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A. Addendum on Gradient Penalties

In this note, we discuss some of the “gradient penalties” used in Brown and Smith (2011), hereafter BS

(2011), to calculate upper bounds for dynamic portfolio optimization problems with transaction costs. In

particular, we discuss a simple way to improve some of these gradient penalties and present some updated

numerical results for some of the numerical examples in BS (2011). This note is not intended to be fully

self-contained and assumes the reader is familiar with BS (2011).

Building upon the general theory developed in Brown, Smith, and Sun (2010) and others, BS (2011)

calculates upper bounds for dynamic portfolio optimization problems by solving a relaxed version of the

problem in which the investor has perfect information on future returns, but has to pay a penalty for using

this additional information. BS (2011) studies a number of penalties (and heuristics); one of the penalties is

called the frictionless gradient-based penalty and is defined as

π̂(a, r) = ∇aU(wf
T (α̂∗(r), r))′(a− α∗(r)). (1)

Here, a denotes the trades (over all time periods) by the investor with perfect information, r denotes the

vector of asset returns (over all time periods), U denotes the investor’s utility function, wf
T denotes the

terminal (time T ) wealth under the frictionless model (i.e., the return model without transaction costs),

and α̂∗ = α̂∗(r) denotes the optimal trades in the frictionless model when returns are r. BS (2011) also

includes a random market state vector that may be correlated with returns; we omit that dependence here

for simplicity. BS (2011) shows that penalties of the form (1) are dual feasible in that they lead to valid

upper bounds and that these upper bounds will be no worse than the upper bound from the frictionless

model itself. The dual feasibility result requires that the approximating model (in this case, the frictionless

model) be solved to optimality.

Brown and Smith (2014), hereafter BS (2014), further develops the general theory of gradient penalties

for convex dynamic programs (dynamic programs with convex feasible sets and concave reward functions).

The gradient penalties discussed in BS (2014) are, like the penalty (1), linear in actions, but instead use

gradients of approximate value functions, rather than of approximate reward functions. Applied to the

portfolio optimization problem using the frictionless value function V f
t as an approximate value function,

these penalties have the form1

π̂∇(a, r) =

T−1∑
t=0

(
∇aV f

t+1(α̂∗t )− E
[
∇aV f

t+1(α̂∗t )
∣∣∣ Ft

])>
(at − α̂∗t ) . (2)

In (2), at denotes the trades selected through time t in the problem with perfect information, α̂∗t denotes

the trades that are optimal for the frictionless model through time t, and Ft denotes the natural filtration

in the original DP without additional information (i.e., returns and market state information up to time t).2

While studying these gradient penalties for BS (2014), we discovered that the “type 1” gradient penalties

(1) and “type 2” gradient penalties (2) are related. In particular, it can be shown that the type 2 gradient

penalties are better than the type 1 gradient penalties in every return scenario, i.e., π̂∇(a, r) ≥ π̂(a, r) for

all feasible actions a, with equality holding along any return scenarios in which no constraints are binding in

1The gradient penalties in BS (2014) include zero mean terms that are independent of actions; these terms play the role of
control variates and are important for variance reduction. BS (2011) uses these terms in the numerical examples but does not
include these terms in the explicit definition of the penalty (1). We omit these terms here to simplify the notation.

2As in BS (2011), in (1) and (2) we take advantage of the fact that the frictionless wealth and frictionless value functions are
differentiable; see BS (2014) for a treatment of the nondifferentiable case.
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the frictionless model. Thus, the upper bounds using type 2 gradient penalties (2) will be “pathwise” better

than the upper bounds using type 1 gradient penalties (1).

The intuition for this result is that, although the type 1 gradient penalties (1) include the effect of rewards,

these penalties are potentially slack due to the omission of Lagrange multiplier terms that incorporate the

impact of binding constraints. The type 2 gradient penalties capture the effect of such Lagrange multiplier

terms implicitly through the use of continuation values. A formal proof of this result is provided at the

end of this note; this proof is specialized to the portfolio optimization problem discussed in BS (2011) but

extends to general convex DPs.

As stated, in order to use the type 1 gradient penalties (1), it is necessary that an approximating

model (here, the frictionless model) be solved to optimality. Since this would usually require calculation

of the associated approximating value functions as well, in practice we can get better upper bounds by

using the type 2 gradient penalties (2) instead. These penalties do require the calculation of conditional

expectations, although such expectations would usually need to be evaluated to solve the approximating

model to optimality anyway.

In the numerical results in BS (2011), we reported a “frictionless gradient penalty” that uses a type 1

gradient penalty (1). Table 1 reports these results and shows a comparison to the upper bounds using the

corresponding type 2 gradient penalty (2) for a set of examples from BS (2011). The upper bounds using

the type 2 gradient penalties are always better than the upper bounds from the type 1 gradient penalties, as

they must be. The differences are substantial (60% or more reduction in gap) in the examples with relatively

low risk aversion: in these examples, the frictionless model invests heavily in a small number of assets, and

thus the constraints (no short sales, i.e., weight of zero in some assets) are often binding. Conversely, with

relatively high risk aversion, it is usually optimal in the frictionless model to invest in all of the assets (only

in relatively low probability market states are some of the asset weights zero). Thus, in these cases the

no short sales constraints are rarely binding and there is little difference in the penalties, and thus little

difference in the upper bounds.

In summary, we recommend that other researchers using this approach to calculate upper bounds for

convex dynamic programs rely on the “type 2” gradient penalties (2) whenever possible.
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Proof that π̂∇(a, r) ≥ π̂(a, r) for all feasible trades a:

In order to show this result, we need to relate gradients of the frictionless value functions to gradients of

the reward functions (in this case, the utility of the terminal wealth in the frictionless model). For a fixed

set of trades at-1 up to time t, we let gft (at-1, at) be the vector of constraint functions describing feasible

trades at in period t in the frictionless model; gft is concave in trades and implicitly depends on returns as

well. Given past trades at-1, we require that at be chosen such that gft (at-1, at) ≥ 0. Note that if we let gt

denote the vector of constraint functions in the model with transaction costs, then gft (at) ≥ gt(at), i.e., any

trades that are feasible in the model with transaction costs are also feasible in the frictionless model.

We can write the frictionless value functions recursively; we take V f
T (a) = U(wf

T (a)) and for earlier times

t have

V f
t (at-1) = max

{at : gft (at-1,at)≥0}
E
[
V f
t+1(at-1, at)

∣∣∣Ft

]
, (3)

where expectations are taken over the next-period returns and market states. It is straightforward to show

that V f
t is concave in past trades. If strong duality holds in (3), then

V f
t (at-1) = inf

λt≥0
max
at

{
λ>t g

f
t (at-1, at) + E

[
V f
t+1(at-1, at)

∣∣∣Ft

]}
, (4)

Assuming existence of an optimal Lagrange multiplier in (4), we can show that the frictionless value functions

satisfy the recursion(
∇V f

t (at-1)

0

)
= ∇λ>t g

f
t (at−1, a

∗
t ) + E

[
∇V f

t+1(at-1, a
∗
t )
∣∣∣Ft

]
, (5)

where λt ≥ 0 are optimal Lagrange multipliers in (3) and a∗t is an optimal trade in (3), given that past

trades are at-1.

Now consider a fixed set of trades a = aT , feasible to the original portfolio problem (and thus also to the

frictionless model), and a fixed set of returns r. Let α̂∗ denote the optimal policy in the frictionless model.
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We have

π̂∇(a, r) =

T−1∑
t=0

(
∇V f

t+1(α̂∗t )− E
[
∇V f

t+1(α̂∗t )
∣∣∣Ft

])>
(at − α̂∗t )

(a)
= ∇V f

T (α̂∗)> (a− α̂∗) +

T−1∑
t=0

((
∇V f

t (α̂∗t-1)

0

)
− E

[
∇V f

t+1(α̂∗t )
∣∣∣Ft

])>
(at − α̂∗t )

(b)
= ∇U(wf

T (α̂∗))>(a− α̂∗) +

T−1∑
t=0

∇
(
λ∗>t gft (α̂∗t )

)>
(at − α̂∗t )

(c)
= π̂(a, r) +

T−1∑
t=0

∇
(
λ∗>t gft (α̂∗t )

)>
(at − α̂∗t )

(d)

≥ π̂(a, r) +

T−1∑
t=0

λ∗>t

(
gft (at)− gft (α̂∗t )

)
(e)
= π̂(a, r) +

T−1∑
t=0

λ∗>t gft (at)

(f)

≥ π̂(a, r) +

T−1∑
t=0

λ∗>t gt(at)

(g)
= π̂(a, r).

(a) follows by rearranging terms. (b) follows from the definition of V f
T and by the recursion (5). (c) follows

from the definition of π̂, as given in (1). (d) follows from the fact that λ∗>gft (at) are concave functions

(since λ∗t ≥ 0 and gft are concave) and hence

∇
(
λ∗>t gft (α̂∗t )

)>
(at − α̂∗t ) ≥ λ∗>t

(
gft (at)− gft (α̂∗t )

)
.

(e) follows from the fact that (α̂∗t ,λ
∗
t ) are primal-dual optimal to the frictionless model, so complementary

slackness holds, i.e., λ∗t,ig
f
t,i(α̂

∗
t ) = 0 for each constraint i in each period t. (f) follows from the fact that

gft (at) ≥ gt(at), and (g) follows from the fact that a is a feasible trade, and thus gt(at) ≥ 0.

Note that if the constraints are not binding in the frictionless model in this return scenario, then com-

plementary slackness requires λ∗t = 0, and equality holds above throughout; in this case, the penalties are

equal.
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