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adopt the technology, reject it, or wait and gather additional information by observing a signal about the technology’s
benefit. The technology’s actual benefit may be constant or changing stochastically over time. The dynamic programming
state variable is a probability distribution that describes the consumer’s beliefs about the benefits of the technology. We
allow general probability distributions on benefits and general signal processes and assume that the consumer updates her
beliefs over time using Bayes’ rule. We are interested in structural properties of this model. We show that improving the
technology’s benefit need not make the consumer better off and that first-order stochastic dominance improvements in the
consumer’s distribution on benefits need not increase the consumer’s value function. Nevertheless, the model possesses
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many comparative statics results.
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1. Introduction
As consumers, we have all grappled with uncertainty when
contemplating buying a new product or technology: Should
I buy an iPhone now? Will its benefits outweigh the costs?
Should I wait and see how others like them and/or wait
for a new improved version? Uncertainty also complicates
firms’ technology adoption decisions, although the stakes
may be much larger: Should an electric utility build a coal-
fired power plant using the latest technology? Or should
it wait until its costs and benefits are better understood
and/or the technology improves? In medicine, regulators
must decide whether to approve a new drug whose benefits
are unknown or wait and request additional clinical trials.
Producers of innovative technologies face the opposite side
of the consumer’s dilemma: The adoption and sales of these
products will depend on how consumers’ uncertainty about
the technology’s benefits resolves over time.
In this paper, we study the impact of uncertainty about

the benefits of the technology on adoption and information-
gathering decisions. More specifically, we formulate a
dynamic programming model where, in each period, the
consumer adopts or rejects a new technology or waits and
gathers additional information about the benefits of technol-
ogy by observing a signal about the technology’s benefit.

The technology’s actual benefit may be constant or chang-
ing stochastically over time. After observing a signal, the
consumer updates her distribution on benefits using Bayes’
rule. In this model, the dynamic programming state variable
is a probability distribution that describes the consumer’s
beliefs about the benefits of the technology. We allow gen-
eral probability distributions on benefits and general sig-
nal processes. We are interested in structural properties of
the model: When does one distribution on benefits lead
to higher values than another? Similarly, when is one sig-
nal process better than another? How do changes in the
assumptions affect consumers, optimal policies, and the
timing of adoption decisions?
Our basic model is similar to the model developed by

McCardle (1985). Like us, McCardle considers a dynamic
programming model where, in each period, the consumer
adopts or rejects a new technology or waits and gath-
ers additional information. However, unlike our model,
McCardle’s model assumes that the technology is not
changing over time, and, rather than allowing general prob-
ability distributions and signal processes, it assumes that
the consumer’s probability distribution on benefits can be
summarized by the expected benefit of the technology.
In this univariate setting, the consumer’s value function
is increasing in the expected benefit of the technology,
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Figure 1. Policy regions in McCardle’s (1985) model.
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and the optimal policy in each period can be character-
ized by two thresholds: If the expected benefit is above the
upper threshold, it is optimal to adopt the technology. If
the expected benefit is below the lower threshold, it is opti-
mal to reject. Between the two thresholds, it is optimal to
gather additional information. As illustrated in Figure 1, as
the consumer gathers additional information over time and
the precision of the benefit estimate increases, the upper
threshold decreases, the lower threshold increases, and the
two thresholds converge to the cost of adoption, represented
by K in the figure. The consumer will thus eventually stop
gathering information and either adopt or reject the technol-
ogy. Lippman and McCardle (1987) study the same model
and show that the consumer’s value function increases with
increases in the uncertainty (in the sense of Rothschild and
Stiglitz 1970) about the benefit of the technology.
Allowing general probability distributions and signal

processes as well as evolving technologies raises many
interesting and sometimes subtle issues. With a probability
distribution as a state variable, we can no longer charac-
terize values or adoption policies by simply considering
the technology’s expected benefit. In the univariate set-
ting that McCardle considers, an increase in the expected
benefit leads to a first-order-stochastic-dominance (FOSD)
improvement in the consumer’s distribution on technology
benefits. Thus, in the general setting, one might expect a
FOSD improvement in the consumer’s probability distri-
bution to lead to an increase in the value function and
make adoption more attractive. Similarly, one might expect
the result about increases in uncertainty being good for
the consumer to generalize. However, despite their intuitive
appeal, these conjectures are false, even with a stationary
technology.
Although these intuitive results fail to hold, the general

model still possesses a great deal of structure and has many
nice properties. To simplify the discussion and disentangle
the effects of allowing general distributions and informa-
tion sources and allowing evolving technologies, we first
focus on the case where the technology’s benefit is station-
ary. We begin in §2 by defining the model and describing

some examples. In §3, we study monotonicity properties of
this model and show that if the signal-generating process
satisfies a monotone likelihood ratio assumption and we
use likelihood-ratio (LR) dominance to order distributions,
we get natural monotonicity results: A LR improvement in
the consumer’s distribution on benefits leads to an increase
in the value function and encourages adoption. In §4, we
show that, under reasonable conditions, the consumer will
eventually decide to adopt or reject the technology.
In §5, we define and study the “derived benefit function”

that describes how much benefit the consumer actually
receives (net of the information-gathering costs and delays)
as a function of the true benefit of the technology. This
analysis clarifies why FOSD improvements and increases
in uncertainty in the distributions are not necessarily good
for the consumer; this derived benefit function need not be
increasing or convex. For example, improving a “bad” tech-
nology may increase the consumer’s information-gathering
costs, increase the probability of adopting this bad tech-
nology, and actually make the consumer worse off. In §§6
and 7, we study convexity properties of the value function
and optimal policies and the impacts of cheaper and better
information, as well as reduced adoption costs.
In §8, we generalize the model to allow the technology

to change stochastically over time. Given our earlier results,
this generalization is fairly straightforward, and most of the
results and intuitions from the stationary case carry over
directly to this more general case. However, to guarantee
monotonic optimal policies, we must assume that the tech-
nology’s expected future improvement is not increasing in
the level of the benefit; otherwise, improving the current
technology may lead the consumer to switch from adopting
to waiting. Improving the prospects for future technologies
naturally makes waiting more attractive.
Technology adoption and the diffusion of innovations

have long been studied by researchers in a number of fields.
Rogers and Rogers (2003) provide a thorough review of
this literature, tracing it back to the 1950s. There are many
papers that develop and analyze mathematical models of
various aspects of technology adoption and the diffusion of
innovations, but relatively few explicitly consider the infor-
mation-gathering process. As discussed earlier, McCardle
(1985) and Lippman and McCardle (1987) consider a model
similar to ours, but with a stationary technology and restric-
tive assumptions on the form of the distributions and signal
process. Jensen (1982) earlier studied a model similar to
McCardle’s that also assumed that information gathering
is costless. Chatterjee and Eliashberg (1990) model the
diffusion process using a “micromodeling” approach that
explicitly considers the impact of uncertainty on adop-
tion decisions and aggregates these individual models to
derive mathematical forms for diffusion curves. Their anal-
ysis assumes a stationary benefit and a specific probabilis-
tic model (the normal-normal model discussed in §2.2) and
further assumes that consumers are risk averse but myopic:
They assume that consumers adopt the technology as soon
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as their certainty equivalent is positive without considering
the possibility of gathering additional information to reduce
the uncertainty about the benefit. More recently, Kornish
and Keeney (2008) study the problem of “adopting” a flu
vaccine when there is uncertainty about the strain of the
virus and thus uncertainty about the effectiveness of the
vaccine.
With today’s rapidly evolving technological landscape,

understanding technology adoption decisions and the diffu-
sion of innovations remains an important practical problem.
Given the inherent uncertainty in such decisions and abun-
dant sources of information, it is particularly important to
understand how the dynamic process of uncertainty resolu-
tion and environmental factors (e.g., the quality and cost of
information) affect these decisions. The results and insights
for the model studied in this paper may also provide a
foundation for the analysis of other models of technology
adoption; we discuss some possible extensions and varia-
tions of our model in §9.
We provide proofs for some results in the body of the

paper. The other proofs are provided in an online appendix
that can be found at http://or.pubs.informs.org/.

2. The Stationary Model and
Some Examples

We begin by describing the stationary form of the model,
and then discuss some specific examples.

2.1. The Model

A consumer is contemplating purchasing a new technol-
ogy whose benefit is denoted by � ∈� ⊆�; we can think
of � as representing the net present value of the stream
of benefits to the consumer provided by the technology.
The consumer is uncertain about the benefit of the tech-
nology, and her beliefs are described by a probability dis-
tribution. For ease of notation, we will assume that the
consumer’s probability distribution is continuous and has a
density � over �. For discrete spaces, we can interpret �
as a probability mass function and consider sums instead
of integrals; more general probability measures could also
be considered. For technical reasons, we assume that � is
�-integrable in that

∫
�
�������d� is finite.

Time is discrete. In each period, the consumer must
choose whether to adopt the technology, reject it, or gather
additional information. We will assume that the consumer
is risk neutral and makes decisions on an expected value
basis. If she decides to reject the technology, she receives
nothing and no longer gathers information about the tech-
nology. If she decides to adopt the technology, she pays a
fixed adoption cost K and receives a net expected benefit
of

∫
�
�����d�−K.

If the consumer chooses to gather additional informa-
tion, she pays c in that period and observes a signal x ∈X,
drawn with likelihood function L�x � ��. This signal x could
be any kind of message about the technology, including,

for example, a numeric score or categorical rating (e.g.,
four out of five stars). Having observed signal x, the con-
sumer then updates her prior � using Bayes’ rule and finds
a posterior ���
��x� given by

���
��x�= L�x � ������
f �x
��

�

where f �x
�� is the predictive distribution for signals x,
f �x
�� = ∫

�
L�x � ������d�. The consumer then contin-

ues into the next period, starting with a new prior dis-
tribution that is equal to her posterior distribution from
this stage. Our notation will assume that the signal dis-
tribution is continuous and f �x
�� is a density function
on X, but discrete or more general distributions could also
be considered. Because our dynamic programming state
variable is the distribution itself, we will frequently sup-
press the domain of the distribution and write the poste-
rior as ����x� when we want to consider this distribution
(on �) as a function of the prior � and observed signal x.
Similarly, we will write f ��� when considering the signal
distribution (on X) as a function of the prior �.
The consumer’s optimal value function with k periods

remaining, v∗k���, can be written as a dynamic program-
ming recursion:

v∗0���= 0�

v∗k���=max
{
0�
∫
�
�����d�−K�−c+�E�v∗k−1�����x̃���

}
�

where � (0 � �� 1) is the discount factor and the expec-
tation of the next period value function is taken over all
possible random signals x̃. Using the signal distribution
f �x
��, this expectation can be written more explicitly as

E�v∗k−1����� x̃���=
∫
x
v∗k−1�����x��f �x
��dx�

We let v∗
��� = limk→
 v∗k��� denote the infinite-horizon
limit of the value function. This limit need not exist given
our current assumptions. For example, if the consumer is
paid for gathering information (i.e., c < 0) and there is no
discounting (� = 1), then v∗
��� is infinite. However, we
will show in §4 below that if c� 0, then the finite-horizon
value functions converge to a well-defined infinite-horizon
limit.

2.2. Examples

McCardle (1985) focuses on a beta-Bernoulli model that
assumes � =Ap∗ and the consumer’s uncertainty about p∗

has a beta distribution Beta(�, �) with density f �p∗� =
���� + ��/������������p∗��−1�1 − p∗��−1; this distribu-
tion has mean p̄ = �/�� + ��, and � + � can be inter-
preted as a measure of the precision of the mean p̄ as
an estimate of p∗. The prior for � = Ap∗ is thus a scaled
beta distribution. Signals are generated according to a
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Bernoulli process with a probability p∗ of a positive sig-
nal and �1−p∗� of a negative signal. After observing a
positive signal, the consumer’s posterior distribution for p∗

becomes Beta(�+ 1, �) with mean ��+ 1�/��+ �+ 1�.
After observing a negative signal, the posterior becomes
Beta(�, �+ 1) with mean �/��+�+ 1�. With either sig-
nal, the posterior precision is equal to �+�+ 1. Thus, in
this model, if we know the prior � and � and the num-
ber of periods that have passed, we can fully determine
the then-current distribution from its mean p̄; this allows
the model to be formulated as a univariate dynamic pro-
gram taking p̄ as a state variable.1 The beta-binomial model
generalizes the beta-Bernoulli model to consider n (rather
than one) independent positive or negative reports in each
period. After seeing s successes in n trials, the posterior
distribution becomes Beta(�+ s, �+ n− s). If the num-
ber of reports at each stage is fixed, the mean of the beta
distribution can serve as a univariate state variable.
McCardle (1985) also describes a normal-normal model,

which is the focus of Lippman and McCardle (1987) and
Chatterjee and Eliashberg (1990). In this model, the prior
on � is assumed to be normally distributed with mean m
and precision s (or variance 1/s), and the signals are drawn
from a normal distribution with mean � and precision t.
The posterior distribution after seeing signal x is then given
by a normal distribution with mean �sm+ tx�/�s+ t�, and
the precision s + t is independent of the signal, as in the
beta-binomial model. This allows the model to be formu-
lated as a univariate dynamic program with the then-current
mean as a state variable.

3. Monotonicity Properties
In this section, we study the impact of changes in the con-
sumer’s prior distribution � on the value function and opti-
mal policies. Our first task is to identify a stochastic order
that captures the notion of a “more optimistic” prior that
allows us to obtain natural monotonicity results. As dis-
cussed in the introduction, an FOSD improvement in the
prior is not sufficient to ensure an increase in the value
function. We must instead use the LR order and assume that
the likelihood functions for signals satisfy the monotone-
likelihood-ratio (MLR) property. Our interest in the LR
order and the MLR property was motivated by their use
in economics in the study of agency models and auctions;
see, e.g., Milgrom (1981). We begin by introducing the LR
order and MLR assumption. We then show that, with the
MLR assumption, the value function and policies satisfy
natural monotonicity properties in terms of the LR order.

3.1. The Likelihood-Ratio Order

We will first introduce the LR order and then discuss the
properties of this order that we will use in our analysis.

Definition 3.1. �2 LR dominates �1 (�2 
LR �1) if for
all �2 � �1,
�2��2�

�1��2�
�
�2��1�

�1��1�
�

Figure 2. FOSD and LR improvements on a uniform
�0�1� distribution.

(a) FOSD improvement (b) LR improvement

π1 π2

0 1 10

For our purposes, there are three key properties of the LR
order. The first key property is that LR dominance implies
FOSD dominance. Recall the definition of the FOSD order:
�2 
FOSD �1 if and only if for all increasing functions
"���,

∫
�
"����2���d� �

∫
�
"����1���d�. Whitt (1979)

showed that LR dominance implies FOSD dominance and,
even stronger, that LR dominance is equivalent to requiring
FOSD dominance for all conditional distributions of the
form ��� � � ∈ A� where A⊆ �; that is, �2 
LR �1 holds
if and only if �2�� � � ∈ A� 
FOSD �1�� � � ∈ A� for all A
with positive probability under both �1 and �2.
Although LR dominance implies FOSD dominance, the

converse is not true. Figures 2(a) and 2(b) show two FOSD
improvements of a uniform distribution �1 on �0�1�. In Fig-
ure 2(a), we form �2 by shifting mass from one interval to
another higher interval. In this case, �2���/�1��� is non-
monotonic and �2 does not LR dominate �1. In Figure 2(b),
we form �2 by shifting mass from a left-tail interval to a
right-tail interval. In this case, �2���/�1��� is monotoni-
cally increasing and �2 
LR �1. Thus, LR improvements,
like FOSD improvements, can be constructed by transfer-
ring mass from lower to higher values of �. However, LR
improvements require the transfer of mass from a left-tail
interval to a right-tail interval to ensure that �2���/�1��� is
increasing.
The second key property of the LR order is that it sur-

vives Bayesian updating: If two priors are LR ordered, the
corresponding posterior distributions are also LR ordered.
This result is stated formally in the next proposition.

Proposition 3.2. Given any signal x, the posteriors are
LR ordered if and only if the priors are LR ordered# �2 
LR

�1 ⇔���2� x�
LR ���1� x� for all x ∈X.
Proof. From Definition 3.1, ���2� x� 
LR ���1� x�
requires that for all �2 � �1,

���2
�2� x�

���2
�1� x�
�
���1
�2� x�

���1
�1� x�
�

Writing out the posteriors using Bayes’ rule and can-
celing common terms, we see that this is equivalent to
�2 
LR �1. �

This survival property is important for the recursive
dynamic programming structure because we will need LR
dominance at one stage to imply LR dominance in the next
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stage. FOSD dominance is not preserved in this way: It
is not difficult to construct examples where the priors are
FOSD ordered and the posteriors are not ordered for some
signals.
The final important property of the LR order is that,

when we have totally ordered signals (e.g., four-star ratings
are more favorable than three-star ratings) and “monotonic”
likelihood functions, we get natural monotonic relation-
ships among priors, signals, and posteriors. We formalize
this monotonicity assumption as follows.

Definition 3.3. The signal process has the MLR property
if the signal space X is totally ordered and L�x � �2� 
LR

L�x � �1� for all �2 � �1. In other words,
L�x2 � �2�
L�x2 � �1�

�
L�x1 � �2�
L�x1 � �1�

for all x2 � x1 and �2 � �1�

The requirement that the signals be totally ordered is nat-
ural but does rule out some cases that are potentially of
interest. For example, if we had a beta-binomial model with
uncertainty about the number of reports observed, we may
not be able to order all signals: Observing four out of five
reports to be positive is not necessarily more favorable than
observing seven out of ten reports to be positive. Although
the monotonicity results of §§3.2 and 8 require this MLR
assumption, most of the other results in the paper do not.
If the signal process satisfies the MLR property, then LR

improvements in the prior lead to LR improvements in the
signal distribution and more favorable signals lead to LR
improvements in the posterior.

Proposition 3.4. If the signal process satisfies the MLR
property, then
(i) �2 
LR �1 ⇒ f ��2�
LR f ��1�,
(ii) for any prior �, x2 � x1 ⇔����x2�
LR ����x1�.

Proof. These results are well known (see, e.g., Karlin 1968
and Whitt 1979, Theorem 4), but simple direct proofs are
provided in Online Appendix A.1. �

The LR ordering is quite natural in both the beta-
binomial and normal-normal examples introduced in §2.2.
In both models, an improvement in the expected benefit
of the technology (p̄ or m) in any period leads to an LR
improvement in the underlying distribution and both signal
processes satisfy the MLR assumption.

3.2. Monotonicity of the Value Function
and Policies

We now show that if the signal process satisfies the MLR
property, the optimal value function and optimal policies
are both monotonic in that LR improvements in the prior
distribution � lead to higher values and move policies away
from rejection and toward adoption.
To formalize the effect of changes in the prior on the

value function, we say a function u defined on distributions
on � is LR increasing if �2 
LR �1 implies u��2�� u��1�;

u is LR decreasing if −u is LR increasing. A key step
in proving that the value function is LR increasing is to
show that Bayesian updating preserves the LR-increasing
property; we show this in a lemma and then state the mono-
tonicity result.

Lemma 3.5. Suppose that the signal process satisfies the
MLR property and �2 
LR �1; let x̃2 and x̃1 denote the
random signals corresponding to �2 and �1. Then, for any
LR-increasing function u,

E�u����2� x̃2����E�u����1� x̃1����

Proof. First, recall that Proposition 3.4 implies that the
signal distributions f ��2� and f ��1� satisfy f ��2� 
LR

f ��1�. Then,

E�u����2� x̃2���=
∫
x
u����2� x��f �x
�2�dx

�

∫
x
u����1� x��f �x
�2�dx

�

∫
x
u����1� x��f �x
�1�dx

=E�u����1� x̃1����

The first inequality follows because u is LR increasing
and, for each signal x, �2 
LR �1 implies ���2� x� 
LR

���1� x� by Proposition 3.2. The second inequality follows
because the LR order on the signal distributions implies
FOSD dominance and u����1� x�� is an increasing func-
tion of x; the fact that u����1� x�� is an increasing func-
tion of x follows from Proposition 3.4(ii) because u is LR
increasing. �

Proposition 3.6. If the signal process satisfies the MLR
property, then, for all k, the value function v∗k��� is LR
increasing. In other words, �2 
LR �1 implies v

∗
k��2� �

v∗k��1�.

Proof. We show this by induction. The terminal value
function, v∗0��� = 0, is trivially LR increasing. Now sup-
pose that v∗k−1��� is LR increasing. By the previous lemma,
the value if the consumer waits, −c+ �E�v∗k−1����� x̃���,
is LR increasing. The rewards if the consumer adopts
(
∫
�
�����d� − K) or rejects (0) are also LR increasing.

Then v∗k���, as the maximum of three LR increasing func-
tions, is also LR increasing. �

We next consider how the optimal policy responds to
changes in the consumer’s distribution of benefits. First,
recall that, in the univariate setting, McCardle (1985)
showed that the policy in each period can be character-
ized by adoption and rejection thresholds. Intuitively, if LR
dominance correctly captures the notion of a “more opti-
mistic” distribution of benefits, we might expect optimal
policies to have analogous structures in the more general
setting. We will show that this is indeed the case. We
state and prove this threshold result after first establishing
a lemma that places a bound on the rate of increase of the
value function.
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Lemma 3.7. Suppose that the signal process satisfies the
MLR property. Then, v∗k���−

∫
�
�����d� is LR decreas-

ing.

Proof. Note that with Bayesian updating the expected
posterior mean is equal to the prior mean

∫
�
�����d� =

E�
∫
�
����
�� x̃�d��. Using this, we can write gk��� =

v∗k���−
∫
�
�����d� as a dynamic programming recursion;

g0���=− ∫
�
�����d�, and, for k > 0,

gk���=max
{
−
∫
�
�����d��−K�

− c− �1− ��
∫
�
�����d�+ �E�gk−1����� x̃���

}
�

We can then show that gk��� is LR decreasing using
the same recursive argument as in the proof of Propo-
sition 3.6 above: The terminal value function, g0���, is
LR decreasing. Now suppose that gk−1��� is LR decreas-
ing. Lemma 3.5 implies that the continuation value,
E�gk−1����� x̃���, is LR decreasing. Thus, the functions
associated with each choice in gk��� are all LR decreas-
ing. Then, gk���, as the maximum of three LR decreasing
functions, is LR decreasing. �

Because
∫
�
�����d�−K is the expected value of adopt-

ing the technology, we can interpret this lemma as saying
that, if we improve the underlying distribution, the value of
adopting increases at least as much as the value of waiting
or rejecting. This result is critical to establishing mono-
tonicity of the optimal policies.

Proposition 3.8. Suppose that the signal process satisfies
the MLR property and �2 
LR �1#
(i) If it is optimal to adopt with prior �1, then it is also

optimal to adopt with �2.
(ii) Similarly, if it is optimal to reject with �2, then it is

also optimal to reject with �1.

Proof. Assume that �2 
LR �1. (i) Let gk��� = v∗k���−
�
∫
�����d�−K� be the difference between the value func-

tion and the value given by immediate adoption; this differs
by a constant from the function studied in the previous
lemma. If it is optimal to adopt the technology given dis-
tribution �1, then gk��1�= 0. The previous lemma implies
that g is LR decreasing. Thus, gk��2� � 0, which implies
that it is optimal to adopt given �2.
(ii) If it is optimal to reject the technology given distri-

bution �2, then v
∗
k��2�= 0. v∗k is LR increasing (by Propo-

sition 3.6), and thus v∗k��1�� 0. Therefore, it is optimal to
reject given �1. �

Thus we have established the monotonic structure of the
optimal policy and a general version of the two-threshold
result: Along any chain of LR-improving distributions, the
optimal action moves from rejection toward adoption, per-
haps passing through the information-gathering region.
One natural way to construct a chain of LR-improving

distributions is by considering the observed signals: Given

the MLR property, by Proposition 3.4(ii), more favorable
signals lead to LR-improved posteriors. Combining this
result with Proposition 3.8, this implies that in each period
there exist threshold signals xak and x

r
k (with x

a
k � x

r
k) such

that it is optimal to adopt in the next period if the observed
signal is greater than xak , optimal to reject if the observed
signal is less than xrk, and optimal to gather additional infor-
mation if the signal lies between these two thresholds. Note
that these signal thresholds, like the posterior distributions,
are “path dependent” in that they will depend on the orig-
inal prior distribution � and the entire history of signals
observed. Because increasing any early signal leads to an
LR improvement in the posterior distribution, an increase in
any observed signal will lead all subsequent signal thresh-
olds to decrease (weakly).
Given the monotonic relationship between signals and

posterior means (this follows from Proposition 3.4(ii)), we
can also describe these adoption and rejection thresholds in
terms of posterior means: At each stage, there exist thresh-
olds �ak and �rk (�

a
k � �

r
k) such that it is optimal to adopt

in the next period if the posterior mean is greater than �ak ,
optimal to reject if the posterior mean is less than �rk, and
optimal to gather additional information if the posterior
mean lies between these two thresholds. These thresholds
must also bracket the cost of adoption K (�ka � K � �rk)
because rejection would be preferred to adoption if the pos-
terior mean were less than K; similarly, adoption would
be preferred to rejection if the posterior mean were greater
than K. Thus, the policy regions are analogous to those
in McCardle’s univariate model, as illustrated in Figure 1.
However, here, unlike the univariate model, the posterior-
mean thresholds may depend on the original prior distribu-
tion � and the entire history of signals observed.
An LR improvement in the consumer’s prior distribu-

tion on benefits not only makes the consumer better off
(according to her own expectations), it also makes the pro-
ducer better off: Even if we hold the set of observed sig-
nals constant, by Proposition 3.2(i), an LR improvement
in the prior leads to an LR improvement in the posteri-
ors and thus moves the consumer closer to the adoption
region. Thus, actions that lead to consumers having an LR-
improved prior will increase the probability of adoption and
lead to earlier adoptions. More favorable signals are also
good for both consumer and producer because they lead to
increased values and earlier adoption.

4. Convergence and Decisiveness
The finite-horizon version of the model assumes that the
consumer has a limited number of periods to make the deci-
sion to adopt or reject the technology. Increasing the num-
ber of periods remaining allows the consumer to gather
additional information, if desired, and thus makes wait-
ing weakly more attractive and the consumer weakly better
off. Formally, it is easy to show that v∗k��� is nondecreas-
ing in k and, if it is optimal to wait given prior � and
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k periods remaining, it is also optimal to wait with prior �
and k+ 1 periods remaining.
However, there is a limit to the benefits of gathering more

information: As the number of signals observed increases,
the consumer’s estimate of the benefit of the technology will
almost certainly converge and additional information will
have diminishing value.2 If information or delay is costly
(i.e., c > 0 or �< 1), the cost of gathering information will
eventually outweigh its benefit and it will be optimal to stop
gathering information. Of course, if information is free and
delay costless (c= 0 and �= 1), the consumer might as well
gather information forever; however, even in this scenario,
additional information has diminishing value and the finite-
horizon value functions will converge to an infinite-horizon
limit. We summarize these convergence results as follows.

Proposition 4.1. (i) If information gathering is costly
�c > 0�, then the consumer will almost certainly stop gath-
ering information at some point.
(ii) If delay is costly �� < 1�, information is free �c= 0�,

and it is truly optimal to adopt �i.e., the limiting expected
value E��� is greater than the adoption cost K�, then the
consumer will almost certainly adopt the technology.
(iii) If the cost of information gathering is nonnegative

�c� 0�, then the finite-horizon value functions converge for
all � # limk→
v∗k���= v∗
���.
Proof. See Online Appendix A.2. �

These convergence results do not assume that the con-
sumer will necessarily learn the true value of � if she
gathered information forever. For example, if the likelihood
function assigns the same signal distribution (e.g., “four
stars” with probability one) to all technologies with val-
ues of � above some threshold, then the posterior distri-
butions will never distinguish among technologies above
this threshold. Nevertheless, the estimated expected values
(E���) will converge without any assumptions about the
likelihood function.
The producer of a new technology can perhaps take some

solace in knowing that, if information is costly to gather,
consumers will eventually decide whether to adopt or reject
the technology. Moreover, if information is free but delay
is costly, the consumer will eventually adopt technologies
that are “good for her.” Typically, these adoption decisions
(and rejection decisions if information is costly) will be
made with some uncertainty about the benefit of the tech-
nology remaining and there being some risk of adopting
a bad technology (with � < K) or rejecting a good one.
The information gathering costs, the discount factor, and
the quality of the information all affect the timing of these
decisions and determine how much risk the consumer will
take in these adoption and rejection decisions; we discuss
these effects further in §7.

5. The Derived Benefit Function
In this section, we study how the consumer’s realized ben-
efit (net of information-gathering costs and discounting)

varies with the true benefit of the technology. This char-
acterization will give us some insight into why FOSD
improvements and increases in uncertainty in the distribu-
tion on benefits do not necessarily lead to increases in the
value function.
An adoption/rejection policy for a consumer can be

defined by identifying the sets of signals that lead to adop-
tion, rejection, or continuation in each period; these sets
will generally depend on earlier signals. For any such policy
P (not necessarily an optimal policy), let vk��
P� denote
the value given by following this policy. Clearly, v∗k��� =
vk��
P� if P is an optimal policy for prior �. As discussed
in §3.2, if the signal process satisfies the MLR property,
the optimal signal policies are monotonic in that they can
be characterized in terms of adoption and rejection signal
thresholds that are decreasing (weakly) in all observed sig-
nals. The following proposition shows that vk��
P� can
be represented as the expected value of a derived benefit
function bk��� that describes the net benefit realized by the
consumer for a technology with true benefit �.

Proposition 5.1. For any k and policy P , there exists a
derived benefit function bk��� such that

vk��
P�=
∫
�
bk�������d��

Moreover, bk��� can be decomposed as bk���= �� −K� ·
pk���− ck���, where pk��� is the discounted probability of
adoption and ck��� is the expected information-gathering
costs in present value terms; pk��� satisfies 0� pk���� 1,
and ck��� is nonnegative if c � 0. If the signal process
satisfies the MLR property and P is a monotonic policy,
then pk��� is increasing in �.

Proof. See Online Appendix A.3. �

If the policy P calls for adopting immediately, the dis-
counted probability of adoption is one and the expected
information gathering costs are zero. If P calls for immedi-
ate rejection, the discounted probability of adoption is zero
and the information costs are also zero. Adoptions in later
periods are discounted using the discount factor � so that
�� − K�pk��� represents the expected present value of
adopting a technology with true benefit �. The functions
bk���, pk���, and ck��� are constructed recursively by con-
sidering the probability of adoption and rejection in each
period. Given a fixed policy P and the true benefit �, these
adoption and rejection probabilities are determined entirely
by the likelihood function L�x � ��. Thus, bk���, pk���, and
ck��� all depend on the policy P but are independent of the
prior �.
Figure 3 shows the derived benefit function, decomposed

into its two components, for a beta-binomial example. Here
we assume that there are k= 3 periods to go, and in each
period the consumer observes n = 5 positive or negative
reports. The probability of seeing a positive in each report
is �. The cost of gathering information (c) is 0�018 in
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Figure 3. An example derived benefit function bk���.
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each period; the discount factor (�) is 0�98; the adoption
cost (K) is 0�5; and the scaling factor A is 1.0. The pol-
icy P assumed here is the optimal policy for a prior � that
is uniform on �0�1�. In this case, it is optimal for the con-
sumer to gather information in the first period. If zero or
one positives are observed, it is optimal to reject in the next
period; if two positives are observed, it is optimal to gather
additional information; otherwise it is optimal to adopt.
The form of the derived benefit function in Figure 3 is

typical. For values of � near zero, it is very likely that
the consumer will observe zero or one positives and, fol-
lowing the specified policy, will reject in the next period.
In these cases, the probability of adoption pk��� is near
zero and the expected information-gathering costs ck���
are close to the cost of gathering information in the first
period. For values of � near one, the consumer is very likely
to observe three or more positives and adopt in the next
period. In these cases, the probability of adoption is near
one and the expected information-gathering costs are equal
to the cost of gathering information in the first period.
As we move from low values of � to high values, the

probability of adopting the technology increases, but this
is not necessarily a good thing because adoptions for val-
ues of � that are less than the adoption cost K are not
economic. Combining adoption and information costs, the
derived benefit function initially decreases as the expected
information costs increase and the expected value of adop-
tion, ��−K�pk���, decreases. Thus, in this range, better
technologies actually make the consumer worse off! How-
ever, for larger values of �, the derived benefit is again
increasing.
This nonmonotonicity in the derived benefit function

explains why FOSD improvements in the prior � need not
be beneficial to the consumer. If we shift mass from lower
values of � in regions where bk��� is decreasing (e.g., in
the example, shifting mass from the regions near 0.1 to the
region near 0.3), the value with this policy will decrease.
Of course, with large enough changes in the probability

distribution, the policy that was optimal for the original dis-
tribution may no longer be optimal. However, in this case
and others, we can generate numerical examples that con-
sider optimal policies and are such that �2 
FOSD �1 and yet
v∗k��2� < v

∗
k��1�. In contrast, as discussed in §3.1, an LR

improvement in the prior shifts mass from a left-tail region
to a right-tail region. In this case, we can be sure that we
are transferring mass from “bad” to “good” values of � and
the consumer will certainly be better off.
The form of the derived benefit function also shows why

increases in uncertainty need not be good for the consumer.
First, recall that a distribution �2 is an increase in uncer-
tainty over �1 if and only if for all convex functions "���,∫
�
"����2���d� �

∫
�
"����1���d�. Equivalently, �2 is an

increase in uncertainty over �1 if and only if �2 is a “mean-
preserving spread” of �1; see Rothschild and Stiglitz (1970).
The derived benefit functions are generally not convex, and
thus increases in uncertainty need not lead to increases in the
value function. For example, in Figure 3, the left side of the
“valley” of bk��� is visibly nonconvex. A mean-preserving
spread of � that is constructed by moving mass from near
� = 0�2 and splitting it between regions near � = 0�0 and
� = 0�4 will lead to a decrease in the consumer’s value
function.
However, many increases in uncertainty will make the

consumer better off. For example, a mean-preserving
spread that moves mass from the central valley in Figure 3
to the left and right tails of the distribution will make
the consumer better off. In these cases, the increase in
uncertainty about � is good for the consumer because the
low or high values of � are more easily recognized as
“bad” or “good” technologies. Because a mean-preserving
spread in the prior does not affect the expected rewards
associated with adopting or rejecting, if a mean-preserving
spread leads to an increase in the value function, it must
be because the value of waiting has increased; thus, such
an increase in uncertainty will encourage the consumer
to move from rejection or adoption toward waiting. Con-
versely, an increase in uncertainty that makes the consumer
worse off must move the consumer from waiting toward
adoption or rejection.
Just as FOSD improvements and increases in uncertainty

in the priors have ambiguous effects on the consumer’s
value function, they also have ambiguous effects on the
producer: They may increase or decrease the probability
of adoption. Improving the true value of the technology
(increasing �) need not make the consumer better off, but, if
the signal process satisfies the MLR property, such improve-
ments are good for the producer (at least in the short term)
because they increase the probability of adoption (i.e., pk���
is increasing in �). Intuitively, improving the technology
makes favorable signals more likely and thereby makes the
consumer more likely to adopt and likely to adopt sooner.

6. Convexity
We now study the convexity of the value function and opti-
mal policy regions. These convexity results are useful for
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understanding the role of uncertainty in the model and will
be important for characterizing the effects of “better infor-
mation” in the next section. We do not need to assume the
MLR property to prove these results. We establish convex-
ity of the value function using the same proof strategy that
we used to establish monotonicity in Proposition 3.6; we
first show that Bayesian updating preserves convexity in
the same way it preserves monotonicity in Lemma 3.5.

Lemma 6.1. Suppose that u��� is convex in �. For any
priors �1 and �2 and 0� �� 1, we have

E�u������ x̃����� �E�u����1� x̃1����

+ �1−��E�u����2� x̃2����

where �� = ��1 + �1− ���2 and x̃�� x̃1, and x̃2 are the
signals corresponding to ��, �1, and �2.

Proof. See Online Appendix A.4. �

Proposition 6.2. For all k, the value function v∗k���
is convex in �# For any distributions �1 and �2 and
0� �� 1, we have

v∗k����� �v
∗
k��1�+ �1−��v∗k��2��

where �� = ��1 + �1−���2.

Proof. We show this by induction. The terminal value
function, v∗0���= 0, is trivially convex. Now suppose that
v∗k−1��� is convex. By the previous lemma, the value if
the consumer waits, −c + �E�v∗k−1����� x̃���, is convex.
The rewards if the consumer adopts (

∫
�
�����d�−K) or

rejects (0) are also convex. Then, v∗k���, as the maximum
of three convex functions, is also convex. �

Convexity of the value function can be interpreted as an
aversion toward uncertainty about the prior �. For exam-
ple, in the iPhone example, the consumer may be uncertain
about the kind of battery used in the device, and this may
affect her beliefs about the iPhone’s benefit. Specifically, she
may have probabilities � versus (1−�) chance of having
prior �1 with battery 1 or �2 with battery 2. A convex value
function means that the consumer would prefer to resolve
this uncertainty before beginning the information-gathering
process (for an expected value of �v∗k��1�+ �1−��v∗k��2�)
rather than begin the information-gathering process with
this uncertainty unresolved (for an expected value of
v∗k����). Uncertainty about the prior is costly because of its
impact on decision making: If the consumer knew whether
�1 or �2 prevailed, she could make better adoption, rejec-
tion, and/or information-gathering decisions.
We next show that the adoption and rejection regions are

convex.

Proposition 6.3. If it is optimal to adopt �reject� with both
�1 and �2, then it is also optimal to adopt �reject� with
any �� = ��1 + �1−���2, where 0� �� 1.

Proof. We will prove that the adoption region is convex;
the proof for the rejection region is similar. If it is optimal
to adopt with both �1 and �2, then the value of adopting
at �� is

vk�adopt����=
∫
�
������d�−K

= �
(∫

�
��1���d�−K

)

+ �1−��
(∫

�
��2���d�−K

)

= �v∗k��1�+ �1−��v∗k��2�� v
∗
k�����

with the inequality following from the convexity of the
value function. This implies that it is optimal to adopt
with ��. �

Thus, if it is optimal to adopt (or reject) at both �1

and �2, uncertainty about which distribution prevails does
not affect the optimal strategy. However, the waiting region
need not be convex: Although it may be cost effective
to gather additional information at both �1 and �2, with
uncertainty about which distribution prevails, it may be too
expensive to resolve this additional uncertainty, and the
consumer may be better off adopting or rejecting based on
the current information.

7. Comparative Statics
We now consider the effects of changing various parame-
ters in the model. What happens if we reduce the cost of
gathering information? Or make the information “better”?
Or reduce the cost of adoption? Or use a different discount
rate? We examine how these changes affect the consumer’s
value function, the policy regions, and the timing of adop-
tion/rejection decisions.

7.1. Cheaper Information

We first consider the impact of reducing the cost of infor-
mation gathering.

Proposition 7.1. Decreasing the cost of information
gathering �c� increases the value function, expands the
information-gathering region, and delays the adoption or
rejection decision.

Proof. See Online Appendix A.5. �

Thus, cheaper information is good for the consumer and
leads her to gather more information before she adopts. For
example, in the “old days” before the Internet, we might
have been willing to make a spontaneous decision to pur-
chase a new gadget upon first seeing it at a store. Now, how-
ever, we are very unlikely to buy a gadget that costs more
than (say) $100 without first researching it on the Internet.
Although cheaper information delays the adoption or

rejection decision, the effect on the probability of adoption
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or rejection is unclear. With expensive information, it may
be optimal to either adopt or reject. With cheaper but still
costly information, the consumer would invest in informa-
tion gathering only if it has the possibility of changing
her decision. Thus, if the optimal decision with expensive
information is to reject immediately, cheaper information
can only increase the probability of adoption. Conversely,
if the optimal decision with expensive information is to
adopt immediately, reducing the cost of information can
only decrease the probability of adoption.

7.2. Better Information

What is the effect of better information? Here we define
better information in the sense of Blackwell’s “sufficiency”
condition (Blackwell 1951). Consider two different signal
processes, one producing signal x ∈X with likelihood func-
tion Lx�x � �� and the other producing signal y ∈ Y with
likelihood function Ly�y � ��. These two processes may,
in general, be dependent, and we can write Ly�y � �� =∫
x
Ly�x�y � x���Lx�x � ��dx where the conditional distribu-

tion Ly�x�y � x��� captures the dependence between sig-
nals X and Y . Blackwell’s notion of a signal process X
being more informative than (or, in his terms, sufficient for)
a signal process Y can be defined as follows.

Definition 7.2. Signal process X is more informative than
signal process Y , or X 
B Y , if there exists a stochastic
transformation B�y � x� such that Ly�y � �� =

∫
x
B�y � x� ·

Lx�x � ��dx.
Here the stochastic transformation B�y � x� must satisfy

the usual conditions of a conditional probability distribution
(for each x, B�y � x� defines a probability distribution on Y ).
With such a transformation, we can define a signal Y ∗ with
conditional distribution Ly∗ �x�y∗ � x��� = B�y � x� that has
the same likelihood function as y (L∗

y�y
∗ � �� = Ly�y � ��)

but is conditionally independent of � given x. Such a signal
Y ∗ is sometimes referred to as a “garbling” of X because it
is as if Y ∗ were generated from X using a stochastic mech-
anism that is independent of �. In the beta-binomial model,
a signal X consisting of five positive or negative reports
is more informative than a signal Y with three reports; we
could view Y ’s three reports as a random selection of X’s
five reports. In the normal-normal model, a signal X drawn
from a normal distribution with mean � and precision t2 is
more informative than a signal Y drawn from a normal dis-
tribution with mean � and precision t1, whenever t2 � t1;
we could view the less precise signal as equal to the more
precise signal plus additional noise.
We summarize the effects of having better information

in the following proposition. The convexity of the value
function established in Proposition 6.2 plays a central role
in this proof.

Proposition 7.3. Increasing the informativeness of the
signal process increases the value function and expands the
information-gathering region; that is, if it is optimal to wait

with prior � and signal process Y , then it is also optimal to
wait with prior � and signal process X whenever X 
B Y .
Proof. See Online Appendix A.6. �

Thus, better information is clearly good for the con-
sumer.3 The effects on the producer are ambiguous. With a
fixed prior, better information makes waiting more attrac-
tive. However, the expected time until adoption or rejection
and the probability of eventual adoption may increase or
decrease. A consumer who would have otherwise immedi-
ately adopted or rejected may be induced by better infor-
mation to delay and gather more information. On the other
hand, a consumer who acquires better information may form
precise beliefs more quickly and ultimately decide sooner.

7.3. Reduced Adoption Cost

We next consider the effects of reducing the cost of
adoption.

Proposition 7.4. Decreasing the cost of adoption �K� in-
creases the value function, expands the adoption region,
and shrinks the rejection region; the probability of eventual
adoption increases, and the expected time until adoption
decreases.

Proof. See Online Appendix A.7. �

Clearly, reducing the adoption cost K is good for the
consumer. The impact on the producer depends on the inter-
pretation of these costs. If we interpret the adoption cost as
the price paid by the consumer to the producer to acquire
the technology, then we cannot say whether the benefits
associated with reducing these costs (e.g., by offering a
rebate) outweigh the direct reduction in revenue. However,
if we interpret K as a setup cost paid by the consumer
but not paid to the producer (e.g., a cost associated with
installing the technology), then a reduction in K is unequiv-
ocally good for the producer because it accelerates adop-
tions and increases the probability of eventual adoption.

7.4. Reduced Discounting

Finally, we consider the effect of increasing the consumer’s
discount factor.

Proposition 7.5. Increasing the consumer’s discount fac-
tor ��� increases the value function, expands the informa-
tion-gathering region, and delays the adoption or rejection
decision.

Proof. The proof is analogous to the proof of Proposi-
tion 7.1 in Online Appendix A.5. �

Thus, a consumer with a higher discount factor is better
off and more likely to gather information because the delay
induced by information gathering is less costly. As with
a decrease in the cost of information, the effect on the
adoption probability is unclear.
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8. Evolving Technologies
In the previous sections, we assumed that the benefit of the
technology, �, does not change over time. A more general
model would allow the technology to evolve over time.
For example, the producer may come out with new ver-
sions of the technology. We can also think of the change in
benefit being driven by the consumer’s need for the tech-
nology changing in some predictable or unpredictable way.
For example, a consumer’s desire for an iPhone may be
related to her travel plans, which may change because of
a change in job status. Note that the changes need not be
improvements. For example, the benefit of a new coal-fired
power plant may decrease with changes in environmental
regulations. A sophisticated consumer needs to consider the
potential changes in benefits when making adoption and
information-gathering decisions.
Because we formulated the stationary model to allow

general probability distributions and signal processes, it is
not difficult to generalize the model to accommodate
stochastic changes in the technology’s benefits. Let �k ∈�
denote the benefit of the technology in period k. As before,
if the consumer decides to reject the technology, she
receives nothing. If she decides to adopt the technology, she
pays a fixed adoption cost K and receives a net expected
benefit of

∫
�k
�k���k�d�k − K, where ���k� is her prior

on �k. If the consumer chooses to wait, she pays c, and the
benefit of the technology changes stochastically according
to the conditional probability distribution g��k−1 � �k�. She
then observes a signal xk−1 about the new technology with
benefit �k−1, with the signal xk−1 drawn from likelihood
function L�xk−1 � �k−1�. Note that, in this model, waiting
not only allows the consumer to gather additional informa-
tion, but it also allows the possibility of adopting a better
technology in the future.
The dynamic programming formulation is the same

as the stationary model except the posterior distributions
and signal distributions now include the evolution of the
technology. Let 0��k−1
�� be the prior on next period’s
technology benefit: 0��k−1
��=

∫
�k
g��k−1 � �k����k�d�k.

The signal and posterior distributions are then given by
f �xk−1
��=

∫
�k−1
L�xk−1 � �k−1�0��k−1
��d�k−1 and

���k−1
��xk−1�=
L�xk−1 � �k−1�0��k−1
��

f �xk−1
��
�

Most of the properties of the earlier model carry over to this
more general setting. To establish monotonicity properties
analogous to those of §3, we need to assume that the tech-
nology transitions, as well as the signal process, satisfy the
MLR property: g��k−1 � �2k�
LR g��k−1 � �1k� for all �2k � �1k
and for all k. This assumption means that a truly better
technology in one period leads to an LR improvement in
the distribution on technology benefits for the next period.
If the technology transitions and the signal process both
satisfy the MLR property, we can use the results of §3.1 to
show that LR dominance among the priors for one period

(�2 
LR �1) implies that the next-period priors, signal dis-
tributions, and posteriors are also LR ordered (0��2� 
LR

0��1�, f ��2� 
LR f ��1�, and ���2� x� 
LR ���1� x� for
each x). Lemma 3.5 and Proposition 3.6 then go through as
before, and we can conclude that the value function v∗k���
is LR increasing. Thus, if the technology transitions and
the signal process both satisfy the MLR property, LR dom-
inance remains an appropriate ordering on priors when the
technology is evolving.
Although monotonicity of the value function generalizes

with only this MLR assumption, we need an additional
assumption to ensure monotonicity of the optimal policies.
We can illustrate the issue by considering a special case of
the general model where the signal perfectly reveals the true
benefit and there are two periods remaining. Taking the dis-
count factor �= 1 and ignoring the possibility of quitting,
the choice between adopting and waiting requires a com-
parison between �k −K and E��k−1 � �k�− c; equivalently,
the consumer should adopt if c−K �E��k−1 − �k � �k� and
wait otherwise. If E��k−1 − �k � �k� is decreasing in �k
and adoption is preferred for one �k, then adoption must
also be preferred for all higher values of �k. However, if
E��k−1 − �k � �k� is not decreasing in �k, then we may find
that adoption is preferred for one �k but waiting is preferred
for a higher �k. The condition required to establish mono-
tonicity in this special case is sufficient for the general case.

Proposition 8.1. Suppose that the signal process and
technology transitions both satisfy the MLR property. If
E��k−1 − �k � �k� is nonincreasing in �k for each k, then
(i) v∗k���−

∫
�k
�k���k�d�k is LR decreasing.

(ii) The optimal policy satisfies the monotonicity prop-
erties of Proposition 3.8.

Proof. The proof of (i) is analogous to the proof of
Lemma 3.7, taking into account the technology transitions;
see Online Appendix A.8 for the proof. Given (i), the proof
of the monotonicity of policies in (ii) follows exactly as in
the proof of Proposition 3.8. �

With the exception of the convergence results of §4,
the other results and intuitions with stationary technologies
continue to hold with evolving technologies without any
additional assumptions. Specifically, the existence of the
derived benefit function of Proposition 5.1 (now a function
of the period-k benefit �k) does not require any additional
assumptions on the technology transitions except for the
last part of this result, which shows that, if the policy is
monotonic, the probability of adoption is increasing in �k;
this monotonicity result requires the technology transitions
and signal processes to both satisfy the MLR property. The
results on the convexity of the value function and policies
in §6 and the comparative statics results of §7 carry over
directly without any additional assumptions on the transi-
tions. The convergence results of §4 would clearly require
some additional assumptions to hold: If the technology ben-
efit �k is changing over time, there is no reason to expect
the estimate of the benefit to converge.
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If technologies are potentially changing over time, this
raises another interesting comparative statics question:
When is one technology transition g��k−1 � �k� preferred to
another? Or what constitutes an improvement in the future
prospects for a technology? Given that we need an LR
improvement in the prior to ensure an increase in the value
function, we want a condition on the transitions that ensures
the prior on next-period’s benefit (0��k−1�) improves in the
LR order. We say that a technology transition g2��k−1 � �k�
is an LR improvement of g1��k−1 � �k� if both g2 and g1
satisfy the MLR property and

g2��
2
k−1 � �k�

g1��
2
k−1 � �k�

�
g2��

1
k−1 � �k�

g1��
1
k−1 � �k�

for all �k and �
2
k−1 � �

1
k−1� (1)

g2��k−1 � �2k�
g1��k−1 � �2k�

�
g2��k−1 � �1k�
g1��k−1 � �1k�

for all �k−1 and �
2
k � �

1
k� (2)

Here condition (1) requires that, for any current technol-
ogy benefit �k, the conditional distribution for next period’s
benefit �k−1 under g2 to LR dominate the distribution
under g1. Although (1) seems natural, it is not sufficient
in itself because a mixture of LR-dominant distributions
need not result in an LR-dominant distribution: that is,
g2��k−1 � �k� 
LR g1��k−1 � �k� for all �k does not imply
that 02��k−1� =

∫
�k
g2��k−1 � �k����k�d�k 
LR 01��k−1� =∫

�k
g1��k−1 � �k����k�d�k. Condition (2) can be interpreted

as requiring the backward transitions from �k−1 to �k to sat-
isfy the same LR dominance condition. A result in Karlin
(1968) then ensures that 02��k−1�
LR 01��k−1�.
With this notion of improved prospects for a technology,

we can conclude that such improvements are good for the
consumer and make waiting more attractive.

Proposition 8.2. Suppose that the signal process and
technology transitions both satisfy the MLR property.
An LR improvement in the technology transition pro-
cess increases the value function and expands the waiting
region.

Proof. See Online Appendix A.9. �

Thus, improved prospects for future technologies are
clearly good for the consumer. The effect on the producer
is unclear: Like better information, improved prospects for
future technologies may entice a consumer who otherwise
would have adopted or rejected the technology to wait
instead. Such a change could increase or decrease the prob-
ability of ultimately adopting the technology and accelerate
or delay the adoption/rejection decision.

9. Conclusions and Possible Extensions
Table 1 summarizes some of the main conclusions of the
paper. The rows correspond to changes in assumptions,

Table 1. Summary of key results.

Impact on Short-term
value function encourages

Better technology � +/− Adoption
More optimistic prior � + Adoption
More favorable signal x + Adoption
More uncertainty about � +/− —
Reduced adoption cost K + Adoption
Cheaper information c + Waiting
Better information L�x � �� + Waiting
Improved future prospects + Waiting
g��k−1 � �k�

and the table entries describe the impact of these changes
on the consumer’s value function and optimal policy. The
impacts of these changes on the consumer’s value function
are mostly quite natural. For example, if we define “better
information” or “improved future prospects” appropriately,
such a change should be good for the consumer. The chal-
lenge at times has been to find the appropriate definition of
an improvement that captures the essence of the change and
ensures the desired natural result. Some of our results are
perhaps surprising: For example, we saw that a better tech-
nology may not make the consumer better off once we take
into account the information-gathering costs and adoption
process. This leads us to require a stronger notion of a “more
optimistic” prior than we might have expected; specifically,
we need to use the LR order rather than the FOSD order.
Although we have shown that this basic model has a

great deal of structure, there are some additional potential
results that could be of interest. For example, although we
have shown that increases in uncertainty about the benefit
of the technology do not always make the consumer better
off, it may be possible to identify a more refined notion of
“increased uncertainty” that is stronger than Rothschild and
Stiglitz’s (1970) notion and is unambiguously good for the
consumer. This refinement might be analogous to our use
of LR dominance instead of FOSD dominance to describe
“more optimistic” priors. In addition, in the model with
evolving technologies, it would be interesting to character-
ize how “increased uncertainty” about future technologies
affects values and policies.
There are a number of ways our basic model could be

extended to address other issues related to technology adop-
tion. First, one can extend the model to consider technolo-
gies with multiple attributes and multidimensional signals.
For example, one might consider a product’s per-period ben-
efit and its reliability as separate attributes. Multidimen-
sional signals might provide information on these attributes
separately: For example, it might be easy to obtain accurate
information about the benefit of a technology but harder to
obtain information about its reliability. In this setting, we
need to consider an aggregate benefit function that combines
these attributes into an overall benefit value. The results
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of §§4–7 carry over directly to this multivariate setting, but
the monotonicity results in §§3 and 8 require the aggregate
benefit function to be increasing in each product attribute
and use multivariate extensions of the LR order and the
MLR property. This extension is discussed in Ulu (2007).
A second possible extension would be to give the con-

sumer a range of different possible information-gathering
activities. For example, one might include costless “passive”
information gathering as well as more expensive “active”
activities. In this more general setting, the basic structure
of the model will still hold taking the information gath-
ering region in aggregate. For example, the adoption and
rejection regions will be convex and, along any chain of LR-
improving prior distributions, we move away from the rejec-
tion region and toward the adoption region. However, we
suspect that it will be difficult to say much about the choice
of information-gathering processes within the information-
gathering region. For example, information may be worth
more when the prior is near a threshold (in some sense) and
less when the priors are farther from the thresholds. Simi-
larly, different kinds of information sources may be more or
less valuable depending on specific features of the prior.
A third direction to extend the model would be to allow

repeat purchases with evolving technologies. In this exten-
sion, adopting a technology would provide some immediate
benefits and leave open the possibility of “upgrading” in
the future. This form of extension would be particularly
interesting if the consumer has a choice about the cost and
quality of the new technology to purchase. In this setting,
improved prospects for future technologies may encourage
consumers to purchase cheaper and lower-quality technolo-
gies today and plan to upgrade in the future.
Finally, another direction to extend the model would be

to consider richer models of consumer behavior. For exam-
ple, rather than assuming that the consumers make decisions
on an expected-value basis, one might consider risk-averse
consumers. Here, we would expect to find that risk-averse
consumers are less likely to adopt than their risk-neutral or
less risk-averse counterparts. We might go further still and
consider nonexpected utility models of consumer behavior.
For example, we might consider consumers who have loss-
averse or reference-point-dependent utility functions and/or
update their beliefs about the benefits of new technologies
in a non-Bayesian fashion; Kahneman and Tversky’s (1979)
“prospect theory” model provides a rich descriptive model
of consumer behavior that might be useful in this context.
Alternatively, one might consider a game-theoretic model
where producers strategically choose the cost and quality of
information to influence consumer behavior and consumers
acquire and interpret information knowing that the producer
is being strategic in these choices.
We expect that the model formulation and analytic tech-

niques that we have used in this paper will be useful when
studying more complex technology adoption models. More-
over, we hope that the results and insights provided here
will help clarify our intuitions about what to expect—and

what not to expect—in more complex models of technol-
ogy adoption and the diffusion of innovations.

10. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. Jensen (1982) studied a model with a similar Bernoulli
information structure but with only two possible benefit lev-
els. He also assumed that information gathering is costless
(c= 0).
2. When we say that something will “almost certainly”
occur, we mean that this will occur with probability one.
For example, there may exist infinite signal sequences such
that the estimated benefit does not converge, but the total
probability associated with such signal sequences is zero.
3. Lippman and McCardle (1987) incorrectly claim that
increasing the precision of the signal in the normal-normal
model leads to a decrease in the consumer’s value func-
tion; this can be traced to an error in their formula for the
variance of the signal distribution.
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