
Optimal Sequential Exploration: Bandits,

Clairvoyants, and Wildcats

(Online Appendix)

David B. Brown and James E. Smith

Fuqua School of Business

Duke University

Durham, NC 27708-0120

dbbrown@duke.edu, jes9@duke.edu

First version: November 10, 2011
This version: February 7, 2013

B. Detailed Derivations and Results

B.1. Proof of Lemma 4.1: Properties of Value Functions

Proof. (i): Let π denote a policy for controlling a bandit superprocess and let Π denote the set of all such
policies. (Here a policy π is a stationary policy that maps from the system state x to a choice of cluster i
and action in A(xi) or else to “retire.”)

For any policy π and initial state x, we can decompose the value received into the sum of the discounted
rewards r̃(π,x) received prior to retirement and the discounted reward from retiring, δτ̃(π,x)M , where τ̃(π,x)
is the time of retirement for policy π, starting in state x. The expected value with a fixed policy π is then
given as

E

[
r̃(π,x) + δτ̃(π,x)M

∣∣∣x] .

Notice that, for a fixed policy π and initial state x, this is a nondecreasing (since δτ̃(π,x) ≥ 0) and linear
function of M .

We can express the value function Φ(x,M) as

Φ(x,M) = sup
π∈Π

E

[
r̃(π,x) + δτ̃(π,x)M

∣∣∣x] .
Since Φ(x,M) is the supremum of a set of increasing linear functions in M , Φ(x,M) is increasing and convex
in M . When the state and action spaces are finite, Π is a finite set, which implies that Φ(x,M) is piecewise
linear in M .

(ii): Φ′(x,M) exists almost everywhere because Φ(x,M) is convex in M . (ii)(a) follows directly from (i).

(ii)(b): Since M < M∗(x), it cannot be optimal to retire immediately in state x when the retirement value
is M : working exclusively on the cluster with largest Gittins index, for instance, yields an expected reward
that is strictly larger than M . The result then follows by (ii).

(ii)(c): Consider some M where the derivative exists and let π∗ be an optimal policy for this M . Now
consider applying this policy to the problem with retirement value M + ε; this yields a total value of

Φ(x,M) + εE
[
δτ̃(π

∗,x)
∣∣∣x] ,

where τ̃(π∗,x) is the retirement time for policy π∗ and starting in state x. Since π∗ is feasible but not
necessarily optimal given retirement value M + ε, we know that

Φ(x,M + ε) ≥ Φ(x,M) + εE
[
δτ̃(π

∗,x)
∣∣∣x] .

Applying the same argument to the case with retirement value M − ε, we get

Φ(x,M − ε) ≥ Φ(x,M)− εE
[
δτ̃(π

∗,x)
∣∣∣x] .

Combining these, we have

Φ(x,M)− Φ(x,M − ε)

ε
≤ E

[
δτ̃(π

∗,x)
∣∣x] ≤ Φ(x,M + ε)− Φ(x,M)

ε
,

and taking ε→ 0, the result follows. (This proof follows Bertsekas’s (1995) proof of his Lemma 1.5.1.)

(iii): Increasing the retirement value from M to M ′ results in an increase of M ′ −M in the reward of the
policy that retires immediately in state x. For any other policy that does not retire immediately, the change
in the total expected reward in going from M to M ′ must be less than M ′ −M , as the retirement value is
discounted. Since any such policy is not preferred to retiring immediately at M , it must remain optimal to
retire immediately with M ′.

1

These statements hold for the cluster-specific value functions because the cluster-specific case is a special
case of a bandit superprocess with a single cluster. That φ′i(xi,M) = 1 for M > M∗

i (xi) follows by (iii) and
the definition of the Gittins index.

B.2. Details on Bounds Based on Lagrangian Relaxations

To formalize the derivation of the Lagrangian relaxations, it is useful to augment the action sets Ai(xi) to
sets A∗i (xi) that include a “rest” action that pays no reward and results in no change of state. Assuming
the state transitions are independent, we can then rewrite the bandit superprocess (2) with retirement value
M=0 as

Φ(x, 0) = max
(a1,...,aN)

E

[
N∑
i=1

r̃i(xi, ai) + δΦ(x̃(x,a), 0)

∣∣∣∣∣x
]

subject to
N∑
i=1

ρ(ai) ≥ N − 1

ai ∈ A∗i (xi) for i = 1, . . . , N

(19)

where ρ(ai) is defined to be equal to one if ai is the rest option and equal to zero otherwise. The first
constraint here requires at least N -1 clusters to be resting or, equivalently, no more than one cluster to be
active. The transitions x̃(x,a) and rewards r̃i(xi, ai) are defined in the obvious way with a = (a1, . . . , aN);
whenever the action ai is to rest, the next state x̃i for cluster i equal to the current state xi and the rewards
r̃i(xi, ai) are zero.

Being a recursive equation, equation (19) imposes constraints for every state x. Thus, when considering
Lagrange multipliers associated with the first constraint in (19), we can take the Lagrange multipliers to
be a function of the system state. Introducing a Lagrange multiplier function λ(x) ≥ 0, we can write the
Lagrangian for (19) as

L(x;λ(·)) ≡ max
(a1,...,aN)

E

[
N∑
i=1

r̃i(xi, ai) + δL(x̃(x,a);λ(·))
∣∣∣∣∣x
]
+ λ(x)

(
N∑
i=1

ρ(ai)− (N − 1)

)

subject to ai ∈ A∗i (xi) for i = 1, . . . , N.

(20)

For any λ(x) ≥ 0, the Lagrangian provides an upper bound on the system-wide value function given in (19),
that is, L(x;λ(·)) ≥ Φ0(x).

If we assume that the Lagrange multiplier function λ(x) is a constant value λ (λ ≥ 0), we can decompose
the Lagrangian (20) into a series of cluster-specific problems that can be solved separately. Specifically, we
can write L(x;λ) as

L(x, λ) =
N∑
i=1

	i(xi, λ)− λ

1− δ
(N − 1) , (21)

where
	i(xi, λ) ≡ max

ai∈A∗
i (xi)

E[r̃i(xi, ai) + λρ(ai) + δ	i(x̃i(xi, ai)) |xi] . (22)

This result can be verified by substitution and was proven in Hawkins (2003; Theorem 1) and in Adelman
and Mersereau (2008; Proposition 1).

The Lagrange multiplier λ in (21) and (22) can be interpreted as a subsidy paid to a cluster at rest.
Note that in this bandit superprocess setting, if it is optimal to rest cluster i in one period in a state xi, the
cluster will rest forever as the state xi will not change when resting. Thus we can interpret M = λ/(1− δ)
as a retirement value and rewrite the cluster-specific functions 	i(xi, λ) equivalently in terms of the cluster-
specific value functions with retirement value M , as defined in (3) as 	i(xi,M(1− δ)) = φi(xi,M). We can
then rewrite the system-wide Lagrangian as L(x, λ) as a function of M = λ/(1− δ) rather than a function
of λ as:

L̂(x,M) ≡ L(x, (1− δ)M) =

N∑
i=1

φi(xi,M)−M(N − 1). (23)

2

We now show that in the North Sea example the best Lagrangian bound is given by taking M=0, in
which case the Lagrangian L̂(x,M) given by (11) reduces to the value given by allowing all of the clusters
to be pursued simultaneously in the first period. To see this, note that, since L̂(x,M) is piecewise-linear
convex, if its derivative, L̂′(x,M) is nonnegative for all M , then the minimum value must be obtained at
M=0. (Recall that M ≥ 0.) Calculating the derivative, this is equivalent to requiring

N∑
i=1

φ′i(xi,M) ≥ (N − 1). (24)

for all M .
Recall from Lemma 4.1 that φ′i(xi,M) can be interpreted as E

[
δτ̃i(xi,M)

∣∣xi

]
where τ̃i(xi,M) is the

random time of retirement for cluster i when following the policy that is optimal for cluster i when viewed
in isolation, given retirement value M and starting state xi. In the North Sea example, regardless of the
retirement value M , we know the stopping time τ̃i(xi,M) will certainly not exceed the number of targets in
a cluster, which we denote ni. Thus, for any M , we have

N∑
i=1

φ′i(xi,M) =

N∑
i=1

E

[
δτ̃i(xi,M)

∣∣∣xi

]
≥

N∑
i=1

δni .

In our example, with a discount factor δ = 0.98, for any choice of clusters, we find that
∑N

i=1 δ
ni itself exceeds

N − 1, which implies (24) holds for all M ; hence the optimal Lagrangian bound is given by taking M = 0.

Specifically, in the case with one target per cluster, we have 25 clusters and
∑N

i=1 δ
ni = 24.50. In the case

with clusters including all targets associated with each prospect, we have 13 clusters with
∑N

i=1 δ
ni = 12.51.

For the cases of Figures 2 and 3, we have 6 and 4 clusters (respectively) and
∑N

i=1 δ
ni = 5.52 and 3.56.

For the best Lagrangian bound to be something other than that given by simply considering the projects
pursued in parallel immediately (i.e., with M=0), we would have to have many more targets or a much
higher discount rate (i.e., lower discount factor δ).

B.3. Proof of Proposition A.1

Proof. (i) The proof is by induction. The initial basis matrix B0 = I is optimal for M > M0 as M0 is
larger than the Gittins indices for all states. In the discussion before the proposition, we showed that if
Bj is optimal for Mj , then it is optimal over the interval [Mj+1,Mj]. We need to show that the new basis
is optimal at Mj+1. Let θj denote a basic feasible solution to (18) with Mj+1 and basis matrix Bj ; let c̄
and d̄ be the reduced costs for c and d with this basis, as defined in §A.2. The optimal objective function
value is (c + Mj+1d)

Tθj . Now consider a basic feasible solution θj+1 corresponding to basis Bj+1 and let
Δ = θj+1 − θj . Using standard results from linear programming, we can express the change in objective
function values when changing the basis as:

(c+Mj+1d)
TΔ =

∑
k∈N

(c̄k +Mj+1d̄k)Δk , (25)

where N denotes the set of non-basic indices for basis Bj . Here, however, all of the non-zero components
of Δk (representing those variables entering the basis) have reduced costs (c̄k + Mj+1d̄k) equal to zero by
definition of the set I. Thus (c+Mj+1d)

TΔ = 0 and we can conclude that θj+1 and Bj+1 are also optimal
at Mj+1.

To see that optimal value function in the range [Mj+1,Mj] is φ = λcj + Mλdj note that from (17),
we have BT

jφ = cB + MdB; this implies φ = (BT
j)
−1cB + M(BT

j)
−1dB = λcj + Mλdj . Since φi(xi,M) =

λcj(xi) +Mλdj(xi) for M in this range, it is clear that φ′i(xi,M) = λdj(xi).

(ii) The change in basis corresponds to a change in policy with the actions for the states in I changing
at Mi+1. Since it is optimal to retire immediately for M ≥ M0 in any state, the first change in action for
any given state corresponds to a change away from retirement (see Lemma 4.1(iii)); thus Mj+1 for this first
change is the Gittins index for this state. Note, however, that with bandit superprocesses not satisfying the
Whittle condition, the optimal action for any given state may change multiple times.

3

(iii) Note that for any Mj > 0, since Mj = max
{−c̄k/d̄k : d̄k < 0

}
, we have c̄k > 0 for any variable

entering the basis in the jth iteration of the algorithm. Now consider the impact of the basis change on the
value of the objective of (18) without considering the contribution of the retirement. Taking Δ = θj+1− θj

and reasoning as in (25), we have cTΔ =
∑

k∈N c̄kΔk where N is the set of non-basic indices. Since the

entering values Δk are strictly positive (in fact, the Δk are all greater than one), we see that cTθj is strictly
increasing with each iteration of the algorithm. Thus, the bases Bj will be distinct at each iteration and we
do not have to worry about the algorithm cycling. Since there at most a finite number of different bases (or
policies), the algorithm will terminate in a finite number of steps.

B.4. Details on Calculating the Whittle Integral

To calculate the Whittle integral (5), we use the frontier algorithm to calculate the slopes and breakpoints
for each cluster (i.e., φ′i(xi,M) for all M ≥ 0) for a given state x. Given these slopes and breakpoints, it is

straightforward to calculate the Whittle integral Φ̂(x, 0).

First, we need to calculate the product of derivatives
∏N

i=1 φ
′
i(xi,m) for various values of m for this

state. This product, like the cluster-specific derivatives, will be piecewise constant and increasing in m. The
breakpoints for the product will be the union of breakpoints for the individual clusters; the slopes between
these breakpoints can be calculated from the slopes for the individual clusters as follows. Assuming the
slopes sij for cluster i are indexed in increasing order of the breakpoint values Mij , we can define slope
increments as ŝi1 = si1 and, for j > 1, ŝij = sij/si(j−1). Using these increments, we can write:

φ′i(xi,M) =
∏

{j:Mij<M}
ŝij . (26)

We can then represent the product of derivatives required for the Whittle integral calculation as

N∏
i=1

φ′i(xi,M) =
∏

{ij:Mij<M}
ŝij . (27)

Using this, we can combine the breakpoints and slope increments for all clusters and sort by their cor-
responding values of Mij to obtain {Mk, ŝk}Kk=1. The piecewise constant values of (27) are given by the

cumulative product of these sorted slope increments, sk =
∏k

κ=1 ŝκ. The breakpoints for the product will
be the corresponding sorted values of Mk. The slope sk applies from range Mk to Mk+1.

The integral in (5) is then given by weighing these piecewise constant values of this product of derivatives
by the differences between adjacent breakpoints:

Φ̂(x, 0) ≡ B −
∫ B

m=0

N∏
i=1

φ′i(xi,m) dm = MK −
K−1∑
k=1

sk(Mk+1 −Mk) .

Thus, once we have the slopes and breakpoints, these Whittle integrals can be computed quickly.
(Note that the formula for incremental slopes ŝij assumes that the slopes si(j−1) are positive. If some

slopes are zero, we can refine the algorithm to include only the values of m that have positive slopes for all
clusters, as regions with zero slopes for one or more clusters contribute nothing to the Whittle integral.)

B.5. Proof of Proposition 5.1: Clairvoyant Bound

Proof. Suppose policy π for selecting clusters and actions is optimal for the original problem (1). Using this
policy, we can unwind the dynamic program recursion of (1) and write the value as

V (x◦) = E

[
τ̃∑

t=0

δtrit(π)(x̃it(π), ait(π))

∣∣∣∣∣x◦
]

(28)

where it(π), ait(π) and x̃it(π) denote the cluster, action selected, and state of the active cluster at time t
under policy π, given starting state x◦. τ̃ is the (random) stopping time with this policy and starting state.

4

The clusters chosen and actions selected will all depend on the outcomes observed over time as well as the
history of actions selected.

In the inner problem (14) for any ω̂, the DM could choose clusters i to work on and actions ai according
to this same policy π that is optimal for the original problem (1). Assuming that this policy is followed, for
a fixed outcome ω̂, we can unwind the dynamic program recursion of (14) as we did in (28) above and find
the value associated with following this policy:

V π
c (x◦; ω̂) = Eω̂

[
τ̃∑

t=0

δtrit(π)(x̃it(π), ait(π))

∣∣∣∣∣x◦
]

(29)

where, as in (14), Eω̂ denotes expectations taken with respect to this clairvoyant distribution Pω̂ for scenario
ω̂.

By the law of iterated expectations, we know that for any function fi defined on xi, E[Eω̃[fi(x̃it(π)) |x◦]] =
E[fi(x̃it(π)) |x◦]. Applying this to (29), we find that E[V π

c (x◦; ω̃)] reduces to (28) and thus E[V π
c (x◦; ω̃)] =

V (x◦). Thus, if we choose clusters actions in the dual problem according the optimal policy for the original
problem (1), we obtain the same value. However, with the additional information in the inner problem (14),
we can choose clusters and actions differently in each scenario ω̂ and potentially improve upon V π

c (x◦; ω̂).
Thus, if we choose clusters and actions optimally for each sampled ω̃, as we do in the clairvoyant bound
E[Vc(x

◦; ω̃)], we can only improve upon V (x◦).

B.6. Control Variate Calculations

We consider two types of control variates in our calculations. For the clairvoyant bounds, we generate control
variates by evaluating the policies used in static heuristic in the scenarios considered under the clairvoyant
bound. Specifically,

• Before the simulation, for each cluster, we calculate the cluster-specific value function φi(x
◦
i) in its

initial state and the corresponding optimal policy πi, using the marginal distributions P (ωi|x◦) for
that cluster; we assume zero retirement value. This policy πi is also used to specify actions in the
static heuristic.

• Then, for each sample ω̂ of the simulation, we calculate the value of this cluster with this policy πi,
using the marginal distributions used with the clairvoyant bounds, P (ωi|ω̂ī,x

◦). We denote this value
by φπi

i (x◦i ; ω̂). (Here retirement decisions and actions are determined by πi.)

• Since the policy is fixed, E[φπi
i (x◦i ; ω̃)] = φi(x

◦
i). Thus, after the simulation, we can use the differences

φπi
i (x◦i ; ω̃)− φi(x

◦
i) for all clusters as a vector of control variates for the clairvoyant bounds. We use a

standard multiple-regression approach to control variates (see, e.g., Glasserman (2004)) to correct the
value estimates.

Because the policies πi and the distributions involved are already used in the static heuristic and clairvoyant
bounds, there is little additional work required in these control variate calculations.

For the heuristic policies, we apply the control variates discussed above in addition to another control
variate constructed using the “approximating martingale-process method” of Henderson and Glynn (2002).
This method is based on using an easy-to-evaluate function that approximates the reward-to-go at time
t and taking expectations to form a martingale that can be used as a control variate. We will use the
system-wide value function Φπ

α(x) under the multiarmed bandit-based approximation (13) to construct this
martingale approximation. Since (13) is a multiarmed bandit, we can calculate Φπ

α(x) exactly by evaluating
the corresponding Whittle integral.

If we denote the cluster and action chosen by the heuristic as it(π) and ait(π), respectively, and let x̃it(π)
and x̃t(π) denote the state of cluster i and the system at time t under policy π, we can approximate the
reward-to-go at time t given outcome ω̂ as

r̃it(π)(x̃it(π), ait(π), ω̂it(π)) + δΦπ
α(x̃(xt(π), ait(π), ω̂)) .

The expected value of this reward-to-go approximation given state x is

E
[
r̃it(π)(x̃it(π), ait(π)) + δΦπ

α(x̃(xt(π), ait(π)))
∣∣xt(π)

]
,

5

where expectations are calculated using the full model, i.e., using P (ωi|x). In the static approach for the
bandit approximation, we keep π and Φπ

α fixed in the calculation of these expectations. In the sequential
approach, we update π and Φπ

α in each period based on the results observed in early periods.
In each period, the differences between the approximate reward-to-go and its expectation,

r̃it(π)(x̃it(π), ait(π), ω̂it(π)) + δΦπ
α(x̃(xt(π), ait(π), ω̂))

− E
[
r̃it(π)(x̃it(π), ait(π)) + δΦπ

α(x̃(xt(π), ait(π)))
∣∣xt(π)

]
,

has mean zero, so these terms define a martingale. Summing across all times up to the stopping time τ̃ for
the heuristic policy in this sample, the value

τ̃∑
t=0

(
r̃it(π)(x̃it(π), ait(π), ω̂it(π)) + δΦπ

α(x̃(xt(π), ait(π), ω̂))

− E
[
r̃it(π)(x̃it(π), ait(π)) + δΦπ

α(x̃(xt(π), ait(π)))
∣∣xt(π)

])
has mean zero and thus provides a valid control variate.

If Φπ
α(x) is a good approximation to actual reward-to-go under the heuristic, then we would expect this

control variate to be highly correlated with the discounted rewards generated by the heuristic and, hence,
to reduce the sample variation in the estimated values. The key issue in this approximation is that the
bandit-based approximation (13) underlying Φπ

α(x) assumes the clusters are independent (i.e., it ignores
cross cluster learning) whereas the simulations and the expectations involved in constructing the martingale
include all dependence in the model. Intuitively, if “most” of the dependence in the model is captured within
the clusters, this control variate will be very effective.

Most of the terms involved in these martingale control variates are calculated already, e.g., when running
the frontier algorithm or updating the probability distributions over time, as in the sequential heuristic. The
exception is that the expectations in the control variate calculations require probabilities for next-period
states that are not needed to determine the value generated by the static heuristic, but are needed for the
control variate calculation. Our experiments suggest that the improvement in accuracy provided by the
control variate calculation for the static heuristic is worth the extra computational effort required: i.e., we
achieve better accuracy for a given run time using the control variate than we would by simply running more
trials of the simulation.

B.7. Details on Choosing Clusters for the North Sea Example

Table B1 provides the detailed results for individual clusters that we reviewed when selecting clusters in the
North Sea example. We followed the general procedure outlined in §5.3:
• For each cluster, we calculated the cluster-specific value φi(x

0
i) using the marginal probability distri-

bution for that cluster. This represents the value (in the initial state) for that cluster considered in
isolation. These values can be calculated exactly (without simulation) using the frontier algorithm or
a policy method.

• Then, in the simulation study, we calculated the value of the cluster given perfect information about the
outcomes for all other clusters, φci(x

0
i ; ω̂ī), in each simulated scenario. This value is calculated as part

of the frontier algorithm used for calculating clairvoyant Whittle or Lagrangian bounds and requires
no additional work. The average of these values, E

[
φci(x

0
i ; ω̂ī)

]
, represents the value of the cluster

with perfect information about all other clusters. As these values are estimated using simulation, we
report mean standard errors as well as means in Table B1.

• The difference between the two figures, E
[
φci(x

0
i ; ω̂ī)

] − φi(x
0
i), represents the expected value of

information (EVPI) provided by other clusters for cluster i.

In choosing clusters, we identified the clusters that had the largest EVPIs and then sought to combine
them with neighboring clusters, which are presumably providing the valuable information. To simplify the
discussion in the paper, we used the same sets of clusters for the cases with and without kitchen uncertainty.
Here we will focus on the results for the case without kitchen uncertainty, shown in the left side of Table B1.

First, we considered the case where each target was modeled as its own cluster. This case was considered
for primarily for expository reasons; we expected targets to benefit greatly from information about other

6

targets associated with the same prospect. As discussed in §2, if oil or gas is found at any target associated
with a prospect, this proves that there is oil or gas at the prospect and increases the probability of finding
oil at gas at other targets associated with the same prospect. Conversely, dry results at one target may lead
to a higher probability of dry wells at targets associated with the same prospect. In part (a) of Table B1, we
see that many targets have large EVPIs and are thus learning a great deal from the results of other targets.
It seemed natural to next combine all of targets associated with each prospect into the same cluster, leading
to a model with one cluster per prospect.

When considering the results with clusters corresponding to prospects (shown in part (b) of Table B1),
we observed that prospects 7 and 11 were both benefiting significantly from the information from other
clusters, with EVPIs of $450.8M and $603.4M, respectively. These clusters are adjacent in the network and,
as these clusters each contain a single target, they could easily be combined. Prospects 8 and 12 are also
near prospects 7 and 11 in the network and though they were not benefitting as much from the additional
information, we conjectured that these prospects may be contributing valuable information to prospects 7
and 11. In the next study, we combined prospects 7, 8, 11, and 12 into a single cluster with 5 targets; this
combined cluster is cluster 6 in the case with medium clusters shown in Figure 2. Similar logic led us to
combine clusters 5 and 9 and also clusters 10 and 13 into clusters 3 and 5 in Figure 2.

In the results with medium clusters (shown in part (c) of Table B1), we see that then new cluster 6
(containing prospect 7, 8, 11, and 12) is now benefitting little from other clusters: the EVPI for the combined
cluster is now only $2.2M. Clusters 4 and 5 are however still benefitting a fair amount from information from
others, with EVPIs of $104.1M and $130.1M. In the next run, we combined these two clusters into a large
cluster containing 9 targets; this is cluster 3 in Figure 3. (We also dropped target 6C, as discussed in §6.3.)
In part (d) of Table B1, we see that this large cluster is learning much less, with an EVPI of only $14.0M.
Because larger clusters would be time consuming to evaluate and the differences between heuristic values
and clairvoyant bounds were quite small, we chose to stop at this point.

B.8. Formal Justification for Dropping Targets 6C and 8A

We can prove that it is not optimal to drill Targets 6C and 8A in the following way. If we condition on
the corresponding parent prospect having oil or gas, we can directly compute the most favorable possible
expected reward at each target. For target 6C, the most favorable situation is for its parent prospect, P6,
to have oil, which yields an expected reward of -$874M. For target 8A, the most favorable case is when its
parent prospect P8 contains either oil or gas, which leads to an expected reward at 8A of -$828M.

We can compare these best-case expected rewards (which are negative) to the possible information benefit
of drilling at either target: this value of information benefit is bounded by the difference in the clairvoyant
Whittle bound and the sequential heuristic bound with any definition of clusters that has 6C and 8A isolated
in individual clusters. We ran a simulation similar to the case with clusters as defined in Figure 2, but with
6C and 8A in clusters of their own, and found that the gap between the bounds was substantially less than
$828M, with or without kitchen uncertainty. Since the most favorable value of drilling at these sites is a
substantial cost that cannot be made up by a commensurate gain in information value, we conclude that
neither target will ever be drilled in an optimal policy.

B.9. Details on Bounds with Fixed First Actions

We know that an optimal policy must choose one action in the first period. However, in the clairvoyant
bound calculations, the clairvoyant values in different simulated scenarios may be derived from different
choices of first-period actions, depending on the outcomes of events that would not (yet) be known by a
non-clairvoyant DM. Indeed, it precisely this kind of flexibility that makes clairvoyance valuable.

We can restrict this flexibility and improve the bounds by imposing constraints on the choice of first-
actions and calculating first-action constrained bounds. Consider a particular action ai for cluster i and a
particular simulated scenario ω̂. We can calculate a constrained clairvoyant Whittle value (analogous to the
unconstrained Whittle integral bound Φ̂c(x; ω̂), as defined in §5.2) for this scenario as:

Φ̂ai
c (x; ω̂) ≡ Eω̂

[
r̃i(xi, ai) + δΦ̂c(x̃(x, ai); ω̂)

∣∣∣xi

]
(30)

where, as in (14), Eω̂ denotes expectations calculated using the clairvoyant distribution distribution Pω̂ for
scenario ω̂.

7

a)�Target�level�clusters

Target �i(xi°) E[�ci(xi°;��)] (mse) EVPI �i(xi°) E[�ci(xi°;��)] (mse) EVPI
1A 1755.9 1760.8 (0.2) 5.0 1057.2 1378.6 (9.2) 321.4
2A 0 1.1 (0.6) 1.1 0 1.4 (0.8) 1.4
3A 0 0 (0) 0 0 2.0 (2.0) 2.0
4A 0 13.3 (1.0) 13.3 0 48.6 (3.0) 48.6
4B 729.1 764.8 (4.1) 35.7 546.3 692.7 (6.2) 146.4
5A 533.9 667.4 (0.5) 133.5 143.6 549.2 (0.7) 405.6
5B 844.4 1166.1 (1.2) 321.7 0 962.0 (29.9) 962.0
5C 2107.3 2294.6 (0.9) 187.3 1315.7 1883.6 (1.4) 567.9
6A 1965.4 2165.5 (8.5) 200.1 969.5 1503.7 (14.7) 534.2
6B 1747.0 1849.0 (5.2) 102.0 1018.7 1263.7 (9.2) 244.9
6C 0 0 (0) 0 0 0 (0) 0
7A 122.7 573.5 (0.2) 450.8 0 466.1 (17.0) 466.1
8A 0 0 (0) 0 0 0 (0) 0
9A 0 122.5 (2.2) 122.5 0 82.0 (2.8) 82.0
9B 319.2 525.8 (0.3) 206.7 0 424.2 (13.5) 424.2
9C 172.1 526.8 (0.4) 354.7 0 423.7 (13.5) 423.7
10A 0 18.1 (3.0) 18.1 0 83.5 (5.6) 83.5
10B 5697.8 5805.3 (12.7) 107.5 4862.8 5110.4 (15.3) 247.7
10C 1284.8 1863.8 (1.6) 579.0 864.9 1642.2 (1.9) 777.3
11A 0 603.4 (14.1) 603.4 0 429.7 (16.1) 429.7
12A 335.9 1058.7 (8.1) 722.8 211.4 1088.9 (8.7) 877.5
12B 783.4 1510.9 (9.5) 727.5 112.5 1130.2 (11.5) 1017.7
13A 806.1 1063.7 (0.9) 257.6 516.6 993.6 (1.0) 477.0
13B 2051.8 2239.3 (9.8) 187.4 1356.9 1724.6 (12.8) 367.8
13C 628.7 841.1 (10.8) 212.3 143.8 552.3 (13.2) 408.5

b)�Prospect�level�clusters

Prospect �i(xi°) E[�ci(xi°;��)] (mse) EVPI �i(xi°) E[�ci(xi°;��)] (mse) EVPI
1 1755.9 1760.8 (0.2) 5.0 1057.2 1378.6 (9.2) 321.4
2 0 1.1 (0.6) 1.1 0 1.4 (0.8) 1.4
3 0 0 (0) 0 0 2.0 (2.0) 2.0
4 741.3 742.3 (0.4) 1.0 595.2 695.9 (2.5) 100.7
5 3684.5 4039.8 (6.0) 355.3 2552.0 3328.9 (7.9) 776.9
6 3749.7 3853.8 (4.3) 104.1 2325.1 2574.5 (8.2) 249.4
7 122.7 573.5 (0.2) 450.8 0 466.1 (17.0) 466.1
8 0 0 (0) 0 0 0 (0) 0
9 966.4 1123.6 (2.3) 157.1 412.9 898.4 (3.5) 485.5
10 7500.5 7610.3 (4.5) 109.7 6451.5 6755.8 (6.4) 304.3
11 0 603.4 (14.1) 603.4 0 429.7 (16.1) 429.7
12 1821.6 1911.8 (6.5) 90.2 1312.8 1578.5 (12.4) 265.6
13 3896.8 3918.2 (7.3) 21.4 2863.2 2991.3 (14.3) 128.1

c)�Medium�clusters�(as�in�Figure�2)

Cluster �i(xi°) E[�ci(xi°;��)] (mse) EVPI �i(xi°) E[�ci(xi°;��)] (mse) EVPI
1 1755.9 1762.9 (0.7) 7.1 1057.2 1376.0 (4.3) 318.8
2 741.3 742.3 (0.4) 1.0 595.2 695.9 (2.5) 100.7
3 4867.3 4877.2 (0.5) 9.9 3625.6 3693.6 (3.6) 67.9
4 3749.7 3853.8 (4.3) 104.1 2325.1 2574.5 (8.2) 249.4
5 11263.0 11393.1 (6.9) 130.1 9240.9 9651.2 (14.9) 410.3
6 2509.4 2511.6 (0.0) 2.2 1602.8 1602.8 (0) 0

d)�Large�clusters�(as�in�Figure�3)

Cluster �i(xi°) E[�ci(xi°;��)] (mse) EVPI �i(xi°) E[�ci(xi°;��)] (mse) EVPI
1 5541.2 5542.1 (0.1) 0.9 4241.0 4247.8 (0.9) 6.8
2 0 2.0 (0.8) 2.0 0 3.3 (1.1) 3.3
3 16409.0 16423.0 (1.3) 14.0 12747.6 12844.2 (6.4) 96.7
4 2509.4 2511.6 (0.0) 2.2 1602.8 1602.8 (0) 0

Without�Kitchen�Uncertainty With�Kitchen�Uncertainty

Table�B1:�Cluster�specific�results�(All�values�are�$M)

8

Since the Whittle integral provides an upper bound on the state-contingent continuation values, the

average of these values, E
[
Φ̂ai

c (x◦; ω̃)
]
, provides an upper bound on the value with the constraint of starting

with action ai first. Because an optimal policy has to select some action first, we know that the maximum of

the bounds E
[
Φ̂ai

c (x◦; ω̃)
]
over first-period actions ai provides a valid upper bound for the optimal sequential

exploration problem. Moreover, this bound cannot be any worse than the unconstrained clairvoyant Whittle
bound.

If we are calculating unconstrained clairvoyant Whittle bounds, these first-action constrained bounds can
be calculated in the same simulation with relatively little additional work. One pass of the frontier algorithm
generates all of the break points and slopes required to calculate the Whittle integral in any given state:
we need only record the appropriate values for the possible next-period states given action ai and combine
them to find the Whittle integral for these next-period states. The other information required to evaluate
Φ̂ai

c (x◦; ω̂) (e.g., the appropriate transition probabilities) are used in the unconstrained dual bounds as well.
Table B2 shows the results for these first-action-fixed clairvoyant bounds in the cases with large clusters,

with the targets sorted by the value of the bound. The lines indicate where the estimated value of the static
heuristic falls in this list. In the case without kitchen uncertainty, the expected value of the static heuristic
is $23,150M (with a mean standard error of $5M); with kitchen uncertainty, the expected value is $17,717M
(with a mean standard error of $19M). Setting aside sampling error, all targets that lie below these values
can be ruled out as optimal first actions because the bounds show that policies that start with that target
cannot perform as well as the static heuristic.

We could extend this idea of constraining the first action to constraining the first two periods by fixing
the choice of actions in the first period and the state-contingent choice of actions in the second period. To
generate an upper bound, we would have to consider all possible second choices of actions for each outcome
of the first action chosen, i.e., all possible policies for the first two periods. In the North Sea example, given
that we can rule certain first-period actions, we need only consider state-contingent second-period actions
for first-period actions that have not been ruled out in the earlier analysis.

This same idea could be applied at deeper levels – e.g., constraining the policies used in the first three
or four periods – in a similar manner. However, the number of policies that must be considered would likely
grow quickly with increasing depth.

9

Target Mean�($M) MSE�($M) Target Mean�($M) MSE�($M)
10B 23,248 2 10B 17,894 6
13B 23,152 1 6B 17,782 6
6B 23,142 1 13B 17,729 2
6A 23,136 1 6A 17,706 6
1A 23,132 1 12A 17,688 6
5C 23,086 2 4B 17,667 6

12B 23,002 2 9B 17,633 6
4B 22,986 2 9A 17,628 6

12A 22,986 1 5A 17,627 6
9B 22,975 1 1A 17,594 7

13A 22,964 1 12B 17,592 6
5A 22,943 2 13A 17,559 2
9A 22,894 1 5C 17,503 6
7A 22,866 2 13C 17,334 3
9C 22,827 2 7A 17,321 6
5B 22,824 2 9C 17,213 6
13C 22,820 2 10C 17,205 6
10C 22,631 2 2A 17,168 8
2A 22,539 3 5B 17,042 6
4A 22,477 2 4A 17,018 6

11A 22,422 2 11A 16,416 6
3A 21,771 9 3A 16,235 14

10A 21,387 2 10A 16,118 6

Without�Kitchen�Uncertainty With�Kitchen�Uncertainty

Table�B2:�Clairvoyant�Whittle�Bounds�with�Fixed�First�Actions������������������
(Clusters�as�in�Figure�3�case)

10

