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56, 1–4: COMMENTS BY BROWNE AND EDDINGS AND
REPLY

BROWNE

Winkler, Smith, and Fryback (2002) provided an interesting look at Bayesian
solutions to estimating the posterior 95% fractile of the binomial parameter (p),
when no successes have been seen in n trials. They show that this approach
provides much smaller upper bounds on p when the investigator is favorably
disposed toward using Bayesian methods.

However, if the investigator is unwilling to consider a prior distribution on p,
the investigator will want a 95% upper con� dence limit on p (p95). The exact
of p95 is 1 ¡ (:95)1=n , but relatively few nonstatisticians know this to be the
correct calculation, or can carry it out without help. For ease of use, the Rule of
Three (Hanley and Lippman-Hand 1983) was published, which says that 3=n

provides an estimate of p95. Howver, 3=n is a poor estimator of p95 for n < 20,
overestimating p95 by 20% or more for n < 9, decreasing to 7:8% for n = 20.
Even for n = 80, 3=n overestimates p95 by more than 2%. In parallel with
the article by Winkler, Smith, and Fryback, we need improvements on 3=n for
those who wish to use the frequentist approach.

To avoid confusion, we want a simple enhancement of the 3=n formula, and
one that could be easily remembered and used away from a computer. The
Bayesian Rule of Three of 3=(n + b) (Jovanovic and Levy 1997) seems a
reasonable alternative form for an enhanced rule. By simple search methods, I
found that 3=(n + 1:7) underestimates p95 by less than 1% for all n > 3 and
overestimates p95 by 1.1% for n = 3. I would hope that this Modi� ed Rule of
Three could be disseminated as a preferred alternative to 3=n.

Richard H. BROWNE

Texas Scottish Rite Hospital for Children
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EDDINGS

In their discussion of interval estimates for a Bernoulli parameter p when no
successes have been observed, Winkler, Smith, and Fryback neglect a simple,
useful solution: support intervals based directly on the likelihood function. A
1=k support interval contains all parameter values whose relative likelihood is at
least 1=k; 8 and 32 are typical choices for k (Royall 1997).Given n independent
Bernoulli trials, all failures, with common success probability p, the likelihood
function is proportional to (1 ¡ p)n , and the 1=k support interval is (0;1 ¡
k¡ 1=n ). The exact 100(1 ¡ ¬ )% con� dence interval, (0; 1 ¡ ¬ 1=n ), always
corresponds to a support interval with k = 1=¬ (k = 20 for a 95% con� dence
interval), but the Rule of Three con� dence interval, (0;3=n), does not—it is
asymptotically a support interval with k = exp (3) º 20:1 but for small n (less
than ten) can include points of very low likelihood relative to points near zero.
Support intervals, unlike con� dence intervals, are consistent with the likelihood

principle and, unlike Bayesian intervals based on noninformative priors, do not
involve the dubious representation of ignorance by probability distributions.
Presentation of the entire likelihood function eliminates the somewhat arbitrary
choice of k and allows readers to select their own intervals. I agree with the
authors’ pleas for realistic prior distributions when decisions must be made.

Wesley D. EDDINGS

The Johns Hopkins University
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REPLY TO BROWNE: STATISTICAL LITERACY, NOT
SIMPLE RULES

We’re glad that Browne is interested in zero-numerator problems. He inad-
vertently provides evidence for his point about a few people knowing the exact
formula. The exact value of p95 is 1 ¡ (0:05)1=n for a one-sided interval, not
1 ¡ (0:95)1=n as he claims.

Everything we say in our article about the dangers of using the Rule of Three
applies equally well to Browne’s 3=(n + 1:7) rule. Browne is motivated by the
desire to improveon the performance of the Rule ofThree for small sample sizes,
as small as n = 3. But as the sample size becomes smaller, prior information
becomes even more important since there are so few data points to “speak for
themselves.” Indeed, small sample sizes provide not only the most compelling
opportunity to think hard about the prior, but an obligation to do so.

More generally, we would like to take this opportunity to speak out against
the mindless, uncritical use of simple formulas or rules. Instead of disseminat-
ing simple rules, we need to disseminate knowledge about statistical concepts
and processes to help people think carefully and wisely about their statistical
problems. We feel that the Bayesian framework is the best way to structure this
thinking. As for calculations, many Bayesian calculations are not dif� cult; the
calculations in our article were performed using simple spreadsheet formulas.
Other cases can be much harder, but rapid advances in the use of simulation and
other computer-based techniques to � nd posterior and predictive distributions
are making Bayesian methods more accessible. With today’s ready access to
computers and user-friendly software, we do not need simple formulas that can
be “easily remembered and used away from a computer.” Instead, we need to
join in working toward a new computer-enabled literacy in statistics, educating
people to ask the right questions and providing processes and tools to answer
them.

REPLY TO EDDINGS: DECISIONS
USUALLY MUST BE MADE

We agree with Eddings that reporting the entire likelihood function is a good
idea. However, that onlygoes part of the way toward addressing the question that
is relevant inmost applications:What is the posteriorprobability?Eddingsagrees
that realistic prior distributions are needed when decisions must be made, and
they usually must be made. In principle, anyone can � nd a posterior distribution
by assessing their own prior distribution and combining it with the likelihood
function appropriately. But in practice, this may be a dif� cult assessment, and
even given the prior,many people may not be able to do the math or to juggle the
� gures in their heads to get a posterior distribution. Thus, while we would like
to see experimenters report results and likelihood functions, we also feel they
should take a stand on the prior, report posterior results, and do some sensitivity
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analysis to show the impact of assuming alternative reasonable priors on the
posterior distribution and the resulting decisions.

Robert L. WINKLER

Duke University

BARKER, L., ROLKA, H., ROLKA, D., AND BROWN, C.
(2001), “EQUIVALENCE TESTING FOR BINOMIAL

RANDOM VARIABLES: WHICH TEST TO USE?” THE
AMERICAN STATISTICIAN, 55, 279–287: COMMENT BY

MARTÍN ANDRÉS AND HERRANZ TEJEDOR AND REPLY

Barker et al. undertook the problem of performing an asymptotic test to prove
that two binomial proportionsare equivalent, that is, “practically equal.” Specif-
ically, the aim is to contrast H0 : jpx ¡ py j ¶ ¢ versus Ha : jpx ¡ py j < ¢

(where ¢ is a positive number given previously) starting from the two indepen-
dent random variables X ¹ binomial(nx ; px) and Y ¹ binomial(ny ; py ):

To this end, the authors propose two groups of procedures: one based on the
two one-sided test (TOST)—with 6 versions—the other based on the two-tailed
test—with two versions. Unfortunately, both groups of tests contain omissions
and/or important defects.

The TOST test is based on performing two one-tailed tests H01 : px ¡py ¶
+ ¢ versus Ha1 : px ¡ py < + ¢ and H02 : px ¡ py µ ¡¢ versus
Ha2 : px ¡ py > ¡¢ . If the p value of each test is Pi , then the p value for
the equivalence test is P = m axfP1;P2g. The authors prefer the (equivalent)
approach of obtaining a two-tailed approximate con� dence interval (to the error
2¬ ) forpx ¡py and declaring the equivalence (to the error ¬ ) if this is completely
contained in the interval [¡¢ ; + ¢ ]. The six versions of the TOST test that they
propose are based on six different ways of obtaining this con� dence interval.
Surprisingly,in the article the most competitive methods and the historical origin
of the problem are not mentioned. Thus:

A. The problem was originally posed by Dunnett and Gent (1977, 1988)
(D&G) and was adequately solved by Johnson (1988) in the format of the TOST
test. The possible solutions are based on statistics of type À 2 or type z (score
statistics). Thus, under the hypothesis that px ¡ py = ¯ , the statistic

Z(̄ ) =
p̂x ¡ p̂y ¡ ¯q

p(1¡ p)
ny

+
(p+̄ )(1¡ p ¡ ¯ )

nx

(1)

is distributed as a normal standard z. In this expression p̂x = X=nx ; p̂y =

Y=ny and p is a nuisance parameter which must be estimated. D&G proposed
the conditional estimator ~p = (X + Y ¡nx ¯ )=(nx + ny ) which produces the
statistic Z1(̄ ). The p value using the TOST test is therefore:

m ax [Pfz µ Z1(+ ¢ )g; Pfz ¶ Z1(¡¢ )g] : (2)

B. It is better to substitute p for its estimator p̂ of maximum likelihood (Roe-
bruck and K�uhn 1995) and this gives rise to the statistic Z2(̄ ) which today is
the basis of all the published literature on the equivalence of two proportions.
The p value is obtained as in expression (2)—with Z2 in place of Z1—but this
procedure is not mentioned by the authors. The estimator p̂ was proposed by
Miettinen and Nurminen (1985)—who gave its explicit solution—and it is the
solution of the cubic equation L0

p(p; ¯ ) = 0, where

L0
p (p; ¯ ) =

@L(p; ¯ )

@p
=

ny (p̂y ¡ p)

p(1 ¡ p)
+

nx (p̂x ¡ p ¡ ¯ )

(p + ¯ )(1 ¡ p ¡ ¯ )
; (3)

and L(p; ¯ ) is the logarithm of the likelihood: L(p; ¯ ) / Y £ lnp + (ny ¡
Y ) £ ln(1 ¡ p) + X £ ln(p + ¯ ) + (nx ¡ X) £ ln(1 ¡ p ¡ ¯ ). So, for the
example given by the authors, (X = 980; Y = 1;100; nx = ny = 2;000;

and ¢ = 0:10) Z2(+ ¢ ) = ¡10:178 in p̂ = 0:4694 and Z2(¡¢ ) = 2:545

in p̂ = 0:5698, and so the p value of the TOST test is 0.55% using expression
(2). (It is possible to make a correction for continuity to expression (1), not
contemplated here.)

C. From the perspective of the con� dence intervals (which is what the authors
analyze), it is quite usual to obtain these by inverting the appropriate hypothesis
test (Agresti and Min 2001). Indeed, Miettinen and Nurminen (1985) proposed

inverting expression (1), and this solution has not been investigated by Barker
et al. either. This procedure is presumably the most suitable, for Agresti and
Min have shown that the ideal exact con� dence interval is the one based on
the order given by the statistic Z2(̄ ). So, for the data in the previous example,
the equation Z2(̄ ) = §1:645 yields the interval ¯ 2 [¡0:086;¡0:033] »
[¡0:10; + 0:10] and so H0 should be rejected to the error ¬ = 5% .

With regard to the two-tailed tests proposed by Barker et al., the following
observations should be made:

D. The test of maximum likelihood (LRT) requires the calculation of the
maximum ofL(p; ¯ )and ofL(p; ¯ jj̄ j ¶ ¢ ). The � rst is always L(p̂y ; p̂x ¡p̂y )

as the authors indicate. In order to obtain the second, the authorsoffer a computer
program. But this is not necessary: for the values jp̂x ¡ p̂y j < ¢ :

m ax L(p; ¯ jj̄ j ¶ ¢ ) = m axfL(p̂; + ¢ ); L(p̂;¡¢ )g (4)

and for the values jp̂x ¡ p̂y j ¶ ¢ :

m ax L(p; ¯ jj̄ j ¶ ¢ ) = L(p̂y ; p̂x ¡ p̂y ) (5)

which simpli� es the problem enormously. In order to see this, bear in mind that
because p̂ is the estimator of maximum likelihood, then, for each � xed value
¯ ;L reaches the maximum in L(p̂; ¯ ). Because dL(p̂; ¯ )=d̄ = @L(p̂; ¯ )=@¯ —
since @L(p; ¯ )=@p = 0 in p = p̂—then dL(p̂; ¯ )=d̄ = nx(p̂x ¡ ¯ ¡p̂)=[(p̂ +

¯ )(1¡p̂¡̄ )]. This indicates thatL increases (decreases) in ¯ when p̂x ¡̄ ¡p >

0 (p̂x ¡ ¯ ¡ p < 0). But, using the expression (3), p̂x ¡ p̂ ¡ ¯ and p̂y ¡ p̂

have to have opposing signs in order for L0
p(p̂x ; ¯ ) = 0, and so L increases

(decreases) in ¯ when p̂x ¡ p̂y > ¯ (p̂x ¡ p̂y < ¯ ). Hence the expressions
(4) and (5). Expression (5) implies that when jp̂x ¡ p̂y j ¶ ¢ , the test LRT
can never have signi� cance, and this is in keeping with the inferential logic:
if jp̂x ¡ p̂y j ¶ ¢ , one cannot conclude that jpx ¡ py j < ¢ . Consequently,
the conclusion which the authors obtain in their � nal example is wrong. In it
(in error) they worked with the values X = 980 and Y = 1;200, with the
result that jp̂x ¡ p̂y j = 0:11 > 0:10 and the test should not be signi� cant
(¡2ln ¶ = 0 and not ¡4:00 as the authors indicated). The authors commited
the same inferential error in several of the examples proposed. Moreover, the
statistic LRT is 2ln ¶ , not ¡2ln ¶ (the way the authors de� ned ¶ ). Based on all
the above, the test LRT consists in comparing with À 2

1df the value of

À 2 = ¡2 £ ln
m axff(p̂; p̂ ¡ ¢ ); f(p̂; p̂ + ¢ )g

f(p̂y ; p̂x)

where f(p1;p2) = p
y
1(1 ¡ p1)ny ¡ y px

2(1 ¡ p2)nx ¡ x (6)

if jp̂x ¡ p̂y j < ¢ . Otherwise À 2 = 0.
E. Other reasonable two-tailed asymptotic tests are those based on the statis-

tics Z1(̄ ) and Z2(̄ ), and the authors also failed to give these. Mau (1988)
obtained the p value using the criterion Z1(̄ ):

jPfz µ Z1(¡¢ )g ¡ Pfz µ ¡Z1(+ ¢ )gj (7)

and the same can be done using the criterion Z2(̄ ) (Mau did not take into
consideration the need to put the absolute value into the above expression). The
authors of this letter have tested (in an article submitted to press) the following
more suitable expression

m ax
i=1;2

= P

n
¡jp̂x ¡ p̂y j ¡ ¢

si
µ z µ +

jp̂x ¡ p̂y j + ¢

si

o
; (8)

where s1 and s2 are the denominator of the expression (1) for ¯ = ¡¢ and
¯ = + ¢ , respectively. So, for the example cited in B, jp̂x ¡ p̂y j = 0:06

and s1 = s2 = 0:01572. In this way the p value will be P(2:545 µ z µ
10:178) = 0:55% just as in section B (although generally this is not so). The
last two expressions assume that jp̂x ¡ p̂y j < ¢ and they are capable of being
assigned a correction for continuity.

A. MART́IN ANDRÉS

Universidad de Granada

I. HERRANZ TEJEDOR

Universidad Complutense
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