
OPERATIONS RESEARCH
doi 10.1287/opre.1080.0611ec
pp. ec31–ec37

informs ®

©2009 INFORMS

e - c o m p a n i o n
ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—“Uncertainty, Information Acquisition, and
Technology Adoption” by Canan Ulu and James E. Smith,

Operations Research, doi 10.1287/opre.1080.0611



Online Supplement to Uncertainty, Information Acquisition, and
Technology Adoption

Canan Ulu James E. Smith
McCombs School of Business, Fuqua School of Business,
University of Texas at Austin, Duke University,

Austin, TX 78712. Durham, NC 27708.
Canan.Ulu@mccombs.utexas.edu jes9@duke.edu

This version: January 29, 2008

A Additional Proofs

A.1 Proof of Proposition 3.4

Proof. (i) Notice that f(π2) ºLR f(π1) is equivalent to f(x1; π1)f(x2; π2)− f(x1; π2)f(x2;π1) ≥ 0
for x2 ≥ x1. Then

f(x1; π1)f(x2; π2)− f(x1; π2)f(x2; π1)

=
∫

θ1

∫

θ2

(L(x1|θ1)L(x2|θ2)− L(x1|θ2)L(x2|θ1))π2(θ2)π1(θ1) dθ2 dθ1

=
∫

θ1

∫

θ2≥θ1

(L(x1|θ1)L(x2|θ2)− L(x1|θ2)L(x2|θ1))π2(θ2)π1(θ1) dθ2 dθ1

+
∫

θ1

∫

θ2≤θ1

(L(x1|θ1)L(x2|θ2)− L(x1|θ2)L(x2|θ1))π2(θ2)π1(θ1) dθ2 dθ1

Reversing the order of integration and interchanging the symbols θ1 and θ2, this last integral may
be rewritten as:

∫

θ1

∫

θ2≥θ1

(L(x1|θ2)L(x2|θ1)− L(x1|θ1)L(x2|θ2))π2(θ1)π1(θ2) dθ2 dθ1

Combining this with the first integral above, we have

f(x1; π1)f(x2;π2)− f(x1; π2)f(x2;π1)
=

∫
θ1

∫
θ2≥θ1

(L(x1|θ1)L(x2|θ2)− L(x1|θ2)L(x2|θ1)) (π2(θ2)π1(θ1)− π2(θ1)π1(θ2)) dθ2 dθ1.

The assumption that L(x|θ) satisfies the MLR property implies that (L(x1|θ1)L(x2|θ2)− L(x1|θ2)L(x2|θ1))
is nonnegative and the assumption that π2 ºLR π1 implies that (π2(θ2)π1(θ1)− π2(θ1)π1(θ2)) is
nonnegative. Thus f(x1; π1)f(x2; π2)− f(x1; π2)f(x2; π1) is nonnegative.

(ii) By Definition 3.1, proving Π(π, x2) ºLR Π(π, x1) is equivalent to proving that for θ2 ≥ θ1,

Π(θ2; π, x2)
Π(θ2; π, x1)

≥ Π(θ1; π, x2)
Π(θ1; π, x1)
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Writing this out using Bayes’ rule and canceling common terms, we see that this is equivalent to
L(x|θ2) ºLR L(x|θ1).

A.2 Proof of Proposition 4.1

Proof. Let Wn = E[θ|xn] denote the expected value of θ after starting with prior π and observing
a sequence xn of n signals. Wn is a martingale (see Billingsley (1986) p. 483). By an application
of Doob’s Martingale convergence theorem (see, e.g., Theorem 35.5 in Billingsley (1986) p. 492),
Wn almost certainly converges to a random variable W∞ = E[θ|x∞] which is the expected benefit
after seeing an infinite sequence of signals.

Let Y n = max {0, E[θ −K|xn]} = max {0,Wn −K} denote the expected value if forced to
adopt or reject after seeing n observations. Since Y n is a continuous function of Wn, Y n almost
certainly converges to Y ∞ = max {0,W∞ −K}.

Finally let Zn = E[max {0,W∞ −K} |xn]. This is the expected value with an infinite se-
quence of signals; it is analogous to the expected value with perfect information and represents
the expected value if the consumer could somehow observe an infinite sequence of signals and then
decide whether to adopt or reject the technology. Like Wn, Zn is a martingale and converges to
Z∞ = E[max {0,W∞ −K} |x∞] = max {0, W∞ −K} = Y ∞.

(i) Y n is the value if the consumer adopts or rejects after seeing n observations. Since Zn is
the expected value of infinite number of costless observations, the value of gathering additional
information is less than −c + δZn. Since Y n and Zn almost certainly converge to a common value,
for these convergent signal sequences, when c > 0, for large enough n we will have δZn − Y n < c
and at this point (if not sooner) it will be optimal to adopt or reject without gathering additional
information.

(ii) If c = 0, it will never be (uniquely) optimal to reject. In this setting, the value of gathering
additional information is less than δZn. Adopting will certainly be optimal if Y n > δZn. If δ < 1
and adopting is truly optimal (W∞ > K), then Y ∞ = Z∞ = max {0,W∞ −K} = Y ∞ is positive
and, for almost all signal sequences, for large enough n we will have Y n > δZn.

(iii) If c ≥ 0, the finite-horizon value function v∗k(π) is increasing in k and bounded above by
the expected value of perfect information, E[max {0, θ −K}]. This bound is finite because of our
assumption that θ is π-integrable. Such a bounded monotonic sequence must converge.

A.3 Proof of Proposition 5.1

Proof. Because the adoption and rejection regions will vary depending on prior signals, it is helpful
to make this dependence explicit in the recursive construction of these functions. Let xk denote
the vector of signals observed before period k and let bk(θ,xk), pk(θ,xk) and ck(θ,xk) denote the
functions involved in the proposition.

With one period to go, c1(θ,x1) = 0 for all x1 and p1(θ,x1) = 1 or 0 depending on whether the
policy P calls for adoption or rejection after observing x1. In the recursive construction, assume
that for period k − 1 we can write

vk−1(π;xk−1, P ) =
∫

θ
bk−1(θ;xk−1)π(θ) dθ

where bk−1(θ;xk−1) = (θ −K)pk−1(θ;xk−1)− ck−1(θ;xk−1).
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In period k, if the policy P calls for adopting or rejecting, then the value function with k periods
to go is either 0,

∫
θ θπ(θ)dθ and the choices for bk, pk and ck are obvious. If the policy P calls for

continuing, then

vk(π;xk, P ) = −c + δ

(∫

xk∈Ak(xk)

(∫

θ
(θ −K)Π(θ; π, xk) dθ

)
f(xk; π) dxk

+
∫

xk∈Ck(xk)

(
−c + δ

∫

θ
bk−1(θ;xk−1)Π(θ; π, xk) dθ

)
f(xk; π) dxk

)
,

where Ak(xk) and Ck(xk) denote policy P ’s adoption and continuation regions in period k −
1 in the scenario in which xk has been previously observed. Rewriting bk−1(θ;xk−1) as (θ −
K)pk−1(θ;xk−1)− ck−1(θ;xk−1) and canceling the f(π) term appearing in the denominator of the
posterior distribution and as an integrand, we can rewrite this as:

vk(π;xk, P ) = −c + δ

(∫

θ
(θ −K)

(∫

xk∈Ak(xk)
L(xk|θ) dxk

)
π(θ) dθ

+
∫

θ

(∫

xk∈Ck(xk)
(−c + δ ((θ −K)pk−1(θ;xk−1)− ck−1(θ;xk−1))L(xk|θ) dxk

)
π(θ) dθ

)

Collecting terms, we can write the value function in the case where the policy P calls for waiting
in the current period as

vk(π;xk, P ) =
∫

θ
bk(θ;xk)π(θ) dθ

where bk(θ;xk) = (θ −K)pk(θ;xk)− ck(θ;xk) and

pk(θ;xk) =
∫

xk

Qk(xk, θ;xk)L(xk|θ) dxk

ck(θ;xk) =
∫

xk

Rk(xk, θ;xk)L(xk|θ) dxk

where

Qk(xk, θ;xk) =





δ, xk ∈ Ak(xk)
δpk−1(θ;xk−1), xk ∈ Ck(xk)
0, otherwise.

Rk(xk, θ;xk) =





c, xk ∈ Ak(xk)
c + δck−1(θ;xk−1), xk ∈ Ck(xk)
c, otherwise.

From the recursive definitions, it is easy to see that 0 ≤ pk(θ;xk) ≤ 1 and that ck(θ;xk) ≥ 0 if
c ≥ 0. We can also see that pk and ck can be interpreted as the discounted probability of adoption
and expected discounted costs.

We now show that the probability of adoption is increasing in its arguments if the signal process
satisfies the MLR property and P is a monotonic policy. If the policy P calls for immediate adoption
or rejection, then pk(θ;xk) = 1 or 0, respectively which are trivially increasing in θ. We will thus
focus on the case where the policy P calls for waiting in the current period and show that pk(θ;xk)
is increasing componentwise in θ and xk using an inductive proof. First note that p1(θ;x1) is equal
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to 0 or 1 depending on whether the last signal x1 is above or below the final adoption threshold
xa

1(x1); by our assumption that the policy P is monotonic, this threshold is decreasing in the earlier
signals.

Now proceeding by induction, assume that pk−1(θ;xk−1) is increasing componentwise in its
arguments. Note that Qk(xk, θ;xk) is increasing componentwise in its arguments because of this
induction hypothesis and the fact that the adoption and rejection thresholds are decreasing in xk

and 0 ≤ pk−1(θ;xk−1) ≤ 1. Then, for θ2 ≥ θ1 and xk ≥ yk (where “≥” is the componentwise
increasing order on the signals), we have

pk(θ2;xk) =
∫

xk

Qk(xk, θ2;xk)L(xk|θ2) dxk ≥
∫

xk

Qk(xk, θ2;yk)L(xk|θ2) dxk

≥
∫

xk

Qk(xk, θ1;yk)L(xk|θ2) dxk ≥
∫

xk

Qk(xk, θ1;yk)L(xk|θ1) dxk = pk(θ1;yk)

where the first inequality follows because Qk(xk, θ;xk) is increasing in xk. The second inequality
follows because Qk(xk, θ;xk) is increasing in θ for each (xk,xk). The next inequality follows because
Qk(xk, θ;xk) is an increasing function of xk for each (θ;xk) and L(xk|θ) is a totally positive kernel
of order 2 (TP2) and the “monotonicity preserving property” of TP2 kernels (see Karlin 1968,
Proposition 3.1, p. 22). Thus the adoption probability pk(θ;xk) is increasing in θ as well as the
previously observed signals xk.

If the technology is evolving over time according to conditional probability distribution g(θk−1|θk)
(see §8), the proof goes through assuming g(θk−1|θk) has the MLR property and using the “basic
composition theorem” in Karlin (1968).

A.4 Proof of Lemma 6.1

Proof. The posterior distribution Π(πα, x) for a given x can be written as,

Π(θ; πα, x) =
L(x|θ)πα(θ)

f(x; πα)
= α

L(x|θ)π1(θ)
f(x; πα)

+ (1− α)
L(x|θ)π2(θ)

f(x; πα)
= β(x)Π(θ;π1, x) + (1− β(x))Π(θ; π2, x)

where β(x) = α f(x;π1)
f(x;πα) and 1−β(x) = (1−α) f(x;π2)

f(x;πα) . For convex functions u defined on distributions
on θ, we have

E [u(Π(πα, x̃α))] =
∫

x
u(Π(πα, x))f(x; πα)dx

=
∫

x
u (β(x)Π(π1, x) + (1− β(x))Π(π2, x)) f(x; πα)dx

≤
∫

x
(β(x)u (Π(π1, x)) + (1− β(x))u (Π(π2, x))) f(x;πα)dx

= α

∫

x
u (Π(π1, x)) f(x; π1)dx + (1− α)

∫

x
u (Π(π2, x)) f(x; π2)dx

= αE [u(Π(π1, x̃1))] + (1− α)E [u(Π(π2, x̃2))]

The inequality follows because u is convex and the next equality follows by canceling the denomi-
nator of the β(x) and (1− β(x)) terms.
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A.5 Proof of Proposition 7.1

Proof. (i) Let v∗k(π; c) denote the value function with cost c; we show that this function increases
with decreases in c. Following the proof strategy used in the proof of Proposition 3.6 and Lemma
3.7, we note that the rewards associated with adopting or rejecting do not depend on c. The
Bayesian updating process is unaffected by changes in c; so if v∗k−1(π; c) increases with decreases in
c, so does the value associated with continuing. Thus the value functions v∗k(π; c), as the maximum
of three functions that are (at least weakly) increasing with decreases c, is also increasing with
decreases in c.

(ii) Because the value from adoption and rejection actions are not affected by c and the value
from gathering information increases, the information gathering region must expand.

(iii) The decision to adopt or reject is made when the consumer’s distribution π first exits the
information gathering region. These distribution paths and their probabilities are unaffected by
changes in c. Thus, expanding the information gathering regions must delay the exit from the
region and delays the adoption or rejection decision.

A.6 Proof of Proposition 7.3

Let v∗k(π;X) denote the value function with signal process X. Our first goal is to show that
the value function is increasing in the informativeness of the signal process, that is, X ºB Y
implies v∗k(π;X) ≥ v∗k(π;Y ). Blackwell (1951) proved this result (and the converse) for single
period decision problems; see Crémer(1982) for a simple proof of Blackwell’s result. Marschak and
Miyasawa (1968) provide numerous related results, also focusing on single period decision problems.
Here we apply these ideas in a dynamic programming setting using a recursive argument.

Following the proof strategy used in the proof of Proposition 3.6 and Proposition 6.2, we first
establish a lemma that shows that the continuation value is “increasing in the informativeness of
the signal process” if the continuation value function is convex; the convexity of the value functions
v∗k was established in Proposition 6.2. Marschak and Miyasawa (1968)’s results imply this lemma
(combining their Theorems 12.1 and 9.8) for discrete systems; we provide a simple direct proof here
for completeness.

Lemma A.1. If X ºB Y then E [u(Π(π, x̃))] ≥ E [u(Π(π, ỹ))] for functions u(π) that are convex
in π.

Proof. By definition, X ºB Y implies that there exists a random variable Y ∗ that had the same like-
lihood function as Y and is a garbling of X. By construction, then E [u(Π(π, ỹ∗))] = E [u(Π(π, ỹ))].
Let f(x|y∗) be the conditional probability distribution for x conditional on values of y∗. Now con-
sider a fixed y∗,

Π(θ; π, y∗) =
∫

x
Π(θ;π, {x, y∗})f(x|y∗) dx =

∫

x
Π(θ;π, x)f(x|y∗) dx.

The first equality follows from the “law of total probability” and the second from the fact that the
posterior given both signals x and y∗, Π(π, {x, y∗}) is equal to Π(π, x) when y∗ is a garbling of x.
Using this result with Jensen’s inequality, for convex functions u,

u(Π(π, y∗)) ≤
∫

x
u(Π(π, x))f(x|y∗) dx.
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Since this holds for all y∗, we have

E [u(Π(π, ỹ∗))] =
∫

y∗
u(Π(π, y∗))f(y∗) dy∗ ≤

∫

y∗

∫

x
u(Π(π, x))f(x|y∗)f(y∗) dx dy∗

=
∫

x
u(Π(π, x))

(∫

y∗
f(x|y∗)f(y∗) dy∗

)
dx =

∫

x
u(Π(π, x))f(x) dx = E [u(Π(π, x̃))]

Thus E [u(Π(π, x̃))] ≥ E [u(Π(π, ỹ))] for convex u.

Proof. Proposition 7.3 (i) With this lemma in hand, we can now use a standard recursive
argument to show that X ºB Y implies v∗k(π; X) ≥ v∗k(π; Y ). First, note the terminal value
functions are v∗0(π; X) = v∗0(π;Y ) = 0 and thus (weakly) satisfy this condition. Now suppose that
v∗k−1(π; X) ≥ v∗k−1(π; Y ). To show that v∗k(π;X) ≥ v∗k(π; Y ), we note that the rewards associated
with adopting or rejecting do not depend on the signal process. Similarly the cost c of information
is assumed to be the same for X and Y and the lemma implies that the value of continuing is
greater with X than Y . Then for each action, the value is (weakly) larger with signal process X
than signal process Y and thus v∗k(π;X) ≥ v∗k(π;Y ).

(ii) To see that the information gathering region expands, note that the value from rejecting and
adopting are not affected by the informativeness of the sampling process and the value of gathering
information increases.

A.7 Proof of Proposition 7.4

Proof. (i) Let v∗k(π;K) denote the value function with cost K. The proof that v∗k(π; K) increases
with decreases in K is similar to the proof of Proposition 7.1.

(ii) We now show that decreasing the adoption cost expands the adoption region. Define
gk(π,K) = v∗k(π;K) + K. It is straightforward to show that gk(π, K) is increasing in K. Let
K2 ≥ K1, and suppose it is optimal to adopt with π and K2, then, gk(π,K2) =

∫
θ θπ(θ)dθ. To

show that it is optimal to adopt given K1, we need to show that gk(π,K1) ≤
∫
θ θπ(θ)dθ; this follows

from the fact that gk(π,K) is increasing in K.
(iii) If it were optimal to reject with π and K1, then v∗k(π, K1) = 0. Since v∗k(π, K) is decreasing

in K, then if K2 ≥ K1, v∗k(π, K2) ≤ 0 which implies it is also optimal to reject given K2. Thus
increasing K expands the rejection region; decreasing K has the opposite effect.

(iv) The decision to adopt is made when the consumer’s distribution π first enters the adoption
region. These distributions evolve over time with the sequence distributions and the probabilities
of these sequences are unaffected by changes in K. Because the adoption region has expanded,
any path that has entered the adoption region with a higher adoption cost has already entered the
adoption region with a lower adoption cost. Taking expectations over all such paths proves that
the probability of adoption increases and the expected time until adoption decreases.

A.8 Proof of Proposition 8.1

Proof. The proof of (i) is analogous to the proof of Lemma 3.7, taking into account the technology
transitions. We can write gk(π) = v∗k(π) − ∫

θk
θkπ(θk)dθk as a dynamic programming recursion
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g0(π) = − ∫
θ0

θ0π(θ0)dθ0, and for k > 0,

gk(π) = max
{
−

∫

θk

θkπ(θk)dθk,−K,

−c− (1− δ)
∫

θk

θkπ(θk)dθk + δ

∫

θk

E[θk−1 − θk|θk]π(θk)dθk + δE[gk−1(Π(π, x̃k−1))]
}

In the dynamic programming definition of gk(π), because of the assumption on the decreasing
rate of improvement, the reward functions are LR decreasing for each action. The generalization
of Lemma 3.5 implies that the transitions preserve this property. (ii) Given (i), the proof of the
monotonicity of policies follows exactly as before.

A.9 Proof of Proposition 8.2

Proof. The dynamic programming rewards are unaffected by the changes in the technology transi-
tions. We will show that waiting improves with improved technology transitions by showing that
η2(π) ºLR η1(π) where ηi is the next-period prior with technology process gi. The assumption
of an LR-improving technology process is equivalent to requiring gi(θk|θk − 1) to be totally posi-
tive of order 2 (TP2) in each pair of arguments i, θk and θk−1 with the third held constant. By
Theorem 5.1 Karlin (1968; p. 123), this implies that ηi(θk−1; π) is TP2 in i and θk−1, which is
equivalent to η2(π) ºLR η1(π). Given that the signal process satisfies the MLR property, this then
implies LR dominance among the corresponding signal distributions and the posterior distributions
for each signal. With the additional assumption that gi(θk|θk−1) satisfies the MLR property, we
know that the next period value function, v∗k−1, is LR increasing. Taken together, this implies
the expected continuation value, E[v∗k−1(Π(π, x̃))], is greater with the LR-dominant technology
transitions. Thus, waiting becomes more attractive, the value function weakly improves, and the
information gathering region expands.
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