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B. Detailed Derivations and Discussions

B.1. Comparisons with Brown and Smith (2011)

As discussed in §1.1, in Brown and Smith (2011), hereafter BS (2011), we used linear penalties to generate
information relaxation bounds for a dynamic portfolio optimization problem with transaction costs. There,
we considered an approximate model that is a portfolio optimization model that ignores transactions costs;
this is a relaxation of the original model and is not difficult to solve to optimality. The value functions for
this frictionless model are differentiable and hence the results of Proposition 3.1 apply and by part (iii), we
can calculate bounds that certainly improve on the bound provided by the frictionless model. However, as
noted in §3.1, we did not use this approach in BS (2011).

In BS (2011), we considered two kinds penalties. The first kind of penalty we considered were linear
approximations of approximate value functions of the form of equation (10). However, we did not establish
any theoretical properties for these penalties (other than feasibility) and did not apply the penalties as
suggested in Proposition 3.1(iii). Specifically, we did use the frictionless value functions as an approximate
value functions to generate a penalty of the form of (10), but we did not calculate penalties by linearizing
around the optimal strategy for the frictionless system, as suggested in Proposition 3.1(iii).

In BS (2011), we also considered “gradient-based penalties” that can be related to the gradient penalties
of the form of equation (10). If the gradient penalties are based on optimal value functions V̂t for an
approximate model that is a convex DP, following a derivation like that of equations (11)-(14), if there are
no binding constraints, we can write the gradient penalty around the optimal policy α̂ for this approximate
model as

π̂∇(a) =

T∑
t=0

∇r̂t(α̂t)
�(at − α̂t) +

(
V̂t+1(α̂t)− E

[
V̂t+1(α̂t)

∣∣∣Ft

])
. (41)

Comparing to the original definition of the gradient-based penalties in equation (10), we have replaced the
terms involving differences in gradients of value functions and expected value functions with ∇r̂t(α̂t). Dual
feasibility of a penalty of the form of (41) relies on the fact that the policy α̂ is optimal for the approximate
model with rewards r̂t. When there are binding constraints, the first-order conditions (13) would include
Lagrange multiplier terms and the penalty (41) would also include such terms.

The “gradient-based penalties” in BS (2011) are similar to equation (41) above. However, in BS (2011),
we did not recognize that penalties of the form of equation (41) are a special case of the more general
form of equation (10), in the case where the value functions are optimal value functions for an approximate
system. The gradient-based penalties in BS (2011) differ from our current approach based on equation (10) in
several ways. First, the gradient-based penalties in BS (2011) did not include the zero-mean control variate
terms inside the parentheses in (10) or (41). However, similar control variates were used in the numerical
simulations in BS (2011). Second, the method we proposed in BS (2011) for gradient-based penalties with
non-differentiable approximate value functions (which was based on directional derivatives) generally does
not result in tractable inner problems. We address this issue in §3.2 of this paper.

Finally, the gradient-based penalties in BS (2011) differ from our current approach when there are binding
constraints. The gradient-based penalties in BS (2011) are, as proven there, dual feasible and guaranteed
to improve on the value given by the relaxed model. However, the gradient-based penalties in BS (2011)
have slack in that the equalities defining dual feasibility (3) need not hold with equality: the slack is due to
omitting the Lagrange multiplier terms associated with these constraints (as discussed following (41)) in the
gradient-based penalties in BS (2011).

We can improve on the gradient-based penalties in BS (2011) by following the approach of Proposition
3.1(iii) directly, i.e., by generating penalties using the frictionless value function with equation (10), lineariz-
ing around the policy chosen in the frictionless model. The Lagrange multipliers that were omitted in the
gradient-based penalties in BS (2011) are automatically included in this approach. The bounds generated
using this approach can be proven to be at least as good as the bounds given by gradient-based penalties in
BS (2011) (in every scenario) and our numerical experiments suggest these improvements can be significant
if the constraints (e.g., disallowing short sales or borrowing) are frequently binding.
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B.2. Appendix Material for the Network Revenue Management Example

B.2.1 Proof of Proposition 4.1

Proof. For (i), the inequality in (23) follows from standard Lagrange duality results. For the equality in
(23), we argue that each of restrictions (a)-(c) can be imposed on the Lagrange multipliers without affecting
the minimization over λ. To see that (b) can be imposed without loss, note that in moving from formulation
(19) to (20), it is equivalent to define (20) over decision variables a ∈ {0, 1}|L(i)| corresponding to the legs
involved on each itinerary, as these are the only legs that consume capacity for a given itinerary. Omitting
the other decision variables (and their corresponding coupling constraints) is equivalent to setting λi�t = 0
for all � /∈ L(i) in (21).

To see that we can impose (a) and (c), note that the Lagrange multipliers are minimized separately for
each i ∈ I and t, so we can fix i and t for the remainder of the proof.

For (c), note that we can rewrite the immediate reward in (21) as:

riāt +
∑
�∈L

λi�t (a�t − āt) =
∑
�∈L

(
ri
L
a�t + λi�ta�t − λi�t

L

∑
�′∈L

at�′

)

=
∑
�∈L

(ri
L

+ λi�t − λ̄it

)
a�t, (42)

where λ̄it denotes the average of λi�t over �; the first equality follows from the definition of āt and the second
equality follows by rearranging terms in the summation. Notice that in (42) it is only differences in λi�t

from their average over legs that matters; shifting λi�t by any constant across all legs does not change these
differences. Thus we can always shift all λi�t by a constant to ensure that

∑
�∈L λi�t = ri.

Finally, to see (a), note that any λ satisfying (b) and (c) reduces (42) to
∑

�∈L(i) λi�ta�t. If λi�t < 0 for

some � ∈ L(i), we claim we can always increase this value to zero while still satisfying (a) and (c) without
increasing the objective. To see this, since (b) and (c) hold, if some λi�t < 0, then there must exist some
�′ ∈ L(i) such that λi�′t > 0. Let ε� = min{−λi�t, λi�′t} > 0; keeping all other values of λ fixed, set

λ̃i�t = λi�t + ε�

λ̃i�′t = λi�′t − ε�.

Note that at least one of λ̃i�t, λ̃i�′t is zero. In the Lagrangian, it is always optimal to reject a leg with
λi�t ≤ 0: since λ̃i�t ≤ 0, it is still optimal to reject leg � with λ̃i�t in place of λi�t, and the value associated
with leg � does not change. On the other hand, the reward λi�′t has been strictly reduced, so the value
associated with leg �′ has either been strictly reduced (if it was optimal to accept i at �′) or unchanged (if it
was optimal to reject i at �′). Either way, the total value in the Lagrangian is no larger than it was before.
This process can be continued until λi�t = 0, and similarly for all such legs with negative values of λi�t.

The proof for (24) is in Topaloglu (2009); the representation in that paper includes terms of the form
max{rit −

∑
�∈L λit�t, 0}, but these are zero when λ ∈ Λ by condition (c).

Now consider the properties of ϑλ mentioned in (ii). It is straightforward to see that ϑλ is nondecreasing
in capacity. To show that ϑλ is piecewise linear and concave in capacity is straightforward by induction.
This is clearly true at T+1, when ϑλ

�,T+1 = 0. Now assume it is true at t+1. We have

ϑλ
�t(c�t, it) = max

a�t∈A�t(c�t,it)

{
λit�ta�t + E[ϑλ

�,t+1(c�t − fit�a�t, ĩt+1)]
}
,

and since ϑλ
�t is the maximization of a piecewise linear concave function over a convex set, ϑλ

�t is piecewise
linear and concave as well.

B.2.2 Gradient Selection for Penalties from Lagrangian Relaxations

The following simple result from convex analysis will be useful in our discussion of the gradient selection
procedure.

Lemma B.1. Given a convex set X and a point x̂ ∈ X, a vector d satisfies d�(x− x̂) ≤ 0 for all x ∈ X if
and only if −d ∈ ∂1X(x̂).
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Proof. Note that

∂1X(x̂) =
{
d : 1X(x) ≤ 1X(x̂) + d�(x− x̂) for all x

}
=

{
d : 1X(x) ≤ d�(x− x̂) for all x

}
=

{
−d : d�(x− x̂) ≤ 0 for all x ∈ X

}
,

where the second equality uses x̂ ∈ X, so that 1X(x̂) = 0, and the third equality uses the fact that
1X(x) = −∞ for any x /∈ X.

We now discuss how to select gradients for the gradient penalty (27) to ensure that optimal values of the
inner problems are weakly tighter than V λ

0 in every scenario. Recall from the proof of Proposition 3.2 that
the conditions given by (37), i.e.,

(δt-1,0) ∈ ∂ {rt(αt) + 1At
(αt)}+ E[ δt | Ft ] (43)

for all t = 1, . . . , T , are sufficient to ensure a tight bound to a convex DP in every scenario. We will show
how to select gradients of the Lagrangian relaxation value functions that satisfy (43). Using such penalties
in the inner problems (26) will then lead to optimal values that are weakly tighter than V λ

0 in every scenario,
as these inner problems also include the leg coupling constraints.

As in the proof of Proposition 3.2, we will work forward in time and show that we can calculate gradients
satisfying (43) in each time period. Assume this has been done up to period t. By rearranging (43), we see
that we then need to select gradients δt such that

−E[ δt | Ft ] ∈ ∂ {rt(αt) + 1At
(αt)} − (δt-1,0), (44)

where by convention we let δ0 = ∅. Proposition 3.2(ii) shows that such gradients exist.
For the Lagrangian relaxations, recall that value functions and decisions decouple by leg. It follows

that we can focus on a single leg � ∈ L for the remainder of the discussion; from Lemma 3.1(iv), we can
apply the same procedure for each leg and obtain a valid gradient selection for the overall problem. We let
i1, . . . , iT denote the itineraries in the scenario, and αλ

� denote the leg � actions under the optimal policy

αλ to the Lagrangian relaxation. We let δ�t-1 denote the gradient selection for the leg-specific value function
ϑλ
�t(c�t(α

λ
�,t-1), it); this is a vector of length t-1 (recall by convention that we assume in this problem that the

first action occurs at t = 1, and that the role of t = 0 is simply to average over the first itinerary request).
We let δ�t,τ , for τ < t, denote the τ th element of gradient selection δt.

In the Lagrangian relaxations, the rewards are given by the Lagrange multipliers times the in-period
acceptance decision, i.e., the rewards are λi�ta�t in each period. Thus we can state (44) for the Lagrangian
relaxation as, given δ�t-1, needing to find δ�t(i) for each itinerary i such that

−E[δ�t (̃i)] ∈ ∂{1A�t
(αλ

�t)}+ λit�tet − (δ�t-1, 0), (45)

where A�t = {a�t ∈ [0, 1] : fit�a�t ≤ c�t}. In (45), et is a vector of length t with a 1 in position t and 0
elsewhere; this reflects the fact that the time t rewards only depend directly on a�t and not earlier decisions.

The first term on the right-hand side of (45) is the differential of the characteristic function for the
constraints in the Lagrangian relaxation on leg �, taken at an optimal policy αλ

� to the Lagrangian relaxation.
For simplicity, we will (for now) assume that the capacity constraint at leg � is not binding along αλ

� through
period t; in this case, only the constraints a�t ∈ [0, 1] play a role in ∂{1A�t

(αλ
�t)} (recall from LemmaB.1

that zero is the only gradient for the characteristic function of a non-binding constraint).
The key to selecting gradients satisfying (45) is to recognize that the gradients δ�t are contained in a set

of dimension one. To see this, recall that leg capacity is a linear function of past actions, so:

ϑλ
�t(c�t(α

λ
�,t-1), it) = ϑλ

�t

(
c�0 −

t-1∑
τ=1

fiτ �α�τ

)
.
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Applying Lemma 3.1(v), this implies that

∂a{ϑλ
�t(c�t(α

λ
�,t-1), it)} = −f �t∂c{ϑλ

�t(c�t(α
λ
�,t-1), it)}, (46)

where ∂a denotes the differential with respect to actions up to time period t-1, ∂c denotes the (one-
dimensional) differential with respect to leg � capacity, and f �t is a vector of length t-1 with component
τ being fiτ �. Since ϑλ

�t is piecewise linear concave in leg capacity, its differential with respect to leg capacity
at any point is the convex hull of the left and right derivatives with respect to capacity at that point; these
left and right derivatives can be evaluated by taking differences of ϑλ

�t at adjacent values of capacity. Thus

we can express all gradients E[δ�t (̃i)] of E[ϑ
λ
�,t+1(c�,t+1(α

λ
�t), ĩ)] through convex combinations of these left and

right derivatives for each itinerary ĩ in the expectation:

E[δ�t (̃i)] = −f �,t+1E[d
−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))], (47)

where d−(̃i) and d+(̃i) are the left and right derivatives of ϑλ
�,t+1(c�,t+1(α

λ
�t), ĩ) with respect to capacity, and

γ(̃i) ∈ [0, 1] for each itinerary ĩ. The coefficients γ(̃i) represent how much weight is applied to the right
derivatives for each itinerary ĩ in the next-period expectation.

Plugging (47) into (45) and rearranging terms, the problem of finding the desired gradient selection
reduces to finding a selection of weights γ(̃i) such that

f �,t+1E[d
−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))] + (δ�t-1, 0)− λit�tet ∈ ∂{1A�t

(αλ
�t)}. (48)

The dimension of the vectors in condition (48) is t, reflecting the fact that ϑλ
�,t+1 depends on actions

(a�1, . . . , a�t).
Notice that we can restrict attention to past actions a�τ such that � ∈ L(i(τ)), i.e., we can restrict

attention to past actions such that the itinerary i(τ) includes leg �. To see this, note that for actions a�τ
with � /∈ L(i(τ)), we have f�i(τ) = 0, and thus the corresponding components of both f �,t+1 and, by (46), δ�t-1
will be zero; the same reasoning applies at τ = t, because λit�t = 0 is implied by λ ∈ Λ. Thus all components
on the left hand side of (48) are zero for these irrelevant past actions, and since 0 is always in the differential
of the characteristic function at any feasible action, (48) automatically holds for these actions. Thus, we
need only study (48) for past actions a�τ that affect capacity on leg �; for such actions we have f�i(τ) > 1.
To streamline notation below, we will assume all itinerary requests consume at most one unit of capacity on
leg �; this is true in all examples we consider.

Treating (48) one component at a time, note that when the capacity constraint is not binding through
time t on leg � under αλ

� , that A�t only depends on a�t, and thus the first t components of the right-hand side
of (48) are zero. Thus if any itinerary i(τ) for time τ < t uses leg � capacity, the corresponding component
of (48) requires

E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))] + δ�t-1,τ = 0. (49)

Note that by (46), δ�t-1,τ = −d for some d ∈ ∂c{ϑλ
�t(c�t(α

λ
�,t-1), it)}. Thus, for any τ < t such that i(τ)

consumes leg � capacity, (49) reduces to the same condition:

E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))] = d. (50)

For component t of (48), note that ∂1{a≥0}(0) = {g : g ≥ 0}. Thus if it uses leg � capacity and it is optimal

under αλ to accept itinerary it, the tth component of (48) must satisfy:

E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))]− λit�t ≤ 0. (51)

Similarly, ∂1{a≤1}(1) = {g : g ≤ 0}. Thus if it uses leg � capacity and it is optimal under αλ to reject

itinerary it, the tth component of (48) must satisfy:

E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))]− λit�t ≥ 0. (52)
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Note that the “accept conditions” (51) require making E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))] small enough, and the
“reject conditions” (52) require making E[d−(̃i) + γ(̃i)(d+(̃i) − d−(̃i))] large enough; finally, the conditions
(50) require making E[d−(̃i)+ γ(̃i)(d+(̃i)− d−(̃i))] equal to some given value d. Thus the required conditions
reduce to an interval constraint, i.e., E[d−(̃i) + γ(̃i)(d+(̃i)− d−(̃i))] ∈ [L,U ], where L and U are determined
by the optimal decisions αλ

� up through time t according to conditions (50), (51), and (52); here we take
L = U = d if past itineraries in the scenario use leg � capacity. Otherwise, we take [L,U ] as one of [−∞, λit�t],
[λit�t,∞], or [−∞,∞], depending on whether it uses leg � capacity and whether it is optimal to accept or
reject it under α

λ. Note that the relevant interval must be nonempty, since Proposition 3.2 shows that the
gradient selection exists.

Since ϑλ
�,t+1 is concave, choosing γ(̃i) = 1, i.e., all right capacity derivatives for all itineraries ĩ minimizes

the expected value E[d−(̃i)+γ(̃i)(d+(̃i)−d−(̃i))]; conversely, choosing γ(̃i) = 0, i.e., all left capacity derivatives
for all itineraries ĩ maximizes this expected value.

There are various ways to select γ(̃i) to ensure E[d−(̃i) + γ(̃i)(d+(̃i) − d−(̃i))] is in the relevant interval.
In our examples, we search for the desired weights by starting with all right derivatives, i.e., γ(̃i) = 0 for all
itineraries ĩ; if the expected value with this choice falls outside the relevant interval (i.e., if E[d+(̃i)] < L),
then we can increase the weight on some left derivatives to increase the expected value.

There are also various ways to shift towards left derivatives. In our examples, we sort the itineraries in
order of how much changes in weights γ(̃i) from 1 to 0 increases the expected value (i.e., in order of how
much switching to left derivatives for each itinerary increases the expected value). We then change as few
values of the weights from 1 to 0 as necessary to ensure E[d−(̃i)+γ(̃i)(d+(̃i)−d−(̃i))] ≥ L, placing a fractional
value in the “last” needed γ(̃i) if necessary. Other ways of choosing the weights γ(̃i) are of course possible
and may be more effective; regardless, any such choice in this problem ensures the inner problem values (26)
will be weakly smaller than V λ

0 .
When the capacity constraint is binding, we have c�,t+1(α

λ
�t) = 0. In this case, we can capture the effect

of the capacity constraint by taking left derivatives with respect to capacity at ϑλ
�,t+1(c�,t+1(α

λ
�t), ĩ) to be

sufficiently large. In theory we have ϑλ
�,t+1(c�,t+1(α

λ
�t), ĩ) = −∞ for any negative capacity values; in our

examples we have found it sufficient to take the left derivative at zero capacity to be some multiple (greater
than one) of the right derivative at zero capacity. Otherwise, we proceed as described above in those cases
where the capacity constraint is binding.

Note that in the case with reoptimization, there is no guarantee that we can select gradients satisfying
the above conditions, due to the fact that the value functions are changing at selected points in time along
each scenario, as well as the fact that we take gradients around the Lagrangian heuristic, which is in general
not optimal for the Lagrangian relaxation. However, we can apply the same type of procedure as described
above to try to ensure the expected value of the next-period gradients are contained within the relevant
interval [L,U ]. In our examples, we apply a similar procedure that starts with all right derivatives and mixes
in as few left derivatives as necessary to meet the interval condition. In the event that the expected value
with all left derivatives falls below L, which can occur with reoptimization, we simply use all left derivatives
to make the expected value as close to L as possible.

B.3. Appendix Material for the Lost-Sales Model

B.3.1 Proof of Proposition 5.1

Proof. Part (i). The proof is by induction. We first consider the terminal case and show that this terminal
value function is L�-convex. To streamline the notation, we let z = (z0, . . . , zt+L) let g(z) = JT+L+1(z). We
want to prove that g(z) is L�-convex, i.e., that ĝ(ε, z) = g(z − ε1) is submodular in (ε, z) on Z

1 × Z
T+L+1.

Using (30), we can write ĝ(ε, z) as

ĝ(ε, z) = g(z − ε1)

min
s

T+L∑
t=0

γt
(
γLc(zt − zt-1) + h(zt−L − ε− st) + p(dt − st + st-1)

)
+ (γLc+ L)ε

subject to st ≥ st-1 for t = 0, . . . , T + L
st ≤ zt−L − ε for t = 0, . . . , T + L .

(53)
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(Here the (γLc + L)ε term in the objective reflects our convention that zτ = 0 when τ < 0.) Defining
s′t = st + ε for t ≥ 0 and taking s′−1 = 0, we can rewrite this as

ĝ(ε, z) =

min
s′

T+L∑
t=0

γt
(
γLc(zt − zt-1) + h(zt−L − s′t) + p(dt − s′t + s′t-1)

)
+ (γLc+ L− p)ε

subject to s′0 ≥ ε
s′t ≥ s′t-1 for t = 1, . . . , T + L
s′t ≤ zt−L for t = 0, . . . , T + L .

(54)

Now ĝ(ε, z) can be shown to be submodular by using the result that the partial minimization of a submodular
function over a sublattice results in a submodular function (Topkis (1998)1 Theorem 2.7.6). Here the
objective function is linear in (s′, ε, z) and hence submodular in (s′, ε, z). The set of (s′, ε, z) satisfying the
constraints is a sublattice because each constraint involves just two variables that appear with positive signs
on opposite sides of the constraint inequalities (Topkis 1998, Example 2.2.7(b)). Then, we can apply the
partial minimization result to conclude that, when minimizing s′ over a section of this sublattice, the result,
namely ĝ(ε, z), is submodular in (ε, z). Thus g(z) is L�-convex, completing the proof for the terminal case.

For the inductive step, we make the dependence of the value functions Jt on demands explicit and assume
that Jt+1(zt; d0, . . . , dt) is L�-convex in zt for all demand sequences (d0, . . . , dt); we then show the same is
true for period t. Since a weighted average of L�-convex functions is L�-convex, fixing the demand sequence
(d0, . . . , dt-1) and taking expectations over the period-t demand d̃t, we know that

ht+1(zt; d0, . . . , dt-1) = E

[
Jt+1(zt; d0, . . . , dt-1, d̃t)

]
is L�-convex in zt.

Now we use an argument like that for the terminal case (partial minimization of a submodular function
over a sublattice results in a submodular function) to complete the proof. Suppressing demands again, from
(31), we have

Jt(zt-1 − ε1) = min
{z′t:z′t≥zt-1}

ht+1((zt-1, z
′
t)− ε(1, 1)) (55)

where 1 denotes a t-vector of ones and z′t = zt + ε. The objective function in (55) is submodular in
(ε, zt-1, z

′
t) because ht+1 is L�-convex. The constraint in (55) involves two variables and they appear with

positive signs on opposite sides of the constraint inequalities and thus, as above, the feasible set forms a
sublattice. Choosing z′t from the sublattice (or section of the sublattice) to minimize this objective then
results in a function Jt(zt-1 − ε1) that is submodular in (ε, zt-1). Thus Jt(zt-1) is L

�-convex.

Part (ii). Let ĝ(z0, z) = g(z − z01), as in the definition of L�-convexity. First note that all gradients of
∂ĝ(0, z) must be of the form (−1′x,x) where x ∈ R

n. This implies the gradient x ∈ R
n is in ∂g(z) if and

only if (−1′x,x) ∈ R
n+1 is in ∂ĝ(0, z).

Let N̂ = {0} ∪N and let ρ̂ be the difference function for ĝ(X̂) at the point (0, z) defined for any X̂ ⊂ N̂
as follows:

(a) When 0 /∈ X̂ and X = X̂, we have ρ̂(X̂) = g(z + 1(X))− g(z)

(b) When 0 ∈ X̂ and X = X̂ − {0} , we have ρ̂(X̂) = g(z + 1(X) − 1(N)) − g(z) = g(z − 1(X̄)) − g(z),
where X̄ = N −X is the complement of X in N .

Murota (2003; Theorem 7.43) shows that difference function ρ̂ is submodular and the differential of ĝ is

∂ĝ(z0, z) = B(ρ̂)

=

⎧⎨
⎩x̂ = (x0, . . . , xn) ∈ R

n+1 :
∑
i∈X̂

x̂i ≤ ρ̂(X̂) for all X̂ ⊆ N̂ and
∑
i∈N̂

x̂i = ρ̂(N̂)

⎫⎬
⎭ .

(56)

1Topkis, D.M. 1998. Supermodularity and Complementarity, Princeton University Press.
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where B(ρ̂) is referred to as the base polyhedron associated with ρ̂. Note that when X̂ = N̂ , ρ̂(N̂) =
g(z+1(N)−1(N))−g(z) = g(z)−g(z) = 0. Thus the condition in (56) that

∑
i∈N̂ x̂i = ρ̂(N̂) is automatically

satisfied for all gradients of ĝ(0, z) (and
∑

i∈N̂ x̂i = 0 as noted earlier).

We can then divide the subsets of N̂ into those subsets that contain 0 and those that do not contain 0
(as in (a) and (b) above) to rewrite the constraints in (56):

(a) For the cases where 0 /∈ X̂ and X = X̂, the constraint in (56) is:∑
i∈X̂

x̂i =
∑
i∈X

x̂i ≤ ρ̂(X̂) = g(z + 1(X))− g(z) for all X ⊆ N.

(b) For the cases where 0 ∈ X̂ and X = X̂ − {0}, taking X̄ = N −X to be the complement of X in N ,
the constraint in (56) is:∑

i∈X̂
x̂i = x̂0 +

∑
i∈X

x̂i = −
∑
i∈N

x̂i +
∑
i∈X

x̂i = −
∑
i∈X̄

x̂i

≤ ρ̂(X̂) = g(z + 1(X)− 1(N))− g(z) = g(z − 1(X̄))− g(z) for all X ⊆ N

or, equivalently, ∑
i∈X

x̂i ≥ g(z)− g(z − 1(X)) for all X ⊆ N.

Thus, combining (a) and (b), we can represent (56) as in Proposition 5.1(ii).

B.3.2 Gradient Selections for Penalties in the Lost-Sales Model

As discussed in §5.4, we take the approximate value functions V̂t in the gradient penalty (15) to be the value
function (30)-(31), but with the horizon T set to t+ L. We calculate these values by adding the previously
incurred costs to the myopic cost-to-go function (32). As in the myopic heuristic, we augment the terminal
value (30) to include a residual term ρ(−) to value leftover inventory. As this is a DP value function for a
lost-sales model (albeit with a different time horizon), these value functions will be L�-convex and we can
use the characterization of the gradients provided in Proposition 5.1(ii). In our numerical examples, we will
also consider gradients based on the exact value function in cases where the lead times are short enough to
solve the model exactly.

Our description of the gradient selection procedure will follow the notation of the proof of Proposition
5.1(ii). For a given period t, we take z to be the cumulative order quantity zt-1 and the function g(z) to be
the approximate or exact value function, V̂t, as discussed above. The dimension n of the proof corresponds to
t in the example. Also, as in the proof, we take ĝ(z0, z) = g(z−z01). The differential ∂ĝ(0, z) is given by the
base polyhedron B(ρ̂) in (56). As discussed in the proof, x ∈ R

n is in ∂g(z) if and only if (−1′x,x) ∈ R
n+1

is in ∂ĝ(0, z). Thus, there is a one-to-one correspondence between the extreme points of ∂g(z) and those of
∂ĝ(0, z).

We can generate all extreme points of the base polyhedron B(ρ̂) using the greedy algorithm (see,
e.g., Murota (2003)). The greedy algorithm proceeds as follows: Pick any sequence of elements of N̂ =
{0, 1, . . . , n}, and let σ(i) denote the index of the ith element in this sequence. Now consider the increasing
sequence of subsets

∅ = S−1 ⊂ S0 ⊂ . . . ⊂ Sn = N̂

where elements of N̂ are added to the subsets one-at-a-time according to the chosen sequence of indices; i.e.,
such that Si = Si−1 ∪ {σ(i)}. Then define the vector x̂ with elements

x̂σ(i) = ρ̂(Si)− ρ̂(Si−1) = ĝ((0, z) + 1(Si))− ĝ((0, z) + 1(Si−1)), for i = 0, . . . , n. (57)

If the elements of x̂ are all finite, x̂ is an extreme point of B(ρ̂) and maximizes the weighted combination of
elements

∑n
i=0 wix̂i over B(ρ̂) whenever the weights wi are nonincreasing according to the chosen sequence.

If some elements of x̂ are infinite, then this linear programming problem is unbounded and we can use the
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function evaluations in (57) to identify extreme rays instead of extreme points (see, e.g., Fujishige (2005)2

for more discussion). Thus, using the greedy algorithm, we can identify an extreme point (or extreme ray)
of the differential of V̂t by evaluating the approximate valuation function V̂t a total of t+1 times. The set of
all gradients (i.e., the differential) is then given by the convex hull of these extreme points (and rays).

We consider two different approaches for choosing gradient selections in the lost-sales problem. In the first
approach, we use a simple 50-50 convex combination of two “extreme” extreme points of the differential,
corresponding to taking sequences (0, 1, . . . , n) and (n, . . . , 1, 0) in the greedy algorithm. If one of these
sequences leads to infinite values when taking difference (57), we place 100% weight on the other point. (In
the lost-sales problem, only the first of these two extreme sequences, (0, 1, . . . , n), can have infinite values.)
These gradients are easy to compute but generally will not satisfy the first-order condition of equation (16).

In the second approach for selecting gradients, we use a more sophisticated procedure where we try to
find an element of the differential that satisfies condition (16). Here we work forward in time as discussed
following Proposition 3.2, attempting to select a gradient δt for period t such that E[ δt | Ft ] matches (δt-1, 0)
where δt-1 is the selected gradient for the previous period. To use the greedy algorithm, we work with the

function ĝ(z0, z) = g(z − z01) where g(z) = E

[
V̂t(z)

∣∣∣Ft

]
with differential ∂ĝ(0, z) given by the base

polyhedron B(ρ̂) in (56). The goal then is to find a point in ∂ĝ(0, z) = B(ρ̂) equal to x ≡ (−1′δt-1, δt-1, 0).
To find such a point, we construct B(ρ̂) by sequentially generating extreme points or extreme rays using

the greedy algorithm, stopping when the desired point x is inside the convex hull of identified extreme
points (and rays) or when we know that x lies outside of B(ρ̂). We focus on the case where B(ρ̂) contains
no extreme rays (i.e., is compact):

(i) We begin with i = 0, taking the initial set B0 of extreme points to be the two points used in the simple
50-50 approach described above, i.e., corresponding to the sequences (0, 1, . . . , n) and (n, . . . , 1, 0) in the
greedy algorithm. Let Σ0 = {(0, 1, . . . , n)} ∪ {(n, . . . , 1, 0)} denote the set of sequences corresponding
to the extreme points in B0.

(ii) Given Bi, we solve a linear least squares optimization problem to find the point y in the convex hull
of Bi (written conv(Bi)) that is closest (in the sense of two-norm) to x.

(iii) If x is in conv(Bi) (i.e., the minimum distance is zero), then the weights in the convex combination
define a gradient selection satisfying the desired conditions. Stop.

(iv) If x is not in conv(Bi), then the difference x−y defines a hyperplane that separates x from conv(Bi).
(This follows from the “projection theorem” and is a standard step in proofs of the separating hyper-
plane theorem; see e.g., Bertsekas, Nedić, and Ozdaglar (2003; Theorem 2.3.1).)

(v) We then sort the components of x − y in descending order and let the sort order define an sequence
σi on the index set N̂ for use in the greedy algorithm.

(vi) If σi is in Σi, then Stop: x is not in B(ρ̂) and y is the closest point to B(ρ̂). (In this case, the
hyperplane x− y separates the whole base polyhedron B(ρ̂) from the desired point x.)

(vii) Otherwise, let gi be the extreme point of ∂ĝ(z0, z) given by the greedy algorithm with sequence σi; let
Σi+1 = Σi ∪ {σi} and Bi+1 = Bi ∪ {gi}. Set i = i+ 1 and continue to step (ii) above.

As there are a finite number of extreme points (corresponding to the (n+1)! possible sequences of elements
in N̂), this algorithm will stop eventually. In our setting, this algorithm usually stops in fewer than n steps,
far fewer this worst-case theoretical possibility. Of course, we can limit the number of steps taken in the
algorithm by stopping after, say, 100 iterations. In this case, when we stop, we take the current y to define
the gradient selection. This will be a valid gradient selection, but will not satisfy the desired condition (16)
exactly. When we are working with the true value function, we can be sure that the algorithm, if not stopped
early, will find a gradient selection satisfying (16) exactly. If this is not the case, we have no such guarantee,
even if the algorithm considers all extreme points.

If infinite differences are encountered in the greedy algorithm, we augment the set of extreme points Bi

to include the identified extreme rays. In this case, we proceed in a similar manner but, rather than looking
for the desired point in the convex hull of the extreme points, we look for the desired point in the convex
hull of the extreme points plus the cone generated by the extreme rays.

2Fujishige, S. 2005. Submodular Functions and Optimization (Second Edition), Annals of Discrete Mathematics, 58. Elsevier:
Amsterdam.
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