three in n
(i.e., 3/n). In other words, the upper 95% confi-
dence limit of a 0/n rate is approximately 3/n” (5). If
n is greater than 30, this approximate rule agrees
with the exact calculation of the upper confidence
limit to the nearest percentage point. If we apply
the rule of three to the false-positive rate, the upper
confidence limit is 3/13 000 (the exact value is
2.9954/13 000 [6]), which leads to a PPV of 1.7%.
The lower 95% confidence limit on f given zero
occurrences is 0%, yielding a PPV of 100%.

The 95% confidence limits thus give false-posi-
tive rates ranging from 0/13 000 to 3/13 000 with
corresponding PPVs ranging from 100% to 1.7%.
Although it is possible that the same actions would
be recommended for PPVs in this range (perhaps
follow-up tests), in many cases the indicated tests or
treatments would vary across such a broad range;
the precise thresholds would depend on the poten-
tial benefits, harms, and costs of the treatment (7).
In any event, the range is so broad that it does not
convey much information to the concerned patient
or family. How can we do better?

A Bayesian Approach

A Bayesian approach to this problem is summa-
rized in Figure 1. To describe the uncertainty sur-
rounding the false-positive rate, we must specify two
things. First, we must specify the likelihood of ob-
serving the actual results as a function of the false-
positive rate. In this setting, we assume that each
healthy baby has the same probability f of receiving
a false-positive result and that the test results for
different babies are independent. This allows us to
calculate the probability of seeing, for example, 0
false-positive results in 13 000 tests with the bino-
mial probability formula (Appendix). This assump-
tion seems natural and appropriate in this setting,
and the maximum likelihood estimates and the rule
of three are also based on this assumption.
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Second, we must specify a prior probability dis-
tribution for the false-positive rate f that describes
the uncertainty about f before seeing the results of
tests. Protocols for assessing probability distribu-
tions are discussed in detail elsewhere (8, 9); these
typically involve asking experts a series of questions,
such as “What is the probability that the false-
positive rate is less than 1 in 1000?” or “Would you
rather bet on heads in a toss of a fair coin or the
false-positive rate being less than 1 in 1000?” From
these assessments, one can sketch a probability dis-
tribution or fit some mathematical form. Ideally,
these prior probability distributions should be as-
sessed before the experimental screening program
begins by questioning the persons who are most
knowledgeable about the test. Their assessments
should reflect their understanding of the biochemi-
cal or genetic methods used in the new test, their
experience in preliminary laboratory uses of this
test, and experience with other tests using similar
methods. Moreover, the assessments should con-
sider the possibilities for human error; with highly
sensitive and specific tests, human error may be-
come a much more important determinant of re-
liability than the workings of the underlying test
itself. If we consult multiple experts, they may dis-
agree about the prior probabilities. One could at-
tempt to combine the different assessments into an
aggregate assessment from a panel of experts (10)
or, alternatively, report the whole set of prior prob-
abilities and the corresponding posterior probabili-
ties and PPVs. It may well be that the same treat-
ments or follow-up actions are indicated in all cases
and the disagreement need not be resolved.

The Bayes theorem is used to update the prior
distribution to a revised (posterior) distribution af-
ter seeing the results from repeated uses of the test.
We can then use this posterior distribution on the
false-positive rate to calculate the PPV for a partic-
ular patient, such as Casey. To do this, we need to
determine the mean of the posterior distribution;
this “expected probability” is the probability we
would assign to the next patient (Casey) having a
false-positive result and can be used in the usual
way in the formula for calculating PPVs. Although
this whole procedure can be applied with any prior
distribution, if the prior distribution is a beta distri-
bution, the procedure is very easy to apply. This
form can represent a wide variety of shapes of dis-

tributions (some examples are shown in Figures 2
and 3) and leads to a posterior distribution that is
also a beta distribution with updated parameters.
The Bayes theorem and the beta distribution are
discussed in more detail in the Appendix.

In our situation, no formally assessed prior dis-
tribution was available that could be used to deter-
mine Casey’s PPV. To get a sense of the range of
possible PPVs, we considered a variety of prior dis-
tributions on the basis of our understanding of the
test and consultations with the researchers who de-
veloped the test. Our assumptions and results are
summarized in Figure 2. To improve the readability
of the graphs, the scale of the horizontal axis is
given in terms of the logarithm of f and the prob-
ability density plots are densities for log f. The
priors are shown in the left column of the figure,
with our “base-case” prior in the middle row; this is
a beta distribution with the parameters indicated in
the figure. These parameters imply that there is a
5% chance that f is less than 0.0000513 (1 in
19 477), a 50% chance that f is less than 0.000694 (1
in 1442), and a 95% chance that f is less than
0.00299 (1 in 334). This prior distribution has a
mean of 1 in 1000, meaning that the first patient
tested in the experimental screening program has a
1 in 1000 chance of having a false-positive result.

The second column of Figure 2 shows the prob-
ability of observing the results of the experimental
screening program—no false-positive results in
13 000 tests—as a function of the false-positive rate.
In Bayesian statistics, this is called the likelihood
function. The function values are calculated by using
the binomial probability formula described in the
Appendix. Here we see that this experimental result
would be very unlikely if the false-positive rate
were, say, 1 in 1000 or greater, but not at all surpris-
ing if the false-positive rate were, say, 1 in 100 000.

The third column shows the corresponding pos-
terior distributions. After updating the base-case
prior distribution with the observed data, we find that
there is a 5% chance that f is less than 0.00000366
(1 in 272 922), a 50% chance that f is less than
0.0000495 (1 in 20 197), and a 95% chance that f is
less than 0.000214 (1 in 4673); the revised mean is
1 in 14 000. As would be expected, the evidence of
no false-positive results in 13 000 trials has shifted

Figure 1. A Bayesian approach.
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the distribution to the left, making low values of f
more likely and high values of f less likely.

The final column of Figure 2 shows the resulting
PPV. Applying the PPV formula with the mean of
this posterior distribution (maintaining our earlier
assumption about the prevalence and assuming per-
fect sensitivity), we find that Casey has a 5.3%
probability of having the disorder. This calculated
PPV lies within the range of values calculated ear-
lier (1.7% to 100%) but is clearly toward the left
end of this range.

The other rows in Figure 2 correspond to alter-
native choices of prior distributions. The prior dis-
tribution in the top row assumes the same prior
estimate of the false-positive rate (1 in 1000) but
with greater confidence in this estimate, as shown
by the narrower prior distribution. The correspond-
ing posterior distribution is narrower than the base-
case distribution, and the mean does not change as
much after seeing the results of the screening trial
(the mean is 1 in 2300 instead of 1 in 14 000). The
higher posterior estimate of the false-positive rate
leads to a lower PPV. The bottom row corresponds
to a case in which we have a lower initial estimate
of the false-positive rate (1 in 4000) and more un-
certainty about the estimate. This leads to a poste-
rior distribution that is shifted further to the left

(with a mean of 1 in 30 000) and a higher PPV.
Note that the results of the experimental screening
program effectively rule out false-positive rates
greater than 1 in 1000. The posterior probability
mass in this region is shrunk nearly to zero (because
the likelihood is essentially zero), with the mass
assigned in other regions increasing in response.

In Figure 3, we used our base-case prior distri-
bution in all cases but varied the outcome of the
experimental trials; consequently, different likeli-
hood functions resulted. The top row shows the
results that would have occurred if we had seen only
100 newborns without a false-positive result, instead
of 13 000. The second row shows what would hap-
pen if we had tested 100 000 newborns without a
false-positive result. Comparing these two cases with
the middle row of Figure 2, we see that the greater
the number of tests without a false-positive result,
the lower the posterior estimate of the false-positive
rate and the greater the resulting PPV. In the final
row, we consider a scenario in which 1 false-positive
result occurred in 13 000 newborns tested; in this
case, the PPV roughly halves (decreasing from 5.3%
to 2.7%). The variations in PPVs in these examples
suggest that in problems like these, it is important
to keep clinicians up to date on previous test results
so that when they compute PPVs for their patients,

Figure 2. Results of the Bayesian procedure using different prior distributions.
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they have access to the best possible estimate of the
false-positive rate. Testing centers might consider,
for example, creating a database or World Wide
Web site that keeps current counts of false-positive
results on new tests and reports current estimates of
these rates for use by clinicians.

Once a test has been used for a while and several
false-positive results have been obtained, the esti-
mated false-positive rates and PPVs become less
sensitive to the assumed prior distribution and will
change less in response to observing a single false-
positive result. If, for example, we had seen 100
false-positive results in 1.3 million tests, it would
make little difference which prior distribution was
assumed (as long as it was not too unreasonable),
and observing one more false-positive result would
have little effect. However, when tests are highly spe-
cific and the indicated conditions are rare, it may take
a long time to accumulate this much experience.

Conclusions

It is difficult to estimate PPVs intuitively for
cases involving rare disorders, and it is a good idea
to rely on formulas for calculating PPVs (11). But
when we know little about the false-positive rate,

formulas for PPVs, coupled with classic estimation
procedures, do not give much guidance. In Casey’s
situation, for example, using a maximum likelihood
estimate gives a PPV of 100%, and a 95% confi-
dence interval leads to PPVs ranging from 1.7% to
100%. The Bayesian approach provides a logically
correct way to arrive at a specific probability that
can be used in clinical settings. This probability
reflects the results of the experimental screening
program to date as well as outside information
about the biochemical or genetic methods used in
the test, captured in the prior distribution.

Although we focused on the use of this Bayesian
approach in updating false-positive probabilities, we
could use the same approach to update beliefs
about false-negative rates or the prevalence of a
condition. In both of these extensions, we would
proceed in the same manner as we did when con-
sidering uncertainty about the false-positive rate:
We assess prior distributions on the rates and then
update these distributions as we observe results. To
determine the predictive value of the test at any
time, we use the mean of the posterior distribution
for the rate as the current estimate and calculate
predictive values in the usual way. The Bayesian
approach could also be used to describe uncertainty

Figure 3. Results of the Bayesian procedure using different results of screening tests.
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about failure rates more generally (for example, the
probability of adverse effects of new drugs or com-
plications of new surgical procedures).

The dependence of this approach on prior beliefs
may cause distress for some; we would like to think
and are used to thinking that these rates are clearly
and objectively deduced from observed results. But
when dealing with new tests—highly specific tests
for rare disorders in particular and new procedures
in general—the data alone may not provide suffi-
cient guidance for patient management until a sub-
stantial track record accumulates, which may take a
very long time. In these settings, the Bayesian ap-
proach is helpful in providing specific estimates of
these rates and probabilities. As argued by Davidoff
(12), once one gets past the “associations of hazy
prior probabilities and abstruse mathematical for-
mulas [that] strike fear into the hearts of most of
us,” we realize that this is how it should be: Outside
information and prior knowledge should play a role
in our assessments of accuracy, and failure to take
such information into account can easily lead to
serious misinterpretation of the evidence. Ultimately,
we find that Bayesian reasoning is not only helpful but
also necessary in obtaining reasonable and defensible
estimates of these rates for use in treatment decisions.

By the way, Casey is fine. Follow-up tests showed
that she does not have the suspected disorder—
Casey was the first false-positive.

Appendix

Here, we present the formulas used to generate the
numeric results summarized in Figures 2 and 3. For more
detailed discussion of these formulas, see references 13
and 14. The binomial probability formula gives the prob-
ability of observing exactly r false-positives in n trials (tests
of patients without the condition) and assuming a probability
f of seeing a false-positive result in each trial, as

PB~R 5 r ? n, f! 5
n!

r!~n 2 r!!
f r~1 2 f!n 2 r.

The likelihood function in Figure 2 is given by taking
n 5 13 000 and r 5 0 and varying f. In this context, the
Bayes theorem says that if we start with a prior distribu-
tion with a probability density p9(f) for the false-positive
rate and observe r false-positive results in n trials, the
posterior probability density p0(f) is given by:

p0~f! 5
1

E
f50

1

PB~R 5 r ? n, f! p9~f! df

PB~R 5 r ? n, f! p9~f!.

The Bayes formula can be applied with any prior dis-
tribution but is particularly easy to apply if the prior
distribution is a beta distribution. Given parameters r9
and n9, the beta distribution assumes a probability density
of the form

p9~f! 5 Kr9, n9 f r9 2 1~1 2 f!n9 2 r9 2 1

where Kr9, n9 is a scaling constant that depends on r9
and n9 and is required to make the total probability
under p9(f) equal 1. (Note that r9 and n9 need not
be integers.) The mean of the beta distribution with
parameters r9 and n9 is given by r9/n9 and probabil-
ities (for example, the probability of a false-positive
rate f being less than 1 in 1000) can be calculated by
using built-in functions in popular spreadsheet pro-
grams (such as Microsoft Excel [15]). If we start
with a beta distribution with parameters r9 and n9
and then observe r false-positive results in n trials,
the posterior distribution is given by a new beta
distribution with updated parameters r0 5 r 1 r9 and
n0 5 n 1 n9. The posterior mean is r0/n0 5 (r 1 r9)/
(n 1 n9). Intuitively, if we interpret the prior as
having seen r9 false-positives in n9 trials, the poste-
rior distribution can be interpreted as having seen
r0 5 r 1 r9 in n0 5 n 1 n9 trials.
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