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A. Addendum on Gradient Penalties

In this note, we discuss some of the “gradient penalties” used in Brown and Smith (2011), hereafter BS
(2011), to calculate upper bounds for dynamic portfolio optimization problems with transaction costs. In
particular, we discuss a simple way to improve some of these gradient penalties and present some updated
numerical results for some of the numerical examples in BS (2011). This note is not intended to be fully
self-contained and assumes the reader is familiar with BS (2011).

Building upon the general theory developed in Brown, Smith, and Sun (2010) and others, BS (2011)
calculates upper bounds for dynamic portfolio optimization problems by solving a relaxed version of the
problem in which the investor has perfect information on future returns, but has to pay a penalty for using
this additional information. BS (2011) studies a number of penalties (and heuristics); one of the penalties is

called the frictionless gradient-based penalty and is defined as
fa,r) = VaU(wp(a (r).r)(a—a"(r)). (1)

Here, a denotes the trades (over all time periods) by the investor with perfect information, r denotes the
vector of asset returns (over all time periods), U denotes the investor’s utility function, w{ﬂ denotes the
terminal (time 7T') wealth under the frictionless model (i.e., the return model without transaction costs),
and &* = &*(r) denotes the optimal trades in the frictionless model when returns are ». BS (2011) also
includes a random market state vector that may be correlated with returns; we omit that dependence here
for simplicity. BS (2011) shows that penalties of the form (1) are dual feasible in that they lead to valid
upper bounds and that these upper bounds will be no worse than the upper bound from the frictionless
model itself. The dual feasibility result requires that the approximating model (in this case, the frictionless
model) be solved to optimality.

Brown and Smith (2014), hereafter BS (2014), further develops the general theory of gradient penalties
for conver dynamic programs (dynamic programs with convex feasible sets and concave reward functions).
The gradient penalties discussed in BS (2014) are, like the penalty (1), linear in actions, but instead use
gradients of approximate value functions, rather than of approximate reward functions. Applied to the
portfolio optimization problem using the frictionless value function V;f as an approximate value function,

these penalties have the form®

fro 3 (VaViad) —E [Vali (a0 7)) (@ -ai). @
t=0

—

In (2), a; denotes the trades selected through time ¢ in the problem with perfect information, é&; denotes
the trades that are optimal for the frictionless model through time ¢, and F; denotes the natural filtration
in the original DP without additional information (i.e., returns and market state information up to time t).?

While studying these gradient penalties for BS (2014), we discovered that the “type 1”7 gradient penalties
(1) and “type 2” gradient penalties (2) are related. In particular, it can be shown that the type 2 gradient
penalties are better than the type 1 gradient penalties in every return scenario, i.e., oy (a,r) > #(a,r) for

all feasible actions a, with equality holding along any return scenarios in which no constraints are binding in

IThe gradient penalties in BS (2014) include zero mean terms that are independent of actions; these terms play the role of
control variates and are important for variance reduction. BS (2011) uses these terms in the numerical examples but does not
include these terms in the explicit definition of the penalty (1). We omit these terms here to simplify the notation.

2As in BS (2011), in (1) and (2) we take advantage of the fact that the frictionless wealth and frictionless value functions are
differentiable; see BS (2014) for a treatment of the nondifferentiable case.
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the frictionless model. Thus, the upper bounds using type 2 gradient penalties (2) will be “pathwise” better
than the upper bounds using type 1 gradient penalties (1).

The intuition for this result is that, although the type 1 gradient penalties (1) include the effect of rewards,
these penalties are potentially slack due to the omission of Lagrange multiplier terms that incorporate the
impact of binding constraints. The type 2 gradient penalties capture the effect of such Lagrange multiplier
terms implicitly through the use of continuation values. A formal proof of this result is provided at the
end of this note; this proof is specialized to the portfolio optimization problem discussed in BS (2011) but
extends to general convex DPs.

As stated, in order to use the type 1 gradient penalties (1), it is necessary that an approximating
model (here, the frictionless model) be solved to optimality. Since this would usually require calculation
of the associated approximating value functions as well, in practice we can get better upper bounds by
using the type 2 gradient penalties (2) instead. These penalties do require the calculation of conditional
expectations, although such expectations would usually need to be evaluated to solve the approximating
model to optimality anyway.

In the numerical results in BS (2011), we reported a “frictionless gradient penalty” that uses a type 1
gradient penalty (1). Table 1 reports these results and shows a comparison to the upper bounds using the
corresponding type 2 gradient penalty (2) for a set of examples from BS (2011). The upper bounds using
the type 2 gradient penalties are always better than the upper bounds from the type 1 gradient penalties, as
they must be. The differences are substantial (60% or more reduction in gap) in the examples with relatively
low risk aversion: in these examples, the frictionless model invests heavily in a small number of assets, and
thus the constraints (no short sales, i.e., weight of zero in some assets) are often binding. Conversely, with
relatively high risk aversion, it is usually optimal in the frictionless model to invest in all of the assets (only
in relatively low probability market states are some of the asset weights zero). Thus, in these cases the
no short sales constraints are rarely binding and there is little difference in the penalties, and thus little
difference in the upper bounds.

In summary, we recommend that other researchers using this approach to calculate upper bounds for

convex dynamic programs rely on the “type 2” gradient penalties (2) whenever possible.
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Proof that g (a,r) > @(a,r) for all feasible trades a:

In order to show this result, we need to relate gradients of the frictionless value functions to gradients of
the reward functions (in this case, the utility of the terminal wealth in the frictionless model). For a fixed
set of trades a1 up to time ¢, we let g{ (at.1,a:) be the vector of constraint functions describing feasible
trades a; in period t in the frictionless model; g{ is concave in trades and implicitly depends on returns as
well. Given past trades a;.1, we require that a; be chosen such that g{ (at1,a¢) > 0. Note that if we let g,
denote the vector of constraint functions in the model with transaction costs, then g{ (a) > g,(ay), ie., any
trades that are feasible in the model with transaction costs are also feasible in the frictionless model.

We can write the frictionless value functions recursively; we take ij (a)=U (w{q(a)) and for earlier times

t have

viia. = max E|l VS a;1,a ‘]: ’ ;
Y (@) {ar : gf (ar1,00)>0} [ (@, aq) t} 3)

where expectations are taken over the next-period returns and market states. It is straightforward to show

that th is concave in past trades. If strong duality holds in (3), then

Vian) = jnf max{N gf(air.a) + E[ Vi, (arra)

7} (4)

Assuming existence of an optimal Lagrange multiplier in (4), we can show that the frictionless value functions

satisfy the recursion
vV (a,. . .
( té w1) ) :VAtTQZ(atfhat)+E[Vvt'i1(at-hat)‘ft} ) (5)

where A; > 0 are optimal Lagrange multipliers in (3) and a} is an optimal trade in (3), given that past
trades are a;.i.
Now consider a fixed set of trades a = ar, feasible to the original portfolio problem (and thus also to the

frictionless model), and a fixed set of returns r. Let &* denote the optimal policy in the frictionless model.



We have

T T
relar) = > (W& - B[V | A]) (a-a)
t=0
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= 7(a,r).

(a) follows by rearranging terms. (b) follows from the definition of Vf and by the recursion (5). (c) follows
from the definition of #, as given in (1). (d) follows from the fact that A*"g/(a;) are concave functions

(since A¥ > 0 and g are concave) and hence

V(AT @) (a-a) > N7 (of(a) - of(a).

(e) follows from the fact that (&;,A;) are primal-dual optimal to the frictionless model, so complementary
slackness holds, i.e., )\fﬂgtf’ ;(@;) = 0 for each constraint ¢ in each period t. (f) follows from the fact that
gl (ay) > g,(a;), and (g) follows from the fact that a is a feasible trade, and thus g,(a;) > 0.

Note that if the constraints are not binding in the frictionless model in this return scenario, then com-
plementary slackness requires A; = 0, and equality holds above throughout; in this case, the penalties are

equal. O
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