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Abstract. In this note, we provide an easy-to-understand introduction to strength-of-
preference measures in the context of deterministic multiattribute value assessments,
focusing on what they are and why they matter. Though these issues are well understood
by some decision analysts, we believe that many do not understand or appreciate the role
of strength-of-preference assumptions when assessing or interpreting multiattribute val-
ue functions. The note is structured around an argument between the two authors that
took place when reviewing applications of multiattribute value functions.

Keywords: multiattribute value theory

1. Introduction
For the 65th anniversary of Management Science, we
wrote a paper reviewing the impact of decision analy-
sis research in Management Science on practice (Dyer
and Smith 2020). As part of this, we reviewed several
applications of multiattribute value theory, where the
standard model is an additive value function. As an
example, we highlighted Parnell et al. (1998) who de-
veloped an additive value function with 134 attributes
to evaluate 43 systems concepts to support the goal of
the US Air Force to achieve space and air dominance
by 2025. In this study, the analysts had the project
teams agree on the shapes of the attribute-specific val-
ue functions (linear, concave, convex, or s-curve).
These value functions were then assessed and assigned
weights and combined in an additive value function.

In a draft of the paper, Dyer called the value func-
tion developed in Parnell et al. (1998) a measurable ad-
ditive value function. However, Smith objected to this
characterization because Parnell et al. made no men-
tion of measurability of the value function; Parnell
et al. said only that they used “standard decision anal-
ysis techniques” (p. 1344).

• Smith: It is an additive value function. Isn’t mutu-
al preferential independence (as discussed in Keeney
and Raiffa 1976) enough to ensure additivity?

• Dyer: Yes, but, any time the attribute value func-
tions are defined independently without using a
method involving explicit tradeoffs with another attri-
bute, the implicit assumption is that it is a measurable
value function built on strength-of-preference assess-
ments (as in Dyer and Sarin 1979).

• Smith: But people do this all the time, without
mentioning measurability or strength-of-preference
relations!

• Dyer (patiently): Yes, they do.
• Smith (skeptically): But do we really need to

make assumptions about strength-of-preference rela-
tions to justify this practice? Couldn’t we get to this
form using willingness-to-pay arguments instead?

• Dyer: Well … that’s a longer story.
This back and forth convinced us that the concept of

measurability and its role in multiattribute value model-
ing may not be well understood in the decision analysis
community. The theory of measurable value functions
was an active research area in decision analysis in the
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1970s and 1980s and related issues are carefully dis-
cussed in some textbooks (e.g., French 1986, vonWinter-
feldt and Edwards 1986, Kirkwood 1997). However,
measurability is not mentioned at all in other popular
decision analysis textbooks that discuss multiattribute
value functions (e.g., Keeney and Raiffa 1976, Clemen
and Reilly 2013). Of course, there are many examples of
papers describing applications of multiattribute value
models that address measurability issues; examples
from this journal include Ewing et al. (2006), Bana e
Costa et al. (2008), and Dees et al. (2013). But there are
other papers that justify the use of an additive value
function by citing mutual preferential independence
assumptions without mentioning the related strength-
of-preference assumptions; examples from this journal
include Merrick et al. (2005), Simon and Melese (2011),
and De Icaza et al. (2019). There are also many other
papers—like Parnell et al. (1998)—that only say they use
“standard decision analysis techniques” to assess an ad-
ditive value function. These examples and others made
us think that Smith is not alone in not fully appreciating
the role that measurability assumptions play in multiat-
tribute valuemodeling.

The purpose of this note is to provide an easy-
to-understand introduction to measurability in the
context of (deterministic) multiattribute value assess-
ments, focusing on what it is and why it matters. In
particular, we describe how “standard decision analy-
sis techniques” for assessing additive value functions
assume mutual preferential independence along with
two additional conditions, difference independence
and difference consistency, which relate to measur-
ability. We structure the note as an elaboration of the
argument between Dyer and Smith outlined above.

2. Measurable Value Functions
To illustrate measurable value functions, we will use an
example from vonWinterfeldt and Edwards (1986; §7.3)
that considers the location preferences of a new medical
doctor considering offers for positions for an assistant
professorship. The example focuses on her location pref-
erences (reflecting proximity to family and friends, cli-
mate, and culture, among other factors) and sets aside
other aspects of the offers (salary, prestige, etc.). In the
example, the analyst asks her to rank five locations and
then assign numeric values to reflect her preferences.
Her most preferred location (San Francisco) is assigned

a value of 100 and her least preferred location (Ann Ar-
bor) is assigned a value of 0. The other locations (Boston,
Los Angeles, and Chicago) have values that lie between
these two extremes; see Table 1. These value judgments
reflect her preferences (with higher values corresponding
to more preferred locations) and her strength of preferen-
ces. For example, San Francisco is strongly preferred to
the other locations, whereas Chicago and AnnArbor are
closer in her view.

The value function of Table 1 is an example of measur-
able value function v, which represents both a preference
order � on alternatives and a strength-of-preference or-
der � ∗ on pairs of alternatives,1 such that:

x�y if and only if v(x) ≥ v y( ) and (1a)

(x′, y′)� ∗(x′′, y′′) if and only if v x′( ) − v y′
( )

≥ v x′′( ) − v y′′
( )

(1b)

Here the first relation (1a) captures preferences in the
obvious way: given a choice between alternatives x
and y, the decision maker (DM) prefers the alternative
with the larger value of ν. The second relation (1b) is
perhaps less obvious and can be interpreted as mean-
ing that the DM thinks that it is a “bigger im-
provement” to go to x′ from y′ than to go to x′′ from
y′′ or that the DMwould prefer the “exchange” of x′ for
y′ to the exchange of x′′ for y′′. For instance, in the exam-
ple of Table 1, the DM finds the improvement in going
from Boston to San Francisco to be “more of an improve-
ment” than that of going from Ann Arbor to Chicago.
This captures the intuitive idea that San Francisco is
much preferred to Boston (and the other cities), but Ann
Arbor andChicago are “close.”

Note that any increasing transformation of the val-
ue function v preserves the order of values and thus
also represents the preference relation � (i.e., is stra-
tegically equivalent), whereas only positive linear

Table 1. A Measurable Value Function for Location
Preferences

Location Value

San Francisco 100
Boston 60
Los Angeles 40
Chicago 15
Ann Arbor 0
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transformations of v would also represent both the
preference relation � and the strength-of-preference
relation � ∗. The theory underlying these measurable
value functions is developed in detail in Krantz et al.
(1971; §4) and French (1986; §9), and is summarized
in a very accessible form in von Winterfeldt and
Edwards (1986; §9.2).

A measurable value function can also be defined on
a continuous range of outcomes. As suggested by Kirk-
wood (1997; p. 66), the procedure for assessing such a
value functionmay be based on asking the DM to iden-
tify the midvalue for a range of outcomes. “The midval-
ue of a range is defined to be the score such that the
difference in value between the lowest outcome score
in the range and the midvalue is the same as the differ-
ence in value between the midvalue and the highest
score.” If the endpoints of the range are scaled to have
values 0 and 1, the midvalue would have a value of 0.5.
This process can continue by assessing the midvalues
of the segments above and below the first midvalue,
and so on until enough points are assessed to allow the
approximation of the value function.

Clearly, the strength-of-preference notion has some
intuitive appeal: we understand what the doctor means
when she says San Francisco is “strongly preferred” to
the other locations. However, despite this intuitive ap-
peal, the concept of a measurable value function and
strength-of-preference measures have been viewedwith
skepticism by some economists, decision theorists, and
decision analysts for many years (not just Smith). Many
of the concerns focus on what exactly a strength-of-
preference means: it is not clear what a bigger improve-
ment is or what preferences for exchanges are. For
example, Machina (1981, p. 169) notes that if he were
asked to compare the strength of preference for one im-
provement over another, he would “respond to this
question by asking what it meant.” Underlying these
concerns is the fact that strength-of-preference judg-
ments are “nonoperational” because they do not corre-
spond to any real or hypothetical choice behavior. Rela-
ted concerns focus onwhy it is necessary: If the goal is to
help DMs make choices, why do we need to consider
strength-of-preference measures? See Farquhar and
Keller (1989), von Winterfeldt and Edwards (1986; §7.1),
and French (1986; §9) for more discussion of these
criticisms and responses.

3. Additive Multiattribute Value
Functions: Theory

As discussed in the introduction, the most common
approach for evaluating multiattribute alternatives is
to use an additive representation. Let x � (x1, : : : , xn)
denote a multiattribute alternative with n attributes
X1, : : : , Xn. An additive value function has the form

v x1, : : : , xn( ) �
∑n

i�1
vi xi( ) (2)

where vi xi( ) is an attribute-specific value function for
Xi. If we let x∗i and x0i denote the best and worst levels
for attribute Xi, we can normalize the additive value
function (2) by taking

v x1, : : : , xn( ) �
∑n

i�1
λi vi xi( ) (3)

where vi(x0i ) � 0, vi x∗i( ) � 1, and the weights λi are
scaled to be between 0 and 1 with

∑n
i�1λi � 1. This im-

plies that v(x01, : : : , x0n)� 0 and v x∗1, : : : , x∗n( ) � 1.
If n ≥ 3, an additive value function exists if and

only if the attributes are mutually preferentially indepen-
dent (see, e.g., Debreu 1960, Keeney and Raiffa 1976,
p. 111).2 To define mutual preferential independence,
let I ⊆ {1, : : :n} denote a subset of the attribute indices
and define XI as the subset of the attributes with indi-
ces in I; let X̄I be the complementary subset of the at-
tributes. Then, XI is preferentially independent of X̄I if

yI, x̄I( )� xI, x̄I( ) for any xI,yI ∈ XI and x̄I ∈ X̄I implies

yI, ȳI
( )

� xI, ȳI
( )

for all ȳI ∈ X̄I:

Intuitively, this means that preferences for attributes
in XI (i.e., tradeoffs among these attributes) do not
depend on the levels of the complementary attributes
X̄I. The attributes X1, : : : ,Xn are mutually preferential-
ly independent if every subset of attributes XI is pref-
erentially independent of its complementary subset of
attributes X̄I: The resulting additive form is unique in
that any two additive value functions that represent
the same ordinal preferences (� ) must be related by
a positive linear transformation; thus the normalized
additive form (3) is unique.

Note that these requirements for an additive value
function concern only the DM’s preferences (captured
by the � relation) and do not reference strength-of-
preferences (captured by the � ∗ relation). Thus, as
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noted by Smith in the argument in the introduction, the
use of the additive value function rests on mutual pref-
erential independence, without any appeal to measur-
ability or strength-of-preference assumptions.

4. Additive Multiattribute Value
Functions: Assessment

Yes, says Dyer, but let us look carefully at this con-
clusion: the result says that, given mutual preferential
independence, a unique additive value function exists.
But we need to perform careful assessments to deter-
mine the attribute-specific value functions vi xi( ) as
well as the weights λi. These assessment procedures
are described in detail in Keeney and Raiffa (1976,
§3.7) and Kirkwood (1997; §9.2). Given the attributes,
the process consists of three steps:

1. Confirm (or assume) the attributes satisfy mutual
preferential independence;

2. Determine the attribute-specific value functions
vi xi( ); and

3. Determine the weights λi:

We will focus on step (2), determining the attribute-
specific value functions vi xi( ) using the midvalue split-
ting technique, which seems analogous to the univari-
ate midvalue assessment technique discussed in §2,
but, as we will see, is much more involved.

Given a normalized additive value function of the
form of (3), Kirkwood (1997; p. 233) defines the mid-
value of an interval as follows:

The midvalue of an interval [x′i , x′′i ] is the level xmi such
that starting from a specified level of another attribute, the
DM would give up the same amount of that other attribute
to improve from x′i to xmi as to improve from xmi to x′′i .

The attribute-specific value of this midvalue vi xmi
( )

is then equal to 0:5 vi x′i
( )+ 0:5 vi x′′i

( )
. In the midvalue

splitting technique, the analyst begins by assessing
the midvalue x0:50i of the interval from best to worst
levels of the attribute x0i ,x

∗
i

[ ]
. Given the normalization

of the value function, we have vi(x0:50i )� 0:5 vi(x0i )+
0:5 vi x∗i( ) � 0:5. Next, the analyst assesses the midval-
ue x0:75i of the interval [x0:5i ,x∗i ] and the midvalue x0:25i
of the interval [x0i ,x0:5i ], having values v(x0:75i ) � 0:75
and v(x0:25i ) � 0:25. At this point, the analyst has five
points of the attribute-specific value function vi xi( )
and can subdivide the intervals further to achieve
greater refinement, if so desired.

Given mutual preferential independence, an addi-
tive value function exists and there is no assumption
that the attribute-specific value functions represent a
strength-of-preference relationship. Nevertheless, the
midvalue assessment question

What value xmi yields the same improvement from x′i to xmi
as the improvement from xmi to x′′i ?

or, phrased differently,

What value xmi yields half of the improvement of going
from x′i to x′′i ?

is very similar to a strength-of-preference assessment
question. It is easy and natural to ignore the change in
values of the “other attribute” when answering these
questions. Indeed, Kirkwood (1997), after defining the
midvalue as above, makes no further mention of
the other attribute when discussing the midvalue as-
sessment technique. Without a strength-of-preference
interpretation and additional independence assump-
tions about strength-of-preferences, these midvalue as-
sessment questions can be very difficult to answer cor-
rectly and may be easily misconstrued.

To illustrate the difficulty of the midvalue assess-
ment technique, consider an example of a value func-
tion for quality of life years that includes consideration
of health state and consumption. For simplicity, we fo-
cus on a value function where q denotes a quality of
life measure (scaled between 0 for a health state com-
parable with death and 1 for perfect health), l denotes
the number of years lived in this health state, and c the
annual consumption over this lifespan.3 Suppose the qs
for the problem under consideration range from q0 �
0:2 to q∗ � 1:0 and the ls range from l0 � 0 years to l∗ �
50 years. We will assume that, unbeknownst to the
analyst, the DM has a measurable value function of
the form

v q, l, c
( ) � q × lη × u c( ), (4)

where η � 0:50: We will not make any specific as-
sumptions about the form of u(c) other than that it is
increasing and positive over the range of consumption
levels considered. Notice that this DM’s preferences
satisfy mutual preferential independence (preferences
for any two attributes do not depend on a common
value of the third attribute). Taking logarithms, the
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DM’s ordinal preference relation (� ) can be repre-
sented in an additive form as

ln q( ) + ηln l( ) + ln(u c( )): (5)

If the analyst asks the DM midvalue questions—
What is the midvalue of q in the range 0:2, 1[ ]?—it
would be natural for the DM to appeal to the
strength-of-preference interpretation when answering
these questions and ignore changes in the other attri-
bute. Based on (4), for q this would lead to the assess-
ments that the midvalue of 0:2, 1[ ] is q0:50 � 0:6, the
midvalue of 0:6, 1[ ] is q0:75 � 0:8 and so on, leading to
an attribute specific value function vq q( ) ∝ q. Follow-
ing a similar process for l and c, the analyst would
find attribute-specific value functions vl l( ) ∝ lη and
vc c( ) ∝ u(c) and incorrectly arrive at a value function
of the form

λqq+λllη +λcu c( ), (6)

rather than a correct form such as (4) or (5). Note that
(5) is an order-preserving transformation of (4) and
both would provide the same rankings of alternatives,
whereas the additive model (6) is not an order-
preserving transformation of (4) and may produce in-
correct rankings.

Properly assessing the value function requires pay-
ing careful attention to the other attribute in the defi-
nition of the midvalue. Suppose we seek to assess
vq q( ) and take a base value of the other attribute l to
be l∗ � 50 years; we will assume consumption is held
constant at c. To find the midvalue of q0:50 in the
range [q0,q∗], the definition of the midvalue—read
carefully—requires the DM to determine a q0:50 and
the amount of that other attribute l given up δl that
satisfy the following two indifference conditions:

(q0, l∗, c) ~ (q0:50, l∗ − δl, c) (7a)

(q0:50, l∗, c) ~ (q∗, l∗ − δl, c) (7b)

The required assessment is illustrated in Figure 1: giv-
en the point (q0, l∗) (labeled point 1 in the figure), we
seek a point (q0:50, l∗ − δl) (labeled point 2) on the same
indifference curve, such that the DM is also indifferent
between (q0:50, l∗) (labeled point 3) and (q∗, l∗ − δl) (la-
beled point 4), having the same quality q0:50 and life-
time value l∗ − δl (respectively) as point 2. Given a

normalized additive value function (3), these condi-
tions are equivalent to

λqvq(q0) +λlvl l∗( ) +λcvc c( )
� λqvq(q0:50) +λlvl l∗ − δl( ) +λcvc c( ) (8a)

λqvq(q0:50) +λlvl l∗( ) +λcvc c( )
� λqvq q∗

( )+λlvl l∗ − δl( ) +λcvc c( ) : (8b)

Subtracting (8b) from (8a), we find themidvalue satisfies

vq(q0:50) � 0:5 vq(q0)+0:5vq q∗( ) � 0:50:

This result is apparently independent of the assumed
base for l (here taken to be l∗) and the amount of that
other attribute given up δl, though these values are
critical to the definition of the midvalue q0:50.

The assessment of the indifference points q0:50 and
δl satisfying conditions (7a) and (7b)—requiring si-
multaneous consideration of two indifference
curves—is likely to be very difficult. With a true val-
ue function of the form (4), we can solve two nonlin-
ear equations (corresponding to these indifference
conditions) in two unknowns (q0:50 and δl) to deter-
mine the midvalue:

v (q0, l∗, c) � v (q0:50, l∗ − δl, c) (9a)

v (q0:50, l∗, c) � v (q∗, l∗ − δl, c) (9b)

Figure 1. (Color online) Indifference Curves and Points In-
volved in the Midvalue Assessment
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Given our specific numerical assumptions, we can
solve these two equations (e.g., by using Solver in Ex-
cel) to find q0:50 � 0:4472 and δl � 40:0. Recall that the
natural, but incorrect, strength-of-preference interpre-
tation gave the midvalue q0:50 � 0:60.4

If we continue to assess the attribute-specific value
function vq using this midvalue splitting technique,
use the same procedure to assess vl and vc, and then
properly assess the scaling weights λq, λl, and λc

(e.g., following the approach recommended in Keen-
ey and Raiffa (1976) or Kirkwood (1997)), we arrive at
a normalized additive value function

1
2+ η

ln q( ) − ln(q0)
ln q∗( ) − ln(q0) +

η

2+ η

ln l( ) − ln(l0)
ln l∗( ) − ln(l0)

+ 1
2+ η

ln u(c)( ) − ln(u c0( ))
ln u(c∗( )) − ln(u(c0)) : (10)

This value function is strategically equivalent to (4)
and (5) and thus correctly represents the DM’s ordi-
nal preferences (� ) but it does not correctly represent
the DM’s strength of preferences (� ∗).

Our ability to interpret the shapes of attribute-
specific value functions also rests on the correct repre-
sentation of the strength of preference relation. For
example, Parnell et al. (1998, p. 1345) “had the team
agree on the shape of the curve (linear, concave, convex
or s-curve)” before assessing points on the curve. But
such conclusions about the shape of the curve are not
meaningful as these shapes may not be preserved un-
der increasing transformations of the measurable value
function even if the decision maker’s preferences are
mutually preferentially independent. For example,
holding other attributes constant, the measurable value
function (4) is linear in q, whereas the attribute-specific
value function in the order-preserving additive form
(10) is proportional to ln q( ). (The “meaningfulness” of
preference statements is discussed in detail in Krantz
et al. (1971) and French (1986; §9.2).)

Thus, argues Dyer, there is nothing wrong with the
theory of additive value functions or applications
with a careful assessment process. But in practice, al-
most no one does this because it would be very diffi-
cult for a DM to make the required tradeoffs. Indeed
the only application of the midvalue splitting tech-
nique that we are aware of is the work by Roche,
which is described in Keeney and Raiffa (1976, §7.2).5

Instead, most practitioners using “standard decision
analysis techniques” assume—implicitly or otherwise—
that the value function is a measurable additive value
function, satisfying the assumptions described below.
These assumptions allow one to assess attribute-specific
value functions without considering tradeoffs with oth-
er attributes. If these assumptions are not satisfied and
one uses standard decision analysis techniques, one
may arrive at an incorrect representation of the value
function, such as (6).

5. Measurable Multiattribute
Value Functions

The theory of measurable multiattribute value functions
presumes the existence of a strength-of-preference or-
der � ∗ as well as a preference order � on alterna-
tives and makes assumptions about both. An additive
value function of the form of Equation (2) or (3) is
measurable if it represents both a preference order
� on alternatives and a strength-of-preference order
� ∗, that is, satisfies conditions (1a) and (1b). What is
required to ensure this result? Following Dyer and
Sarin (1979), we can identify three conditions on the
preference relation � and strength-of-preference rela-
tion � ∗ that are sufficient for this purpose:

1. the attributes are mutually preferentially inde-
pendent, as discussed earlier;

2. the attributes are difference consistent; and
3. one of the attributes is difference independent of the

others.
Difference consistency means that

If x� y� z, then x, z( )� ∗ y, z( ),
which means that if the DM prefers x to y, then for any
less preferred outcome z, the DM views going from z to
x as a bigger improvement (or preferred exchange)
than going from z to y (x, y, and z here are multiattri-
bute alternatives). As the name suggests, this is a basic
consistency requirement that relates the preference re-
lation � and the strength-of-preference relation � ∗.

AttributeXi is difference independent of the others if

(xi, x̄i)� (yi, x̄i) for some xi,yi ∈ Xi and x̄i ∈ X̄i implies

xi, x̄i( ) yi, x̄i( ) ~∗ xi, ȳi
( )

yi, ȳi
( )

for any ȳi ∈ X̄i:

Intuitively, this means the improvement in going
from yi to xi on one attribute (all other attributes held
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constant) is the same regardless of the levels of the
other attributes. This condition relates directly to the
strength-of-preference relationship and asks the DM
to consider preferences for improvements; the condi-
tion ensures that the value associated with changes in
one attribute does not depend on the levels of the
other attributes.

With these assumptions, one can assess measurable
attribute-specific value functions using the midvalue
assessment questions of the form considered earlier

What value xmi yields half of the improvement of going
from x′i to x′′i ?

or, alternatively,

Rate Boston on a scale from 0 (Ann Arbor) to 100 (San
Francisco)

without explicitly considering tradeoffs with other at-
tributes. Similarly, one can talk about the shape of
these attribute-specific value functions—for example,
are they linear, concave, convex, or s-shaped? It is the
measurability of the value function—ensured by the
difference consistency and independence assumptions
paired with mutual preferential independence—that
allows these simplifications in assessing and inter-
preting the standard additive value function. These
assumptions are also implicit in popular computer
programs that support the assessment of additive val-
ue functions, including Logical Decisions (Logical De-
cisions 2021) and Hiview3 (Catalyze Ltd 2021). These
are things that people “do all the time,” as Dyer and
Smith noted in the introduction.

In the quality of life example of Equation (4), the
mutual preferential independence condition held but
the difference independence condition did not—for
example, improvements in health state are valued
more given a longer life—and this caused “standard
decision analysis techniques” to lead to the incorrect
representation (6). If preferential independence holds,
but difference independence does not, one can some-
times appeal to a weak difference independence condi-
tion, which, when combined with mutual preferential
independence, justifies the existence of either an addi-
tive or a multiplicative measurable value function
such as (4). This weak indifference independence con-
dition requires the rank order of preference differ-
ences (but not their magnitudes) to be independent of

the levels of the other attributes; see Dyer and Sarin
(1979), theorem 3. Alternatively, one might redefine
attributes so difference independence holds with the
new attributes, analogously to Keeney (1981)’s meth-
ods for ensuring additive independence with multiat-
tribute utility functions.

6. Willingness to Pay and Measurability
Given the skepticism about strength-of-preference
measurements discussed in §1 is there some other
more concrete way to justify this standard practice
for assessing additive value functions, perhaps using
willingness-to-pay assumptions as Smith suggested?

To illustrate the willingness-to-pay interpretation, let
us expand the example of the medical doctor choosing
among assistant professor offers discussed in §2 to
consider salary (s) and prestige (p) attributes, as well as
location (l). In the earlier example, preferences for dif-
ferent locations were measured using values ranging
from 0 to 100 to represent strength-of-preference for the
five cities in Table 1. Salary might be measured in terms
of cost-of-living-adjusted dollars per year and prestige
might be scored on a discrete scale; for example, using
letter grades from “A” (themaximumpossible prestige)
to “F.”We also assume that the DM strictly prefers larg-
er salaries to smaller salaries, all else equal.

In the willingness-to-pay approach (see Keeney
and Raiffa 1976, §3.8), one chooses (or introduces) a
“money” attribute and compares alternatives to base-
case levels of the other attributes. In the example, we
will take salary s to be the money attribute and take
the base case for the other attributes to be (l0,p0). To
find the willingness-to-pay for s, l,p

( )
, we seek a Δ

such that

s, l,p
( )

~ (s+Δ, l0,p0) :
The interpretation is that the DM is indifferent to ac-
cepting an increment Δ in salary (from s) and having
(l0,p0) instead of l,p

( )
. Using the assumption that the

DM strictly prefers larger salaries, we could then
rank alternatives in terms of their willingness-to-pay
adjusted salaries, s+Δ.6 We can price out changes in
different attributes one attribute at a time as in the
“even swaps” method proposed by Hammond et al.
(1999). This pricing out approach does not require
any specific assumptions about the form of the prefer-
ence model, but, without more structure on the DM’s
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preferences, the assessment of such willingness-to-
pay values is likely to be difficult if there are many al-
ternatives to consider.

To simplify these willingness-to-pay assessments,
two assumptions are standard. First, it is standard to
assume that the attributes are mutually preferentially
independent. This assumption allows the DM to con-
sider, for example, tradeoffs between salary s and lo-
cation l without simultaneously considering prestige
p. Thus, we can decompose the willingness-to-pay Δ

into attribute-specific willingness-to-pay amounts. For
example, let Δl be defined by the following indiffer-
ence assessment:

s, l,p
( )

~ (s+Δl, l0,p):
For example, suppose the DM considers an alternative
with a cost-of-living adjusted salary of $100k located
in Los Angeles with a prestige rating of p and would
be just indifferent to a cost-of-living adjusted salary of
$120k in Ann Arbor (l0) with the identical prestige
rating; then Δl is $20k. A similar tradeoff between sal-
ary and prestige would complete the process:

(s+Δl, l0,p) ~ (s+Δl +Δp, l0,p0)
Here the total willingness-to-pay is decomposed as
Δ � Δl +Δp where Δl and Δp are the amounts the DM
is willing to pay to go from location l to l0 and then
from prestige p to p0. Mutual preferential indepen-
dence allows Δl to depend on s but ensures that Δl

does not depend on p. Similarly, Δp may depend on
s+Δl but Δp does not depend on l.

The second standard simplifying assumption in will-
ingness-to-pay assessments is to assume that the
attribute-specific willingness-to-pays (here Δl and Δp)
do not depend on the level of the money attribute
(here salary s). This, coupled with the mutual preferen-
tial independence assumption, allows the analyst to as-
sess the attribute-specific willingness-to-pay functions
Δl l( ) and Δp p( ) independently and sum these terms to
form a value function. Thus, these willingness-to-pay
arguments lead to an additive value function

v s, l,p
( ) � s+Δl l( ) +Δp(p), (9)

where the attribute-specific willingness-to-pay functions
Δl l( ) and Δp(p) are measured in salary and play the role
of attribute-specific value functions. Thus, Smith argues,
this willingness-to-pay-based value function has a

concrete interpretation in terms of the DM’s preferences
(� ) and it is meaningful to talk about the attribute-
specific functions being convex, concave, or s-shaped,
for example. This interpretation does not require any as-
sumptions about a strength-of-preference relation � ∗.

Yes, says Dyer, but note that (9) is a measurable ad-
ditive value function: v s, l,p

( )
represents the DM’s pref-

erences � and the location and prestige adjustments to
salaries define a strength-of-preference measure defin-
ing the relation � ∗. In making these willingness-to-pay
assessments, we have (i) assumed mutual preferential
independence (the first simplifying assumption) and
(ii) difference independence (the second simplifying
assumption). Difference consistency is satisfied by con-
struction. Thus, this willingness-to-pay assessment
process implicitly makes the measurability assump-
tions required to justify the additive measurable value
function. However, this willingness-to-pay approach is
restrictive in that the second assumption requires the
value function to be linear in the money attribute; this
is not necessary in general. For example, one could
imagine the attribute-specific value function vs(s) being
concave in salary; this would imply that the doctor’s
willingness-to-pay for living in San Francisco would be
larger with higher salaries. Moreover, the assumption
that there is a monetary attribute may be unrealistic in
some settings; for example, in some public sector appli-
cations, the domain expert whose preferences are rele-
vant for some attributes may be quite removed from
the funding organization that cares about costs.

Smith:Ah, it is mutual preferential independence and
difference independence that allows us to use these will-
ingness-to-pay methods and leads to a measurable addi-
tive value function. So, with a justification that relies on
either strength-of-preference interpretations or willing-
ness-to-pay arguments, we arrive at the same place.

Dyer: Exactly.

7. Conclusions: Implications for Practice
Smith: I like the concrete interpretation of strength-of-
preferences associated with the willingness-to-pay ap-
proach, but acknowledge the restrictiveness of the
simplifying assumptions. Before this exchange, I had not
appreciated the role of difference independence in stan-
dard decision analysis techniques for assessing additive
value functions. This difference independence condition
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seems important to confirm in applications, along with
mutual preferential independence.

Dyer: I agree. One should check:
• Do tradeoffs between two attributes depend on

the levels of the other attributes? (mutual preferential
independence); and

• Does the improvement associated with changes in
one attribute depend on the levels of the other attrib-
utes? (difference independence (Dyer and Sarin 1979;
§4 has a longer discussion on this point)).

Like many other practitioners and researchers (and
despite the objections of other practitioners and re-
searchers), I have found that people are quite willing
to think about comparing improvements in attribute
values, even when it is not a monetary tradeoff; this
reflects an intuitive sense that value is measurable
and meaningful for them.

Smith: Yes, people do it all the time. Perhaps the take-
away message is to encourage people to think carefully
about what “value” is in the context of multiattribute
value modeling, and to take care in choosing assessment
techniques that are appropriate for a given application.
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Endnotes
1 We let 	 	∗( ) and ~ ~∗( ) denote the strict preference and indiffer-
ence relations corresponding to � � ∗( ).
2 When there are only two attributes, the corresponding tradeoffs
condition is required for additivity. See Keeney and Raiffa (1976) or
Kirkwood (1997) for discussions.
3 For more detailed models considering health states and consump-
tion levels varying over time, see for example, Smith and Keeney
(2005) or Lichtendahl and Bodily (2012).
4 Keeney and Raiffa (1976) and Kirkwood (1997) observe that for a val-
ue function satisfying mutual preferential independence, the resulting
midvalue point (here q0:50) does not depend on the base value for the
other attribute (here assumed to be l∗), but the resulting change in the
other attribute (δl) may be different with a different base value. For in-
stance, if we take the base value l � 45 rather than l∗ � 50, solving (8a)
and (8b), we find q0:50 � 0:447 (as before) and δl � 36:0.
5 Even in Roche’s application of the midvalue assessment technique,
it is not clear that subjects explicitly considered tradeoffs with other
attributes. Keeney and Raiffa’s summary of Roche’s work says that he
used the midvalue method and concluded with a discussion of “the
general shape of the v-component value functions” (Keeney and Raif-
fa 1976, p. 371). It would hardly be surprising if Roche and his subjects
also appealed to the intuitive measurable value function interpreta-
tion of the midvalue assessment questions, as described above.

6 To see this, suppose s′, l′,p′
( )

~ s′ +Δ′, and s′′, l′′,p′′
( )

~ s′′ +Δ′′.
Then the former is preferred to the latter if and only if
s′ +Δ′ ≥ s′′ + Δ′′.
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